

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0

International License.

ISBN 978-1-7358317-3-2

How To Manage Remote Servers with
Ansible

Erika Heidi

DigitalOcean, New York City, New York, USA

2020-11

How To Manage Remote Servers with
Ansible

1. About DigitalOcean
2. Introduction
3. An Introduction to Configuration Management with Ansible
4. How To Install and Configure Ansible on Ubuntu 20.04
5. How To Set Up Ansible Inventories
6. How To Manage Multiple Servers with Ansible Ad Hoc

Commands
7. How To Execute Ansible Playbooks to Automate Server Setup

About DigitalOcean

DigitalOcean is a cloud services platform delivering the simplicity
developers love and businesses trust to run production applications at scale.
It provides highly available, secure and scalable compute, storage and
networking solutions that help developers build great software faster.
Founded in 2012 with offices in New York and Cambridge, MA,
DigitalOcean offers transparent and affordable pricing, an elegant user
interface, and one of the largest libraries of open source resources available.
For more information, please visit https://www.digitalocean.com or follow
@digitalocean on Twitter.

https://www.digitalocean.com/
https://twitter.com/digitalocean

Introduction

About this Book

Ansible is a modern configuration management tool that facilitates the task
of setting up and maintaining remote servers. With a minimalist design
intended to get users up and running quickly, it allows you to control one to
hundreds of systems from a central location with either playbooks or ad hoc
commands.

This series goes over how to use Ansible to manage remote servers, and
how to write your own playbooks to automate your server setup.

An Introduction to Configuration
Management with Ansible

Written by Erika Heidi

Introduction

Configuration management is the process of handling changes to a system
in a way that assures integrity over time, typically involving tools and
processes that facilitate automation and observability. Even though this
concept didn’t originate in the IT industry, the term is broadly used to refer
to server configuration management.

In the context of servers, configuration management is also commonly
referred to as IT Automation or Server Orchestration. Both terms highlight
the practical aspects of configuration management and the ability to control
multiple systems from a central server.

This guide will walk you through the benefits of using a configuration
management tool to automate your server infrastructure setup, and how one
such tool, Ansible, can help you with that.

Benefits of Using a Configuration Management Tool

There are a number of configuration management tools available on the
market, with varying levels of complexity and diverse architectural styles.
Although each of these tools have their own characteristics and work in
slightly different ways, they all provide the same function: make sure a
system’s state matches the state described by a set of provisioning scripts.

https://www.digitalocean.com/community/tutorials/an-introduction-to-configuration-management-with-ansible
https://ansible.com/

Many of the benefits of configuration management for servers come from
the ability to define your infrastructure as code. This enables you to:

Use a version control system to keep track of any changes in your
infrastructure
Reuse provisioning scripts for multiple server environments, such as
development, testing, and production
Share provisioning scripts between coworkers to facilitate
collaboration in a standardised development environment
Streamline the process of replicating servers, which facilitates
recovery from critical errors

Additionally, configuration management tools offer you a way to control
one to hundreds of servers from a centralized location, which can
dramatically improve efficiency and integrity of your server infrastructure.

Ansible Overview

Ansible is a modern configuration management tool that facilitates the task
of setting up and maintaining remote servers, with a minimalist design
intended to get users up and running quickly.

Users write Ansible provisioning scripts in YAML, a user-friendly data
serialization standard that is not tied to any particular programming
language. This enables users to create sophisticated provisioning scripts
more intuitively compared to similar tools in the same category.

Ansible doesn’t require any special software to be installed on the nodes
that will be managed with this tool. A control machine is set up with the

https://yaml.org/

Ansible software, which then communicates with the nodes via standard
SSH.

As a configuration management tool and automation framework, Ansible
encapsulates all of the common features present in other tools of the same
category, while still maintaining a strong focus on simplicity and
performance:

Idempotent Behavior

Ansible keeps track of the state of resources in managed systems in order to
avoid repeating tasks that were executed before. If a package was already
installed, it won’t try to install it again. The objective is that after each
provisioning execution the system reaches (or keeps) the desired state, even
if you run it multiple times. This is what characterizes Ansible and other
configuration management tools as having an idempotent behavior. When
running a playbook, you’ll see the status of each task being executed and
whether or not the task performed a change in the system.

Support to Variables, Conditionals, and Loops

When writing Ansible automation scripts, you can use variables,
conditionals, and loops in order to make your automation more versatile
and efficient.

System Facts

Ansible collects a series of detailed information about the managed nodes,
such as network interfaces and operating system, and provides it as global

variables called system facts. Facts can be used within playbooks to make
your automation more versatile and adaptive, behaving differently
depending on the system being provisioned.

Templating System

Ansible uses the Jinja2 Python templating system to allow for dynamic
expressions and access to variables. Templates can be used to facilitate
setting up configuration files and services. For instance, you can use a
template to set up a new virtual host within Apache, while reusing the same
template for multiple server installations.

Support for Extensions and Modules

Ansible comes with hundreds of built-in modules to facilitate writing
automation for common systems administration tasks, such as installing
packages with apt and synchronizing files with rsync , and also for dealing

with popular software such as database systems (like MySQL, PostgreSQL,
MongoDB, and others) and dependency management tools (such as PHP’s
composer , Ruby’s gem , Node’s npm , and others). Apart from that, there are

various ways in which you can extend Ansible: plugins and modules are
good options when you need a custom functionality that is not present by
default.

You can also find third-party modules and plugins in the Ansible Galaxy
portal.

Getting Familiar with Ansible Concepts

https://galaxy.ansible.com/

We’ll now have a look at Ansible terminology and concepts to help
familiarize you with these terms as they come up throughout this series.

Control Node

A control node is a system where Ansible is installed and set up to connect
to your server. You can have multiple control nodes, and any system
capable of running Ansible can be set up as a control node, including
personal computers or laptops running a Linux or Unix based operating
system. For the time being, Ansible can’t be installed on Windows hosts,
but you can circumvent this limitation by setting up a virtual machine that
runs Linux and running Ansible from there.

Managed Nodes

The systems you control using Ansible are called managed nodes. Ansible
requires that managed nodes are reachable via SSH, and have Python 2
(version 2.6 or higher) or Python 3 (version 3.5 or higher) installed.

Ansible supports a variety of operating systems including Windows servers
as managed nodes.

Inventory

An inventory file contains a list of the hosts you’ll manage using Ansible.
Although Ansible typically creates a default inventory file when installed,
you can use per-project inventories to have a better separation of your
infrastructure and avoid running commands or playbooks on the wrong
server by mistake. Static inventories are usually created as .ini files, but

https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#id11

you can also use dynamically generated inventories written in any
programming language able to return JSON.

Tasks

In Ansible, a task is an individual unit of work to execute on a managed
node. Each action to perform is defined as a task. Tasks can be executed as
a one-off action via ad-hoc commands, or included in a playbook as part of
an automation script.

Playbook

A playbook contains an ordered list of tasks, and a few other directives to
indicate which hosts are the target of that automation, whether or not to use
a privilege escalation system to run those tasks, and optional sections to
define variables or include files. Ansible executes tasks sequentially, and a
full playbook execution is called a play. Playbooks are written in YAML
format.

Handlers

Handlers are used to perform actions on a service, such as restarting or
stopping a service that is actively running on the managed node’s system.
Handlers are typically triggered by tasks, and their execution happens at the
end of a play, after all tasks are finished. This way, if more than one task
triggers a restart to a service, for instance, the service will only be restarted
once and after all tasks are executed. Although the default handler behavior
is more efficient and overall a better practice, it is also possible to force
immediate handler execution if that is required by a task.

Roles

A role is a set of playbooks and related files organized into a predefined
structure that is known by Ansible. Roles facilitate reusing and repurposing
playbooks into shareable packages of granular automation for specific
goals, such as installing a web server, installing a PHP environment, or
setting up a MySQL server.

Conclusion

Ansible is a minimalist IT automation tool that has a gentle learning curve,
thanks in part to its use of YAML for its provisioning scripts. It has a great
number of built-in modules that can be used to abstract tasks such as
installing packages and working with templates. Its simplified infrastructure
requirements and accessible syntax can be a good fit for those who are
getting started with configuration management.

In the next part of this series, we’ll see how to install and get started with
Ansible on an Ubuntu 20.04 server.

https://www.digitalocean.com/community/tutorial_series/how-to-automate-server-setup-with-ansible
https://www.digitalocean.com/community/tutorials/how-to-install-and-configure-ansible-on-ubuntu-20-04

How To Install and Configure Ansible on
Ubuntu 20.04

Written by Erika Heidi

Introduction

Configuration management systems are designed to streamline the process
of controlling large numbers of servers, for administrators and operations
teams. They allow you to control many different systems in an automated
way from one central location.

While there are many popular configuration management tools available for
Linux systems, such as Chef and Puppet, these are often more complex than
many people want or need. Ansible is a great alternative to these options
because it offers an architecture that doesn’t require special software to be
installed on nodes, using SSH to execute the automation tasks and YAML
files to define provisioning details.

In this guide, we’ll discuss how to install Ansible on an Ubuntu 20.04
server and go over some basics of how to use this software. For a more
high-level overview of Ansible as configuration management tool, please
refer to An Introduction to Configuration Management with Ansible.

Prerequisites

To follow this tutorial, you will need:

https://www.digitalocean.com/community/tutorials/how-to-install-and-configure-ansible-on-ubuntu-20-04
https://www.chef.io/
https://puppet.com/
https://www.ansible.com/
https://www.digitalocean.com/community/conceptual_articles/an-introduction-to-configuration-management-with-ansible

One Ansible Control Node: The Ansible control node is the machine
we’ll use to connect to and control the Ansible hosts over SSH. Your
Ansible control node can either be your local machine or a server
dedicated to running Ansible, though this guide assumes your control
node is an Ubuntu 20.04 system. Make sure the control node has:

A non-root user with sudo privileges. To set this up, you can
follow Steps 2 and 3 of our Initial Server Setup Guide for
Ubuntu 20.04. However, please note that if you’re using a remote
server as your Ansible Control node, you should follow every
step of this guide. Doing so will configure a firewall on the server
with ufw and enable external access to your non-root user profile,

both of which will help keep the remote server secure.
An SSH keypair associated with this user. To set this up, you can
follow Step 1 of our guide on How to Set Up SSH Keys on
Ubuntu 20.04.

One or more Ansible Hosts: An Ansible host is any machine that your
Ansible control node is configured to automate. This guide assumes
your Ansible hosts are remote Ubuntu 20.04 servers. Make sure each
Ansible host has:

The Ansible control node’s SSH public key added to the
authorized_keys of a system user. This user can be either root or

a regular user with sudo privileges. To set this up, you can follow
Step 2 of How to Set Up SSH Keys on Ubuntu 20.04.

Step 1 — Installing Ansible

https://www.digitalocean.com/community/tutorials/initial-server-setup-with-ubuntu-20-04
https://www.digitalocean.com/community/tutorials/how-to-set-up-ssh-keys-on-ubuntu-20-04
https://www.digitalocean.com/community/tutorials/how-to-set-up-ssh-keys-on-ubuntu-20-04

To begin using Ansible as a means of managing your server infrastructure,
you need to install the Ansible software on the machine that will serve as
the Ansible control node. We’ll use the default Ubuntu repositories for that.

First, refresh your system’s package index with:

sudo apt update

Following this update, you can install the Ansible software with:

sudo apt install ansible

Press Y when prompted to confirm installation.

Your Ansible control node now has all of the software required to
administer your hosts. Next, we’ll go over how to set up an inventory file,
so that Ansible can communicate with your managed nodes.

Step 2 — Setting Up the Inventory File

The inventory file contains information about the hosts you’ll manage with
Ansible. You can include anywhere from one to several hundred servers in
your inventory file, and hosts can be organized into groups and subgroups.
The inventory file is also often used to set variables that will be valid only
for specific hosts or groups, in order to be used within playbooks and
templates. Some variables can also affect the way a playbook is run, like the
ansible_python_interpreter variable that we’ll see in a moment.

To edit the contents of your default Ansible inventory, open the
/etc/ansible/hosts file using your text editor of choice, on your Ansible

control node:

sudo nano /etc/ansible/hosts

Note: Although Ansible typically creates a default inventory file at
/etc/ansible/hosts , you are free to create inventory files in any location

that better suits your needs. In this case, you'll need to provide the path to
your custom inventory file with the -i parameter when running Ansible

commands and playbooks. Using per-project inventory files is a good
practice to minimize the risk of running a playbook on the wrong group of
servers.

The default inventory file provided by the Ansible installation contains a
number of examples that you can use as references for setting up your
inventory. The following example defines a group named [servers] with

three different servers in it, each identified by a custom alias: server1,
server2, and server3. Be sure to replace the highlighted IPs with the IP
addresses of your Ansible hosts.

/etc/ansible/hosts

[servers]

server1 ansible_host=203.0.113.111

server2 ansible_host=203.0.113.112

server3 ansible_host=203.0.113.113

[all:vars]

ansible_python_interpreter=/usr/bin/python3

The all:vars subgroup sets the ansible_python_interpreter host

parameter that will be valid for all hosts included in this inventory. This
parameter makes sure the remote server uses the /usr/bin/python3 Python

3 executable instead of /usr/bin/python (Python 2.7), which is not present

on recent Ubuntu versions.

When you’re finished, save and close the file by pressing CTRL+X then Y

and ENTER to confirm your changes.

Whenever you want to check your inventory, you can run:

ansible-inventory --list -y

You’ll see output similar to this, but containing your own server
infrastructure as defined in your inventory file:

Output

all:

 children:

 servers:

 hosts:

 server1:

 ansible_host: 203.0.113.111

 ansible_python_interpreter: /usr/bin/python3

 server2:

 ansible_host: 203.0.113.112

 ansible_python_interpreter: /usr/bin/python3

 server3:

 ansible_host: 203.0.113.113

 ansible_python_interpreter: /usr/bin/python3

 ungrouped: {}

Now that you’ve configured your inventory file, you have everything you
need to test the connection to your Ansible hosts.

Step 3 — Testing Connection

After setting up the inventory file to include your servers, it’s time to check
if Ansible is able to connect to these servers and run commands via SSH.

For this guide, we’ll be using the Ubuntu root account because that’s
typically the only account available by default on newly created servers. If

your Ansible hosts already have a regular sudo user created, you are
encouraged to use that account instead.

You can use the -u argument to specify the remote system user. When not

provided, Ansible will try to connect as your current system user on the
control node.

From your local machine or Ansible control node, run:

ansible all -m ping -u root

This command will use Ansible’s built-in ping module to run a connectivity

test on all nodes from your default inventory, connecting as root. The ping

module will test:

if hosts are accessible;
if you have valid SSH credentials;
if hosts are able to run Ansible modules using Python.

You should get output similar to this:

https://docs.ansible.com/ansible/latest/modules/ping_module.html

Output

server1 | SUCCESS => {

 "changed": false,

 "ping": "pong"

}

server2 | SUCCESS => {

 "changed": false,

 "ping": "pong"

}

server3 | SUCCESS => {

 "changed": false,

 "ping": "pong"

}

If this is the first time you’re connecting to these servers via SSH, you’ll be
asked to confirm the authenticity of the hosts you’re connecting to via
Ansible. When prompted, type yes and then hit ENTER to confirm.

Once you get a "pong" reply back from a host, it means you’re ready to run

Ansible commands and playbooks on that server.

Note: If you are unable to get a successful response back from your servers,
check our Ansible Cheat Sheet Guide for more information on how to run
Ansible commands with different connection options.

Step 4 — Running Ad-Hoc Commands (Optional)

https://www.digitalocean.com/community/tutorials/how-to-use-ansible-cheat-sheet-guide

After confirming that your Ansible control node is able to communicate
with your hosts, you can start running ad-hoc commands and playbooks on
your servers.

Any command that you would normally execute on a remote server over
SSH can be run with Ansible on the servers specified in your inventory file.
As an example, you can check disk usage on all servers with:

ansible all -a "df -h" -u root

Output

server1 | CHANGED | rc=0 >>

Filesystem Size Used Avail Use% Mounted on

udev 3.9G 0 3.9G 0% /dev

tmpfs 798M 624K 798M 1% /run

/dev/vda1 155G 2.3G 153G 2% /

tmpfs 3.9G 0 3.9G 0% /dev/shm

tmpfs 5.0M 0 5.0M 0% /run/lock

tmpfs 3.9G 0 3.9G 0% /sys/fs/cgroup

/dev/vda15 105M 3.6M 101M 4% /boot/efi

tmpfs 798M 0 798M 0% /run/user/0

server2 | CHANGED | rc=0 >>

Filesystem Size Used Avail Use% Mounted on

udev 2.0G 0 2.0G 0% /dev

tmpfs 395M 608K 394M 1% /run

/dev/vda1 78G 2.2G 76G 3% /

tmpfs 2.0G 0 2.0G 0% /dev/shm

tmpfs 5.0M 0 5.0M 0% /run/lock

tmpfs 2.0G 0 2.0G 0% /sys/fs/cgroup

/dev/vda15 105M 3.6M 101M 4% /boot/efi

tmpfs 395M 0 395M 0% /run/user/0

...

The highlighted command df -h can be replaced by any command you’d

like.

You can also execute Ansible modules via ad-hoc commands, similarly to
what we’ve done before with the ping module for testing connection. For

example, here’s how we can use the apt module to install the latest version

of vim on all the servers in your inventory:

ansible all -m apt -a "name=vim state=latest" -u root

You can also target individual hosts, as well as groups and subgroups, when
running Ansible commands. For instance, this is how you would check the
uptime of every host in the servers group:

ansible servers -a "uptime" -u root

We can specify multiple hosts by separating them with colons:

ansible server1:server2 -m ping -u root

For more information on how to use Ansible, including how to execute
playbooks to automate server setup, you can check our Ansible Reference
Guide.

Conclusion

In this guide, you’ve installed Ansible and set up an inventory file to
execute ad-hoc commands from an Ansible Control Node.

https://docs.ansible.com/ansible/latest/modules/modules_by_category.html
https://www.digitalocean.com/community/cheatsheets/how-to-use-ansible-cheat-sheet-guide

Once you’ve confirmed you’re able to connect and control your
infrastructure from a central Ansible controller machine, you can execute
any command or playbook you desire on those hosts.

For more information on how to use Ansible, check out our Ansible Cheat
Sheet Guide.

https://www.digitalocean.com/community/cheatsheets/how-to-use-ansible-cheat-sheet-guide

How To Set Up Ansible Inventories

Written by Erika Heidi

Introduction

Ansible is a modern configuration management tool that facilitates the task
of setting up and maintaining remote servers, with a minimalist design
intended to get users up and running quickly. Ansible uses an inventory file
to keep track of which hosts are part of your infrastructure, and how to
reach them for running commands and playbooks.

There are multiple ways in which you can set up your Ansible inventory
file, depending on your environment and project needs. In this guide, we’ll
demonstrate how to create inventory files and organize servers into groups
and subgroups, how to set up host variables, and how to use patterns to
control the execution of Ansible commands and playbooks per host and per
group.

Prerequisites

In order follow this guide, you’ll need:

One Ansible control node: an Ubuntu 20.04 machine with Ansible
installed and configured to connect to your Ansible hosts using SSH
keys. Make sure the control node has a regular user with sudo
permissions and a firewall enabled, as explained in our Initial Server
Setup guide. To set up Ansible, please follow our guide on How to
Install and Configure Ansible on Ubuntu 20.04.

https://www.digitalocean.com/community/tutorials/how-to-set-up-ansible-inventories
https://www.digitalocean.com/community/tutorials/initial-server-setup-with-ubuntu-20-04
https://www.digitalocean.com/community/tutorials/how-to-install-and-configure-ansible-on-ubuntu-20-04

Two or more Ansible Hosts: two or more remote Ubuntu 20.04
servers.

Step 1 — Creating a Custom Inventory File

Upon installation, Ansible creates an inventory file that is typically located
at /etc/ansible/hosts . This is the default location used by Ansible when a

custom inventory file is not provided with the -i option, during a playbook

or command execution.

Even though you can use this file without problems, using per-project
inventory files is a good practice to avoid mixing servers when executing
commands and playbooks. Having per-project inventory files will also
facilitate sharing your provisioning setup with collaborators, given you
include the inventory file within the project’s code repository.

To get started, access your home folder and create a new directory to hold
your Ansible files:

cd ~

mkdir ansible

Move to that directory and open a new inventory file using your text editor
of choice. Here, we’ll use nano :

cd ansible

nano inventory

A list of your nodes, with one server per line, is enough for setting up a
functional inventory file. Hostnames and IP addresses are interchangeable:

~/ansible/inventory

203.0.113.111

203.0.113.112

203.0.113.113

server_hostname

Once you have an inventory file set up, you can use the ansible-inventory

command to validate and obtain information about your Ansible inventory:

ansible-inventory -i inventory --list

Output

{

 "_meta": {

 "hostvars": {}

 },

 "all": {

 "children": [

 "ungrouped"

]

 },

 "ungrouped": {

 "hosts": [

 "203.0.113.111",

 "203.0.113.112",

 "203.0.113.113",

 "server_hostname"

]

 }

}

Even though we haven’t set up any groups within our inventory, the output
shows 2 distinct groups that are automatically inferred by Ansible: all and

ungrouped . As the name suggests, all is used to refer to all servers from

your inventory file, no matter how they are organized. The ungrouped

group is used to refer to servers that aren’t listed within a group.

Running Commands and Playbooks with Custom Inventories

To run Ansible commands with a custom inventory file, use the -i option

as follows:

ansible all -i inventory -m ping

This would execute the ping module on all hosts listed in your custom

inventory file.

Similarly, this is how you execute Ansible playbooks with a custom
inventory file:

ansible-playbook -i inventory playbook.yml

Note: For more information on how to connect to nodes, please refer to our
How to Use Ansible guide, as it demonstrates more connection options.

So far, we’ve seen how to create a basic inventory and how to use it for
running commands and playbooks. In the next step, we’ll see how to
organize nodes into groups and subgroups.

Step 2 — Organizing Servers Into Groups and
Subgroups

Within the inventory file, you can organize your servers into different
groups and subgroups. Beyond helping to keep your hosts in order, this
practice will enable you to use group variables, a feature that can greatly
facilitate managing multiple staging environments with Ansible.

https://www.digitalocean.com/community/cheatsheets/how-to-use-ansible-cheat-sheet-guide
https://www.digitalocean.com/community/tutorials/how-to-manage-multistage-environments-with-ansible

A host can be part of multiple groups. The following inventory file in INI
format demonstrates a setup with four groups: webservers , dbservers ,

development , and production . You’ll notice that the servers are grouped by

two different qualities: their purpose (web and database), and how they’re
being used (development and production).

~/ansible/inventory

[webservers]

203.0.113.111

203.0.113.112

[dbservers]

203.0.113.113

server_hostname

[development]

203.0.113.111

203.0.113.113

[production]

203.0.113.112

server_hostname

If you were to run the ansible-inventory command again with this

inventory file, you would see the following arrangement:

Output

{

 "_meta": {

 "hostvars": {}

 },

 "all": {

 "children": [

 "dbservers",

 "development",

 "production",

 "ungrouped",

 "webservers"

]

 },

 "dbservers": {

 "hosts": [

 "203.0.113.113",

 "server_hostname"

]

 },

 "development": {

 "hosts": [

 "203.0.113.111",

 "203.0.113.113"

]

 },

 "production": {

 "hosts": [

 "203.0.113.112",

 "server_hostname"

]

 },

 "webservers": {

 "hosts": [

 "203.0.113.111",

 "203.0.113.112"

]

 }

}

It is also possible to aggregate multiple groups as children under a “parent”
group. The “parent” is then called a metagroup. The following example
demonstrates another way to organize the previous inventory using
metagroups to achieve a comparable, yet more granular arrangement:

~/ansible/inventory

[web_dev]

203.0.113.111

[web_prod]

203.0.113.112

[db_dev]

203.0.113.113

[db_prod]

server_hostname

[webservers:children]

web_dev

web_prod

[dbservers:children]

db_dev

db_prod

[development:children]

web_dev

db_dev

[production:children]

web_prod

db_prod

The more servers you have, the more it makes sense to break groups down
or create alternative arrangements so that you can target smaller groups of
servers as needed.

Step 3 — Setting Up Host Aliases

You can use aliases to name servers in a way that facilitates referencing
those servers later, when running commands and playbooks.

To use an alias, include a variable named ansible_host after the alias

name, containing the corresponding IP address or hostname of the server
that should respond to that alias:

~/ansible/inventory

server1 ansible_host=203.0.113.111

server2 ansible_host=203.0.113.112

server3 ansible_host=203.0.113.113

server4 ansible_host=server_hostname

If you were to run the ansible-inventory command with this inventory

file, you would see output similar to this:

Output

{

 "_meta": {

 "hostvars": {

 "server1": {

 "ansible_host": "203.0.113.111"

 },

 "server2": {

 "ansible_host": "203.0.113.112"

 },

 "server3": {

 "ansible_host": "203.0.113.113"

 },

 "server4": {

 "ansible_host": "server_hostname"

 }

 }

 },

 "all": {

 "children": [

 "ungrouped"

]

 },

 "ungrouped": {

 "hosts": [

 "server1",

 "server2",

 "server3",

 "server4"

]

 }

}

Notice how the servers are now referenced by their aliases instead of their
IP addresses or hostnames. This makes it easier for targeting individual
servers when running commands and playbooks.

Step 4 — Setting Up Host Variables

It is possible to use the inventory file to set up variables that will change
Ansible’s default behavior when connecting and executing commands on
your nodes. This is in fact what we did in the previous step, when setting up
host aliases. The ansible_host variable tells Ansible where to find the

remote nodes, in case an alias is used to refer to that server.

Inventory variables can be set per host or per group. In addition to
customizing Ansible’s default settings, these variables are also accessible
from your playbooks, which enables further customization for individual
hosts and groups.

The following example shows how to define the default remote user when
connecting to each of the nodes listed in this inventory file:

~/ansible/inventory

server1 ansible_host=203.0.113.111 ansible_user=sammy

server2 ansible_host=203.0.113.112 ansible_user=sammy

server3 ansible_host=203.0.113.113 ansible_user=myuser

server4 ansible_host=server_hostname ansible_user=myuser

You could also create a group to aggregate the hosts with similar settings,
and then set up their variables at the group level:

~/ansible/inventory

[group_a]

server1 ansible_host=203.0.113.111

server2 ansible_host=203.0.113.112

[group_b]

server3 ansible_host=203.0.113.113

server4 ansible_host=server_hostname

[group_a:vars]

ansible_user=sammy

[group_b:vars]

ansible_user=myuser

This inventory arrangement would generate the following output with
ansible-inventory :

Output

{

 "_meta": {

 "hostvars": {

 "server1": {

 "ansible_host": "203.0.113.111",

 "ansible_user": "sammy"

 },

 "server2": {

 "ansible_host": "203.0.113.112",

 "ansible_user": "sammy"

 },

 "server3": {

 "ansible_host": "203.0.113.113",

 "ansible_user": "myuser"

 },

 "server4": {

 "ansible_host": "server_hostname",

 "ansible_user": "myuser"

 }

 }

 },

 "all": {

 "children": [

 "group_a",

 "group_b",

 "ungrouped"

]

 },

 "group_a": {

 "hosts": [

 "server1",

 "server2"

]

 },

 "group_b": {

 "hosts": [

 "server3",

 "server4"

]

 }

}

Notice that all inventory variables are listed within the _meta node in the

JSON output produced by ansible-inventory .

Step 5 — Using Patterns to Target Execution of
Commands and Playbooks

When executing commands and playbooks with Ansible, you must provide
a target. Patterns allow you to target specific hosts, groups, or subgroups in

your inventory file. They’re very flexible, supporting regular expressions
and wildcards.

Consider the following inventory file:

~/ansible/inventory

[webservers]

203.0.113.111

203.0.113.112

[dbservers]

203.0.113.113

server_hostname

[development]

203.0.113.111

203.0.113.113

[production]

203.0.113.112

server_hostname

Now imagine you need to execute a command targeting only the database
server(s) that are running on production. In this example, there’s only
server_hostname matching that criteria; however, it could be the case that

you have a large group of database servers in that group. Instead of
individually targeting each server, you could use the following pattern:

ansible dbservers:\&production -m ping

The & character represents the logical operation AND , meaning that valid

targets must be in both groups. Because this is an ad hoc command running
on Bash, we must include the \ escape character in the expression.

The previous example would target only servers that are present both in the
dbservers as well as in the production groups. If you wanted to do the

opposite, targeting only servers that are present in the dbservers but not in

the production group, you would use the following pattern instead:

ansible dbservers:\!production -m ping

To indicate that a target must not be in a certain group, you can use the !

character. Once again, we include the \ escape character in the expression

to avoid command line errors, since both & and ! are special characters

that can be parsed by Bash.

The following table contains a few different examples of common patterns
you can use when running commands and playbooks with Ansible:

P������ R����� T�����

all All Hosts from your inventory file

host1 A single host (host1)

host1:host2 Both host1 and host2

group1 A single group (group1)

group1:group2 All servers in group1 and group2

group1:\&group2 Only servers that are both in group1 and group2

group1:\!group2 Servers in group1 except those also in group2

For more advanced pattern options, such as using positional patterns and
regex to define targets, please refer to the official Ansible documentation on
patterns.

Conclusion

In this guide, we had a detailed look into Ansible inventories. We’ve seen
how to organize nodes into groups and subgroups, how to set up inventory
variables, and how to use patterns to target different groups of servers when
running commands and playbooks.

In the next part of this series, we’ll see how to manage multiple servers with
Ansible ad-hoc commands.

https://docs.ansible.com/ansible/latest/user_guide/intro_patterns.html#advanced-pattern-options

How To Manage Multiple Servers with
Ansible Ad Hoc Commands

Written by Erika Heidi

Introduction

Ansible is a modern configuration management tool that facilitates the task
of setting up and maintaining remote servers. With a minimalist design
intended to get users up and running quickly, it allows you to control one to
hundreds of systems from a central location with either playbooks or ad hoc
commands.

Unlike playbooks — which consist of collections of tasks that can be reused
— ad hoc commands are tasks that you don’t perform frequently, such as
restarting a service or retrieving information about the remote systems that
Ansible manages.

In this cheat sheet guide, you’ll learn how to use Ansible ad hoc commands
to perform common tasks such as installing packages, copying files, and
restarting services on one or more remote servers, from an Ansible control
node.

Prerequisites

In order to follow this guide, you’ll need:

One Ansible control node. This guide assumes your control node is
an Ubuntu 20.04 machine with Ansible installed and configured to

https://www.digitalocean.com/community/tutorials/how-to-manage-multiple-servers-with-ansible-ad-hoc-commands

connect to your Ansible hosts using SSH keys. Make sure the control
node has a regular user with sudo permissions and a firewall enabled,
as explained in our Initial Server Setup guide. To set up Ansible, please
follow our guide on How to Install and Configure Ansible on Ubuntu
20.04.
Two or more Ansible hosts. An Ansible host is any machine that your
Ansible control node is configured to automate. This guide assumes
your Ansible hosts are remote Ubuntu 20.04 servers. Make sure each
Ansible host has:

The Ansible control node’s SSH public key added to the
authorized_keys of a system user. This user can be either root or

a regular user with sudo privileges. To set this up, you can follow
Step 2 of How to Set Up SSH Keys on Ubuntu 20.04.

An inventory file set up on the Ansible control node. Make sure you
have a working inventory file containing all your Ansible hosts. To set
this up, please refer to the guide on How To Set Up Ansible
Inventories. Then, make sure you’re able to connect to your nodes by
running the connection test outlined in the section Testing Connection
to Ansible Hosts.

Testing Connection to Ansible Hosts

The following command will test connectivity between your Ansible
control node and all your Ansible hosts. This command uses the current
system user and its corresponding SSH key as the remote login, and
includes the -m option, which tells Ansible to run the ping module. It also

https://www.digitalocean.com/community/tutorials/initial-server-setup-with-ubuntu-20-04
https://www.digitalocean.com/community/tutorials/how-to-install-and-configure-ansible-on-ubuntu-20-04
https://www.digitalocean.com/community/tutorials/how-to-set-up-ssh-keys-on-ubuntu-20-04
https://www.digitalocean.com/community/tutorials/how-to-set-up-ansible-inventories

features the -i flag, which tells Ansible to ping the hosts listed in the

specified inventory file

ansible all -i inventory -m ping

If this is the first time you’re connecting to these servers via SSH, you’ll be
asked to confirm the authenticity of the hosts you’re connecting to via
Ansible. When prompted, type yes and then hit ENTER to confirm.

You should get output similar to this:

Output

server1 | SUCCESS => {

 "changed": false,

 "ping": "pong"

}

server2 | SUCCESS => {

 "changed": false,

 "ping": "pong"

}

Once you get a "pong" reply back from a host, it means the connection is

live and you’re ready to run Ansible commands on that server.

Adjusting Connection Options

By default, Ansible tries to connect to the nodes as a remote user with the
same name as your current system user, using its corresponding SSH
keypair.

To connect as a different remote user, append the command with the -u

flag and the name of the intended user:

ansible all -i inventory -m ping -u sammy

If you’re using a custom SSH key to connect to the remote servers, you can
provide it at execution time with the --private-key option:

ansible all -i inventory -m ping --private-

key=~/.ssh/custom_id

Note: For more information on how to connect to nodes, please refer to
our How to Use Ansible guide, which demonstrates more connection
options.

Once you’re able to connect using the appropriate options, you can adjust
your inventory file to automatically set your remote user and private key, in
case they are different from the default values assigned by Ansible. Then,
you won’t need to provide those parameters in the command line.

The following example inventory file sets up the ansible_user variable

only for the server1 server:

https://www.digitalocean.com/community/cheatsheets/how-to-use-ansible-cheat-sheet-guide

~/ansible/inventory

server1 ansible_host=203.0.113.111 ansible_user=sammy

server2 ansible_host=203.0.113.112

Ansible will now use sammy as the default remote user when connecting to
the server1 server.

To set up a custom SSH key, include the ansible_ssh_private_key_file

variable as follows:

~/ansible/inventory

server1 ansible_host=203.0.113.111

ansible_ssh_private_key_file=/home/sammy/.ssh/custom_id

server2 ansible_host=203.0.113.112

In both cases, we have set up custom values only for server1 . If you want

to use the same settings for multiple servers, you can use a child group for
that:

~/ansible/inventory
[group_a]

203.0.113.111

203.0.113.112

[group_b]

203.0.113.113

[group_a:vars]

ansible_user=sammy

ansible_ssh_private_key_file=/home/sammy/.ssh/custom_id

This example configuration will assign a custom user and SSH key only for
connecting to the servers listed in group_a .

Defining Targets for Command Execution

When running ad hoc commands with Ansible, you can target individual
hosts, as well as any combination of groups, hosts and subgroups. For
instance, this is how you would check connectivity for every host in a group
named servers :

ansible servers -i inventory -m ping

You can also specify multiple hosts and groups by separating them with
colons:

ansible server1:server2:dbservers -i inventory -m ping

To include an exception in a pattern, use an exclamation mark, prefixed by
the escape character \ , as follows. This command will run on all servers

from group1 , except server2 :

ansible group1:\!server2 -i inventory -m ping

In case you’d like to run a command only on servers that are part of both
group1 and group2 , for instance, you should use & instead. Don’t forget to

prefix it with a \ escape character:

ansible group1:\&group2 -i inventory -m ping

For more information on how to use patterns when defining targets for
command execution, please refer to Step 5 of our guide on How to Set Up
Ansible Inventories. ## Running Ansible Modules

Ansible modules are pieces of code that can be invoked from playbooks and
also from the command-line to facilitate executing procedures on remote
nodes. Examples include the apt module, used to manage system packages

on Ubuntu, and the user module, used to manage system users. The ping

command used throughout this guide is also a module, typically used to test
connection from the control node to the hosts.

Ansible ships with an extensive collection of built-in modules, some of
which require the installation of additional software in order to provide full

https://www.digitalocean.com/community/tutorials/how-to-set-up-ansible-inventories#step-5-%E2%80%94-using-patterns-to-target-execution-of-commands-and-playbooks

functionality. You can also create your own custom modules using your
language of choice.

To execute a module with arguments, include the -a flag followed by the

appropriate options in double quotes, like this:
ansible target -i inventory -m module -a "module options"

As an example, this will use the apt module to install the package tree on

server1 :

ansible server1 -i inventory -m apt -a "name=tree"

Running Bash Commands

When a module is not provided via the -m option, the command module is

used by default to execute the specified command on the remote server(s).

This allows you to execute virtually any command that you could normally
execute via an SSH terminal, as long as the connecting user has sufficient
permissions and there aren’t any interactive prompts.

This example executes the uptime command on all servers from the

specified inventory:

ansible all -i inventory -a "uptime"

https://docs.ansible.com/ansible/latest/dev_guide/developing_modules_general.html
https://docs.ansible.com/ansible/latest/modules/command_module.html#command-module

Output

server1 | CHANGED | rc=0 >>

 14:12:18 up 55 days, 2:15, 1 user, load average: 0.03,

0.01, 0.00

server2 | CHANGED | rc=0 >>

 14:12:19 up 10 days, 6:38, 1 user, load average: 0.01,

0.02, 0.00

Using Privilege Escalation to Run Commands with sudo

If the command or module you want to execute on remote hosts requires
extended system privileges or a different system user, you’ll need to use
Ansible’s privilege escalation module, become. This module is an
abstraction for sudo as well as other privilege escalation software

supported by Ansible on different operating systems.

For instance, if you wanted to run a tail command to output the latest log

messages from Nginx’s error log on a server named server1 from

inventory , you would need to include the --become option as follows:

ansible server1 -i inventory -a "tail

/var/log/nginx/error.log" --become

This would be the equivalent of running a sudo tail

/var/log/nginx/error.log command on the remote host, using the current

local system user or the remote user set up within your inventory file.

Privilege escalation systems such as sudo often require that you confirm

your credentials by prompting you to provide your user’s password. That
would cause Ansible to fail a command or playbook execution. You can
then use the --ask-become-pass or -K option to make Ansible prompt you

for that sudo password:

ansible server1 -i inventory -a "tail

/var/log/nginx/error.log" --become -K

Installing and Removing Packages

The following example uses the apt module to install the nginx package

on all nodes from the provided inventory file:

ansible all -i inventory -m apt -a "name=nginx" --become -K

To remove a package, include the state argument and set it to absent :.

ansible all -i inventory -m apt -a "name=nginx state=absent" -

-become -K

Copying Files

With the file module, you can copy files between the control node and the

managed nodes, in either direction. The following command copies a local
text file to all remote hosts in the specified inventory file:

ansible all -i inventory -m copy -a "src=./file.txt

dest=~/myfile.txt"

To copy a file from the remote server to your control node, include the
remote_src option:

ansible all -i inventory -m copy -a "src=~/myfile.txt

remote_src=yes dest=./file.txt"

Changing File Permissions

To modify permissions on files and directories on your remote nodes, you
can use the file module.

The following command will adjust permissions on a file named file.txt

located at /var/www on the remote host. It will set the file’s umask to 600 ,

which will enable read and write permissions only for the current file
owner. Additionally, it will set the ownership of that file to a user and a
group called sammy :

ansible all -i inventory -m file -a "dest=/var/www/file.txt

mode=600 owner=sammy group=sammy" --become -K

Because the file is located in a directory typically owned by root , we

might need sudo permissions to modify its properties. That’s why we

include the --become and -K options. These will use Ansible’s privilege

file:///tmp/calibre_4.15.0_tmp_46uVzK/tcV9yy_pdf_out/EPUB/text/ch006.xhtml

escalation system to run the command with extended privileges, and it will
prompt you to provide the sudo password for the remote user.

Restarting Services

You can use the service module to manage services running on the remote

nodes managed by Ansible. This will require extended system privileges, so
make sure your remote user has sudo permissions and you include the --

become option to use Ansible’s privilege escalation system. Using -K will

prompt you to provide the sudo password for the connecting user.

To restart the nginx service on all hosts in group called webservers , for

instance, you would run:

ansible webservers -i inventory -m service -a "name=nginx

state=restarted" --become -K

Restarting Servers

Although Ansible doesn’t have a dedicated module to restart servers, you
can issue a bash command that calls the /sbin/reboot command on the

remote host.

Restarting the server will require extended system privileges, so make sure
your remote user has sudo permissions and you include the --become

option to use Ansible’s privilege escalation system. Using -K will prompt

you to provide the sudo password for the connecting user.

file:///tmp/calibre_4.15.0_tmp_46uVzK/tcV9yy_pdf_out/EPUB/text/ch006.xhtml

Warning: The following command will fully restart the server(s)
targeted by Ansible. That might cause temporary disruption to any
applications that rely on those servers.

To restart all servers in a webservers group, for instance, you would run:

ansible webservers -i inventory -a "/sbin/reboot" --become -

K

Gathering Information About Remote Nodes

The setup module returns detailed information about the remote systems

managed by Ansible, also known as system facts.

To obtain the system facts for server1 , run:

ansible server1 -i inventory -m setup

This will print a large amount of JSON data containing details about the
remote server environment. To print only the most relevant information,
include the "gather_subset=min" argument as follows:

ansible server1 -i inventory -m setup -a "gather_subset=min"

To print only specific items of the JSON, you can use the filter argument.

This will accept a wildcard pattern used to match strings, similar to

fnmatch. For example, to obtain information about both the ipv4 and ipv6

network interfaces, you can use *ipv* as filter:

ansible server1 -i inventory -m setup -a "filter=*ipv*"

https://en.wikipedia.org/wiki/Glob_(programming)

Output

server1 | SUCCESS => {

 "ansible_facts": {

 "ansible_all_ipv4_addresses": [

 "203.0.113.111",

 "10.0.0.1"

],

 "ansible_all_ipv6_addresses": [

 "fe80::a4f5:16ff:fe75:e758"

],

 "ansible_default_ipv4": {

 "address": "203.0.113.111",

 "alias": "eth0",

 "broadcast": "203.0.113.111",

 "gateway": "203.0.113.1",

 "interface": "eth0",

 "macaddress": "a6:f5:16:75:e7:58",

 "mtu": 1500,

 "netmask": "255.255.240.0",

 "network": "203.0.113.0",

 "type": "ether"

 },

 "ansible_default_ipv6": {}

 },

 "changed": false

}

If you’d like to check disk usage, you can run a Bash command calling the
df utility, as follows:

ansible all -i inventory -a "df -h"

Output

server1 | CHANGED | rc=0 >>

Filesystem Size Used Avail Use% Mounted on

udev 3.9G 0 3.9G 0% /dev

tmpfs 798M 624K 798M 1% /run

/dev/vda1 155G 2.3G 153G 2% /

tmpfs 3.9G 0 3.9G 0% /dev/shm

tmpfs 5.0M 0 5.0M 0% /run/lock

tmpfs 3.9G 0 3.9G 0% /sys/fs/cgroup

/dev/vda15 105M 3.6M 101M 4% /boot/efi

tmpfs 798M 0 798M 0% /run/user/0

server2 | CHANGED | rc=0 >>

Filesystem Size Used Avail Use% Mounted on

udev 2.0G 0 2.0G 0% /dev

tmpfs 395M 608K 394M 1% /run

/dev/vda1 78G 2.2G 76G 3% /

tmpfs 2.0G 0 2.0G 0% /dev/shm

tmpfs 5.0M 0 5.0M 0% /run/lock

tmpfs 2.0G 0 2.0G 0% /sys/fs/cgroup

/dev/vda15 105M 3.6M 101M 4% /boot/efi

tmpfs 395M 0 395M 0% /run/user/0

Conclusion

In this guide, we demonstrated how to use Ansible ad hoc commands to
manage remote servers, including how to execute common tasks such as
restarting a service or copying a file from the control node to the remote
servers managed by Ansible. We’ve also seen how to gather information
from the remote nodes using limiting and filtering parameters.

As an additional resource, you can check Ansible’s official documentation
on ad hoc commands.

https://docs.ansible.com/ansible/latest/user_guide/intro_adhoc.html

How To Execute Ansible Playbooks to
Automate Server Setup

Written by Erika Heidi

Introduction

Ansible is a modern configuration management tool that facilitates the task
of setting up and maintaining remote servers. With a minimalist design
intended to get users up and running quickly, it allows you to control one to
hundreds of systems from a central location with either playbooks or ad hoc
commands.

While ad hoc commands allow you to run one-off tasks on servers
registered within your inventory file, playbooks are typically used to
automate a sequence of tasks for setting up services and deploying
applications to remote servers. Playbooks are written in YAML, and can
contain one or more plays.

This short guide demonstrates how to execute Ansible playbooks to
automate server setup, using an example playbook that sets up an Nginx
server with a single static HTML page.

Prerequisites

In order to follow this guide, you’ll need:

One Ansible control node. This guide assumes your control node is
an Ubuntu 20.04 machine with Ansible installed and configured to

https://www.digitalocean.com/community/tutorials/how-to-execute-ansible-playbooks-to-automate-server-setup
https://www.digitalocean.com/community/tutorials/how-to-manage-multiple-servers-with-ansible-ad-hoc-commands

connect to your Ansible hosts using SSH keys. Make sure the control
node has a regular user with sudo permissions and a firewall enabled,
as explained in our Initial Server Setup guide. To set up Ansible, please
follow our guide on How to Install and Configure Ansible on Ubuntu
20.04.
One or more Ansible hosts. An Ansible host is any machine that your
Ansible control node is configured to automate. This guide assumes
your Ansible hosts are remote Ubuntu 20.04 servers. Make sure each
Ansible host has:

The Ansible control node’s SSH public key added to the
authorized_keys of a system user. This user can be either root or

a regular user with sudo privileges. To set this up, you can follow
Step 2 of How to Set Up SSH Keys on Ubuntu 20.04.

An inventory file set up on the Ansible control node. Make sure you
have a working inventory file containing all your Ansible hosts. To set
this up, please refer to the guide on How To Set Up Ansible
Inventories.

Once you have met these prerequisites, run a connection test as outlined in
our guide on How To Manage Multiple Servers with Ansible Ad Hoc
Commands to make sure you’re able to connect and execute Ansible
instructions on your remote nodes. In case you don’t have a playbook
already available to you, you can create a testing playbook as described in
the next section.

Creating a Test Playbook

https://www.digitalocean.com/community/tutorials/initial-server-setup-with-ubuntu-20-04
https://www.digitalocean.com/community/tutorials/how-to-install-and-configure-ansible-on-ubuntu-20-04
https://www.digitalocean.com/community/tutorials/how-to-set-up-ssh-keys-on-ubuntu-20-04
https://www.digitalocean.com/community/tutorials/how-to-set-up-ansible-inventories
https://www.digitalocean.com/community/cheatsheets/how-to-manage-multiple-servers-with-ansible-ad-hoc-commands#testing-connection-to-ansible-hosts
https://www.digitalocean.com/community/tutorials/how-to-manage-multiple-servers-with-ansible-ad-hoc-commands
https://www.digitalocean.com/community/cheatsheets/how-to-execute-ansible-playbooks-to-automate-server-setup#creating-a-test-playbook

To try out the examples described in this guide, you’ll need an Ansible
playbook. We’ll set up a testing playbook that installs Nginx and sets up an
index.html page on the remote server. This file will be copied from the

Ansible control node to the remote nodes in your inventory file.

Create a new file called playbook.yml in the same directory as your

inventory file. If you followed our guide on how to create inventory files,
this should be a folder called ansible inside your home directory:

cd ~/ansible

nano playbook.yml

The following playbook has a single play and runs on all hosts from your
inventory file, by default. This is defined by the hosts: all directive at the

beginning of the file. The become directive is then used to indicate that the

following tasks must be executed by a super user (root by default).

It defines two tasks: one to install required system packages, and the other
one to copy an index.html file to the remote host, and save it in Nginx’s

default document root location, /var/www/html . Each task has tags, which

can be used to control the playbook’s execution.

Copy the following content to your playbook.yml file:

~/ansible/playbook.yml

- hosts: all

 become: true

 tasks:

 - name: Install Packages

 apt: name={{ item }} update_cache=yes state=latest

 loop: ['nginx', 'vim']

 tags: ['setup']

 - name: Copy index page

 copy:

 src: index.html

 dest: /var/www/html/index.html

 owner: www-data

 group: www-data

 mode: '0644'

 tags: ['update', 'sync']

Save and close the file when you’re done. Then, create a new index.html

file in the same directory, and place the following content in it:

~/ansible/index.html
<html>

 <head>

 <title>Testing Ansible Playbooks</title>

 </head>

 <body>

 <h1>Testing Ansible Playbooks</h1>

 <p>This server was set up using an Nginx playbook.</p>

 </body>

</html>

Don’t forget to save and close the file.

Executing a Playbook

To execute the testing playbook on all servers listed within your inventory
file, which we’ll refer to as inventory throughout this guide, you may use

the following command:

ansible-playbook -i inventory playbook.yml

This will use the current system user as remote SSH user, and the current
system user’s SSH key to authenticate to the nodes. In case those aren’t the
correct credentials to access the server, you’ll need to include a few other
parameters in the command, such as -u to define the remote user or --

private-key to define the correct SSH keypair you want to use to connect.

If your remote user requires a password for running commands with sudo ,

you’ll need to provide the -K option so that Ansible prompts you for the

sudo password.

More information about connection options is available in our Ansible
Cheatsheet guide.

https://www.digitalocean.com/community/cheatsheets/how-to-use-ansible-cheat-sheet-guide

Listing Playbook Tasks

In case you’d like to list all tasks contained in a playbook, without
executing any of them, you may use the --list-tasks argument:

ansible-playbook -i inventory playbook.yml --list-tasks

Output

playbook: nginx.yml

 play #1 (all): all TAGS: []

 tasks:

 Install Packages TAGS: [setup]

 Copy index page TAGS: [sync, update]

Listing Playbook Tags

Tasks often have tags that allow you to have extended control over a
playbook’s execution. To list current available tags in a playbook, you can
use the --list-tags argument as follows:

ansible-playbook -i inventory playbook.yml --list-tags

Output

playbook: nginx.yml

 play #1 (all): all TAGS: []

 TASK TAGS: [setup, sync, update]

Executing Tasks by Tag

To only execute tasks that are marked with specific tags, you can use the --

tags argument, along with the tags that you want to trigger:

ansible-playbook -i inventory playbook.yml --tags=setup

Skipping Tasks by Tag

To skip tasks that are marked with certain tags, you may use the --exclude-

tags argument, along with the names of tags that you want to exclude from

execution:

ansible-playbook -i inventory playbook.yml --exclude-

tags=setup

Starting Execution at Specific Task

Another way to control the execution flow of a playbook is by starting the
play at a certain task. This is useful when a playbook execution finishes
prematurely, in which case you might want to run a retry.

ansible-playbook -i inventory playbook.yml --start-at-

task=Copy index page

Limiting Targets for Execution

Many playbooks set up their target as all by default, and sometimes you

want to limit the group or single server that should be the target for that
setup. You can use -l (limit) to set up the target group or server in that

play:

ansible-playbook -l dev -i inventory playbook.yml

Controlling Output Verbosity

If you run into errors while executing Ansible playbooks, you can increase
output verbosity in order to get more information about the problem you’re
experiencing. You can do that by including the -v option to the command:

ansible-playbook -i inventory playbook.yml -v

If you need more detail, you can use -vv or -vvv instead. If you’re unable

to connect to the remote nodes, use -vvvv to obtain connection debugging

information:

ansible-playbook -i inventory playbook.yml -vvvv

Conclusion

In this guide, you’ve learned how to execute Ansible playbooks to automate
server setup. We’ve also seen how to obtain information about playbooks,
how to manipulate a playbook’s execution flow using tags, and how to
adjust output verbosity in order to obtain detailed debugging information in
a play.

	About DigitalOcean
	Introduction
	An Introduction to Configuration Management with Ansible
	How To Install and Configure Ansible on Ubuntu 20.04
	How To Set Up Ansible Inventories
	How To Manage Multiple Servers with Ansible Ad Hoc Commands
	How To Execute Ansible Playbooks to Automate Server Setup

