
Running Cloud Native
Applications on
DigitalOcean Kubernetes

WHITE PAPER

Simplicity at Scale

Developer teams experiencing rapid growth and success know there are
obstacles they must face when scaling to meet the demands of users. It can
be especially challenging to maintain performance and reliability while
engineering teams expand and users are rapidly acquired. Containerized,
microservices-oriented applications that leverage the cloud’s extensible
functionality can support teams as they scale, mitigating the adversities that
arise from accelerated growth. However, Cloud Native delivery pipelines
come with their own challenges and require investments in DevOps
processes and systems that can often pose significant hurdles. In offering a
managed platform for running containerized applications, DigitalOcean
Kubernetes empowers development teams to spend less time worrying
about provisioning and operating cloud infrastructure and more time
building powerful, scalable, and resilient applications.

Executive Summary

Trends in Modern Application Development

 Twelve Factor

Cloud Native

 Scaling with Kubernetes Case Study: The Snappy Monolith

Microservices

 Breaking the Monolith: Snappy Microservices Architecture

Containers

 Building a Snappy Microservice: Web UI Container Lifecycle

Clusters

Kubernetes

 Kubernetes Design Overview

DigitalOcean Kubernetes

 Completing the Shift to Cloud Native: Snappy on DigitalOcean Kubernetes

03

05

05

06

07

08

09

11

13

16

20

20

23

24

About DigitalOcean

DigitalOcean is a cloud services platform delivering the simplicity developers love
and businesses trust to run production applications at scale. It provides highly
available, secure and scalable compute, storage and networking solutions that help
developers build great software faster. Founded in 2012 with offices in New York and
Cambridge, MA, DigitalOcean offers transparent and affordable pricing, an elegant
user interface, and one of the largest libraries of open source resources available. For
more information, please visit digitalocean.com or follow @digitalocean on Twitter.

https://twitter.com/digitalocean
https://www.digitalocean.com/

1 Cloud Native Computing Foundation. “Kubernetes Is First CNCF Project To Graduate.” Cloud Native
 Computing Foundation Blog, Mar. 2018.

03

Executive Summary
In today’s fast-moving software landscape, advances in operations technologies have fostered the
dramatic reduction of application release cycles. Traditionally, software releases follow a
time-based schedule, but it has become increasingly common to see applications and services
continuously delivered and deployed to users throughout the day. This truncating of the traditional
software release cycle has its roots both in technological developments — such as the explosive
growth of cloud platforms, containers, and microservices-oriented architectures — as well as
cultural developments — with tech-savvy and mobile-enabled users increasingly expecting new
features, fast bug fixes, and a responsive and continuously developing product.

This symbiotic relationship between end users and developers has become increasingly linked.
Shifting organizational structures and application architectures allow developers to quickly
incorporate feedback and react to user demands. This accelerated development cadence often
accompanies the packaging of applications into containers, and the use of systems that automate
their deployment and orchestration, like Docker Swarm, Marathon, and Kubernetes. These
open-source platforms, now stable enough for large-scale production deployments, allow service
owners to launch and scale applications themselves, effortlessly managing hundreds of
running containers.

Kubernetes and DigitalOcean Kubernetes

Kubernetes, initially open-sourced by Google in 2014, has today grown to become one of the
highest velocity projects on GitHub, with over 11,300 contributing developers and 75,000 commits.1
The growth of its thriving open-source community mirrors its popularity in the private sector, with
over 50% of Fortune 100 companies relying on Kubernetes every day to rapidly deploy new
features and bug fixes to users.2

DigitalOcean Kubernetes enables development teams both small and large to quickly take
advantage of this market-leading container orchestration platform without the lead time required

RUNNING CLOUD NATIVE APPLICATIONS ON DIGITALOCEAN KUBERNETES

2 RedMonk. “Cloud Native Technologies in the Fortune 100.” RedMonk Charting Stacks, Sept. 2017.

https://www.cncf.io/blog/2018/03/06/kubernetes-first-cncf-project-graduate/
https://redmonk.com/fryan/2017/09/10/cloud-native-technologies-in-the-fortune-100/

04

to provision, install, and operate a cluster. With its simplicity and developer-friendly interfaces,
DigitalOcean Kubernetes empowers developers to launch their containerized applications into a
managed, production-ready cluster without having to maintain and configure the underlying
infrastructure. Seamlessly integrating with the rest of the DigitalOcean suite — including Load
Balancers, Firewalls, Object Storage Spaces, and Block Storage Volumes — and with built-in
support for public and private image registries like Docker Hub and Quay.io, developers can now
run and scale container-based workloads with ease on the DigitalOcean platform.

With full programmatic control of their cluster using the exposed Kubernetes REST API,
developers can benefit from the rich ecosystem of open-source tools while still reaping the
convenience of managed infrastructure. Teams can flexibly deploy and scale their Cloud Native
applications. A Certified Kubernetes conformant platform, DigitalOcean Kubernetes helps
developers launch their application containers and bring their Kubernetes workloads into the
DigitalOcean cloud with minimal configuration and operations overhead.

05RUNNING CLOUD NATIVE APPLICATIONS ON DIGITALOCEAN KUBERNETES

Trends in Modern Application Development
As Platform as a Service (PaaS) and Infrastructure as a Service (IaaS) offerings have matured,
software development and architecture patterns have shifted to meet new infrastructure
paradigms. Cloud providers abstract the underlying hardware away, and applications must
correspondingly be designed to handle failure and changes in this commodity computing
infrastructure. Exposing application endpoints to publish health and metric data (with the
expectation that these endpoints will be regularly polled and the data will be acted upon), as well
as packaging applications in smaller, self-contained disposable pieces has become the new norm
in developing resilient cloud-based applications.

Designing applications that will be rapidly and continuously deployed into cloud environments has
led to the development of new software methodologies like “Cloud Native” and “Twelve Factor.”
These high-level frameworks address common challenges in running scalable applications on
cloud platforms and serve to guide software developers and architects in the design of resilient
and highly observable applications. Such frameworks build on recent developments in software
engineering like containers, microservices-oriented architectures, continuous integration and
deployment, and automated orchestration.

Twelve Factor
Codebase
Dependencies
Config
Backing services
Build, release, run
Processes
Port binding
Concurrency
Disposability
Dev/prod parity
Logs
Admin processes

Synthesizing extensive experience developing and deploying apps
onto their cloud PaaS, Heroku constructed a framework for building
modern applications consisting of 12 development guidelines,
conceived to increase developers’ productivity and improve the
maintainability of applications.

As PaaS providers abstract away all layers beneath the application, it
is important to adapt the packaging, monitoring, and scaling of
apps to this new level of abstraction. The Twelve Factors allow a
move towards declarative, self-contained, and disposable services.
When effectively leveraged, they form a unified methodology for
building and maintaining apps that are both scalable and easily
deployable, fully utilizing managed cloud infrastructure.

I.
II.

III.
IV.
V.

VI.
VII.

VIII.
IX.
X.

XI.
XII.

Cloud Native
As cloud platforms, infrastructure, and tooling have evolved and matured since the original Twelve
Factors were published, and large-scale cloud migrations and deployments informed the software
development community, an extended and broader methodology called Cloud Native has
emerged. At a high level, Cloud Native apps are containerized, segmented into microservices, and
are designed to be dynamically deployed and efficiently run by orchestration systems
like Kubernetes.

What makes an application Cloud Native?

To effectively deploy, run, and manage Cloud Native apps, the application must implement several
Cloud Native best practices. For example, a Cloud Native app should:

Expose a health check endpoint so that container orchestration systems can probe
application state and react accordingly
Continuously publish logging and telemetry data, to be stored and analyzed by systems like
Elasticsearch and Prometheus for logs and metrics, respectively
Degrade gracefully and cleanly handle failure so that orchestrators can recover by restarting
or replacing it with a fresh copy
Not require human intervention to start and run

To drive the adoption of Cloud Native best practices and support and promote the growing Cloud
Native Landscape, the Cloud Native Computing Foundation (CNCF) was created under the
umbrella of the Linux Foundation to foster the growth and development of high-quality projects
like Kubernetes. Examples of other CNCF projects include Prometheus, a monitoring system and
time-series database often rolled out alongside Kubernetes; and FluentD, a data and log collector
often used to implement distributed logging in large clusters.

06

In its current charter, the CNCF defines three core properties that underpin Cloud

Native applications:

Packaging applications into containers: “containerizing”

Dynamic scheduling of these containers: “container orchestration”

Software architectures that consist of several smaller loosely-coupled and

independently deployable services: “microservices”

https://github.com/cncf/landscape/blob/master/README.md
https://github.com/cncf/landscape/blob/master/README.md

Scaling with Kubernetes Case Study:
The Snappy Monolith
To demonstrate the value of implementing Cloud Native best practices including containerization
along with a microservices architecture, we’ll use a running example throughout this paper: a photo
sharing app called Snappy that provides basic photo upload and sharing functionality between
users through a web interface.

Throughout this paper, we’ll modernize Snappy by:

Decomposing the app’s business functions into microservices
Containerizing the various components into portable and discretely deployable pieces
Using a DigitalOcean Kubernetes cluster to scale and continuously deploy these
stateless microservices

RUNNING CLOUD NATIVE APPLICATIONS ON DIGITALOCEAN KUBERNETES 07

LOAD BALANCER

OBJECT
STORAGE

DATABASE

SNAPPY MONOLITH

INTERNET

VIRTUAL SERVER

SNAPPY MONOLITH

API / WEB UI

DATABASE ADAPTER

PHOTO
MANAGEMENT

USER
MANAGEMENT

PRESENTATION
LAYER

BUSINESS
LOGIC

DB LAYER

BINS / LIBS / LANGUAGE RUNTIME

OPERATING SYSTEM

08

With our photo-sharing monolith app Snappy, we observe that at first the web UI, photo
management, and user management business functions are combined in a single codebase where
these separate components invoke each other via function calls. This codebase is then built,
tested, and deployed as a single unit, which can be scaled either horizontally or vertically.

As Snappy acquires more users — and subsequently scales and iterates on the product — the
codebase gradually becomes extremely large and complex. Although code changes and bug fixes
may be minor, the entire monolith app needs to be rebuilt and re-deployed, forcing a slower
iteration cycle. Furthermore, if any individual subcomponent becomes a bottleneck in the
application, the entire monolith must be scaled as a whole.

Microservices
Microservices is a software architecture style that advocates for many granular services that each
perform a single business function. Each microservice is a self-contained, independently
deployable piece of a larger application that interacts with other components, typically via
well-defined REST APIs.

Microservices evolved as a hybrid of several software development trends and ideas. Some, like
Service-Oriented Architectures (SOA), DevOps, and containerization are more recent, while others,
like the Unix philosophy of “Do One Thing and Do It Well,” evoke principles developed decades
ago. Initially pioneered by large, web-scale internet companies like Google, Amazon, and Netflix,
microservices architectures have now become commonplace in applications of all sizes.

Monolithic vs. Microservices Architectures

Large, multi-tier software monoliths must be scaled as a cohesive whole, slowing down
development cycles. In contrast, microservices provide several advantages over this
inflexible model:

They can be scaled individually and on demand
They can be developed, built, tested and deployed independently
Each service team can use its own set of tools and languages to implement features, and
grow at its own rate
Any individual microservice can treat others as black boxes, motivating strongly
communicated and well-defined contracts between service teams
Each microservice can use its own data store which frees teams from a single overarching
database schema

RUNNING CLOUD NATIVE APPLICATIONS ON DIGITALOCEAN KUBERNETES 09

Breaking the Monolith:
Snappy Microservices Architecture
Looking at Snappy through the lens of a microservices-oriented architecture, we see that
individual business functions such as photo management and user administration have now been
broken out into separate microservices that communicate via REST APIs. Each microservice can
use the data store most appropriate for the type of data it will be handling. For example, the photo
management microservice can use a cloud object store for images along with a traditional
relational database management system (RDBMS) for metadata. The service can then be
developed, tested, deployed, and scaled independently from other services. Allowing for greater
development agility, teams leveraging microservices can more efficiently use cloud infrastructure.

10

LOAD BALANCER

INTERNET

WEB UI MICROSERVICE

USER MGMT MICROSERVICE

LOAD BALANCER

RDBMS

WEB UI

REST API

WEB UI

REST API

USER
MGMT

REST API

USER
MGMT

REST API

PHOTO MGMT MICROSERVICE

RDBMSOBJECT
STORAGE

LOAD BALANCER

PHOTO
MGMT

REST API

PHOTO
MGMT

REST API

PHOTO
MGMT

REST API

Containers
Thus far we’ve discussed high-level methodologies and architectures that underpin Cloud Native
applications. We’ll now discuss a core technology that allows developers to implement these
broader architectural designs: containers.

What are Containers?

Containers are a way of packaging
applications with all of their required
dependencies and libraries in a portable and
easily deployable format. Once launched,
these packages provide a consistent and
predictable runtime environment for the
containerized application. Taking advantage
of Linux kernel isolation features such as
cgroups and namespaces, container
implementations — or runtimes — provide a
sandboxed and resource-controlled running
environment for applications.

Containers vs. Virtual Machines

Compared to virtual machines, containers are more lightweight and require fewer resources
because they encapsulate fewer layers of the operating system stack. Both provide
resource-limited environments for applications and all their software dependencies to run, but
since containers share the host’s OS kernel and do not require separate operating systems, they
boot in a fraction of the time and are much smaller in size.

11

A microservices architecture lies at the heart of Cloud Native application development as these
apps consist of portable, containerized microservices that are scalable and disposable. By
breaking up a monolithic application into many fine-grained, self-contained services — each of
which can be independently scaled, distributed across regions, and deployed across cloud
platforms — microservices enable faster development iteration, and increased flexibility in running
applications on cloud infrastructure.

RUNNING CLOUD NATIVE APPLICATIONS ON DIGITALOCEAN KUBERNETES

Bins/Libs Bins/Libs

snappy_web: 1.0snappy_photo: 2.4

CONTAINER RUNTIME

INFRASTRUCTURE

HOST OPERATING SYSTEM

CONTAINER INSTANCE

12

Container Runtimes

Though multiple container runtimes are available, Docker is the most mature, widely supported,

and common format, embedded into most container orchestration systems. More recently, the

Open Container Initiative (OCI), a Linux Foundation project, has worked to standardize container

formats and runtimes, leading to the development and integration of lightweight and stable

OCI-compliant runtimes such as containerd into orchestration systems. In mid-2018, The

Kubernetes project announced general availability for the more minimal containerd runtime,

embedding it into Kubernetes versions 1.10 and above.

Build and Ship: Dockerizing an Application

Containerizing an application using Docker first involves

writing a container image manifest called a Dockerfile. This file

describes how to build a container image by defining the

starting source image and then outlining the steps required to

install any dependencies (such as the language runtime and

libraries), copy in the application code, and configure the

environment of the resulting image.

Developers or build servers then use the Docker container runtime to build these dependencies,

libraries, and application sources into a binary package called a Docker image. Docker images are

built in ordered layers, are composable, and can be reused as bases for new images. Once built,

these images can be used to start containers on any host with a Docker container runtime.

Containers are central to running portable Cloud Native applications because using them naturally

guides development towards the implementation of several core Twelve Factor and Cloud Native

principles. As needed, a given Docker container:

Implements some narrow piece of business or support logic

Explicitly declares all of its software dependencies in a Dockerfile

Is extremely portable across cloud providers as long as it has the requisite resources and a

Docker runtime

Deploys quickly to replace a failed running container of the same type

Replicates easily to accommodate the additional load on a heavily requested business

function by launching additional container instances

DOCKERFILE

FROM
...
copy
run
expose
cmd
...

node: 10.2.1

package.json ./
npm install
8080
[”npm”, “start”]

Building a Snappy Microservice: Web UI
Container Lifecycle
To demonstrate one possible container-based development workflow, we’ll zoom in on Snappy’s
Web UI microservice, an Express and Node.js based web server.

Develop & Push

Since this Express app depends on Node.js and its related libraries to run, the snappy_web
Dockerfile first sources a Node.js image from a Docker registry like Docker Hub. Further Dockerfile
steps include app configuration, copying in source code files, and finally telling Docker which
command to run when launching the application container.

13

This is where Kubernetes and container orchestration come into play.

Once your team’s application has been neatly packaged into a set of microservice containers, each

performing some unit of business functionality, you should consider the following questions:

How do you then deploy and manage all of these running containers?

How do these containers communicate with one another, and what happens if a given

container fails and becomes unresponsive?

If one of your microservices begins experiencing heavy load, how do you scale the number of

running containers in response, assigning them to hosts with resources available?

</>

A Snappy developer on the web UI team begins work on a small UI bug fix. The developer tests code
changes locally by rebuilding the Express Docker image and running the web server container on
their laptop. The developer, satisfied with the changes, then pushes the code to a branch in the
team’s source code repository.

Build & Test

This push triggers a continuous integration pipeline build. The continuous integration server builds
the Node.js dependencies, libraries, and modified sources into a Docker image. Once built, the
pipeline runs this image as a container and proceeds to execute unit and integration tests.
If all the tests pass, this validated Docker image is then pushed to a container image registry — an
abstraction layer typically built on top of object storage — for container image tagging, organization,
and efficient reuse of existing image layers. Private, organization-specific container image registries
allow teams to share and publish images to a central, secure location, whereas public registries allow
popular open-source projects like Node.js to make the latest versions of their software available to
developers in prebuilt container image form.

Deploy & Run

Now that the Snappy web UI container image containing the bug fix has been approved and pushed
to a registry, a container orchestration system such as Kubernetes can then “pull” this image and
deploy it onto any host with a Docker runtime. This running container is given a narrow view of
available resources specified by the developer, and is run in isolation from other containers. A single
host with a container runtime installed can run several containers simultaneously, depending on
available resources.

RUNNING CLOUD NATIVE APPLICATIONS ON DIGITALOCEAN KUBERNETES 14

15

SOURCE
CODE

PUSH
CODE

VERSION
CONTROL
REPOSITORY

TRIGGER
BUILD

PUSH IMAGE

CI/CD

DEV

BUILD

DEPLOY IMAGE

TEST

snappy_web: 1.0

DOCKERFILE

FROM
...
copy
run
expose
cmd
...

node: 10.2.1

package.json ./
npm install
8080
[”npm”, “start”]

</>

snappy_web: 1.0snappy_photo: 2.4

snappy_photo: 2.3

snappy_photo: 2.2

...

snappy_web: 0.9

snappy_web: 0.8

...

IMAGE REGISTRY

CONTAINER

KUBERNETES CLUSTER

KUBERNETES NODE

Bins/Libs Bins/Libs

snappy_web: 1.0snappy_photo: 2.4

CONTAINER RUNTIME

INFRASTRUCTURE

HOST OPERATING SYSTEM

snappy_web: 1.0

Health Checking and State Management
Autoscaling
Rolling Deployments
Declarative Configuration

Clusters
Adopting a microservices architecture consisting of containerized applications paves the way for
more efficient use of infrastructure, close control of application runtime environments, and the
ability to automatically scale. However, one of the major tradeoffs in moving to a
microservices-oriented architecture are the added complexities (e.g. in business logic,
observability, and incident management) in managing a constantly evolving distributed system.
Container orchestration systems were designed to reduce some of the operations overhead by
abstracting away the underlying infrastructure and automating the deployment and scaling of
containerized applications. Systems such as Kubernetes, Marathon and Apache Mesos, and Swarm
simplify the task of deploying and managing fleets of running containers by implementing some or
all of the following core functionality:

Container Scheduling

Load Balancing

Service Discovery

Cluster Networking

Let’s briefly take a look at each of these features:

Container Scheduling

When deploying a container or sets of identical containers, a scheduler manages allocating the
desired resources (like CPU and memory) and assigns the containers to cluster member nodes
with these resources available. In addition, a scheduler may implement more advanced
functionality like container prioritization, as well as balancing out sets of identical containers across
different members and regions for high availability.

16RUNNING CLOUD NATIVE APPLICATIONS ON DIGITALOCEAN KUBERNETES

17

Load Balancing

Once deployed into a cluster, sets of running containers need some load balancing component to
manage the distribution of requests from both internal and external sources. This can be
accomplished using a combination of cloud provider load balancers, as well as load balancers
internal to the container orchestration system.

Service Discovery

Running containers and applications need some way of finding other apps deployed to the cluster.
Service discovery exposes apps to one another and external clients in a clean and organized
fashion using either DNS or some other mechanism, such as local environment variables..

Cluster Networking

Clusters also need to connect running applications and containers to one another across
machines, managing IP addresses and assignment of network addresses to cluster members and
containers. Networking implementations vary across container cluster projects; some like Docker
Swarm bake a set of networking features directly into the cluster, whereas others like Kubernetes
impose a minimal set of requirements for any networking implementation, allowing administrators
to roll out their own custom overlay network solution.

Health Checking and State Management

A core feature implemented by Cloud Native applications is health reporting, usually via a REST
endpoint. This allows orchestrators to reliably check the state of running applications and only direct
traffic towards those that are healthy. Also using this endpoint, orchestrators repeatedly probe
running apps and containers for “liveness” and self-heal by restarting those that are unresponsive.

18

Autoscaling

As load increases on a given application, more containers should be deployed to match this
growth in demand. Container orchestrators handle scaling applications by monitoring standard
metrics such as CPU or memory use, as well as user-defined telemetry data. The orchestrator then
increases or decreases the number of running containers accordingly. Some orchestration systems
also provide features for scaling the cluster and adding additional cluster members should the
number of scheduled containers exceed the amount of available resources. These systems can
also monitor utilization of these members and scale the cluster down accordingly, rescheduling
running containers onto other cluster members.

Rolling Deployments

Container orchestration systems also implement functionality to perform zero-downtime deploys.
Systems can roll out a newer version of an application container incrementally, deploying a
container at a time, monitoring its health using the probing features described above, and then
killing the old one. They also can perform blue-green deploys, where two versions of the
application run simultaneously and traffic is cut over to the new version once it has stabilized. This
also allows for quick and painless rollbacks, as well as pausing and resuming deployments as they
are carried out.

Declarative Configuration

Another core feature of some container orchestration systems is deployment via declarative
configuration files. The user “declares” which desired state they would like for a given application
(for example, four running containers of an NGINX web server), and the system takes care of
achieving that state by launching containers on the appropriate members, or killing running
containers. This declarative model enables the review, testing, and version control of deployment
and infrastructure changes. In addition, rolling back applications version can be as simple as
deploying the previous configuration file. In contrast, imperative configuration requires developers

RUNNING CLOUD NATIVE APPLICATIONS ON DIGITALOCEAN KUBERNETES

1 9

to explicitly define and manually execute a series of actions to bring about the desired cluster
state, which can be error-prone, making rollbacks difficult.

Depending on the container orchestration project, some of these features may be implemented
with more or less maturity and granularity. Whether it’s Apache’s Mesos and Marathon, Docker’s
Swarm, or Kubernetes, a container orchestration system greatly facilitates running scalable and
resilient microservices on cloud platforms by abstracting away the underlying infrastructure and
reducing operational complexity.

Rolling out cluster software to manage your applications often comes with the cost of
provisioning, configuring, and maintaining the cluster. Managed container services like
DigitalOcean Kubernetes can minimize this cost by operating the cluster Control Plane and
simplifying common cluster administration tasks like scaling machines and performing
cluster-wide upgrades.

As open-source container clusters and their managed equivalents have evolved and gradually
taken on large-scale production workloads, Kubernetes and its expanding ecosystem of Cloud
Native projects have become the platform of choice for managing and scheduling containers. By
implementing all of the features described above, Kubernetes empowers developers to scale
alongside their success, and managed Kubernetes offerings provide them with even greater
flexibility while minimizing DevOps administration time and software operations costs.

Kubernetes
The Kubernetes container orchestration system was born and initially designed at Google by
several engineers who architected and developed Google’s internal cluster manager Borg. These
engineers sought to build and open-source a container management system that integrated many
of the lessons learned from developing this internal container platform. Since its July 2015 v1.0
release, Kubernetes has rapidly matured and been rolled out in large production deployments by
organizations such as Bloomberg, Uber, eBay, and also here at DigitalOcean. In March 2018,
Kubernetes became the first project to graduate from the Cloud Native Computing Foundation,
indicating that it has become mature and stable enough to handle large-scale production
deployments and has achieved a high level of code quality and security.

20

Beyond implementing all of the container cluster features listed above (and many more),
Kubernetes benefits from a thriving open-source community, which actively develops new features
and provides constant feedback and bug reporting across a variety of deployments and use cases.
In addition to Kubernetes features, this growing developer community continuously builds tools
that simplify the process of setting up, configuring, and managing Kubernetes clusters.

Before discussing DigitalOcean Kubernetes and how it enables developers to rapidly deploy their
containerized Cloud Native applications into a managed cluster, we’ll first dive into the design and
architecture of the Kubernetes system and discuss some of the core features that simplify
deploying and scaling applications.

Kubernetes Design Overview
Kubernetes is a container cluster, a dynamic system that manages the deployment, management,
and interconnection of containers on a fleet of worker servers. These worker servers where
containers run are called Nodes and the servers that oversee and manage these running containers
are called the Kubernetes Control Plane.

Containers and Pods

It’s important to note here that the smallest deployable unit in a Kubernetes cluster is not a
container but a Pod. A Pod typically consists of an application container (like a Dockerized
Express/Node.js web app), or an app container and any “sidecar” containers that perform some
helper function like monitoring or logging. Containers in a Pod share storage resources, a network
namespace, and port space. A Pod can be thought of as a group of containers that work together
to perform a given function. They allow developers to ensure that these sets of containers are
always scheduled onto Nodes together.

Scaling, Updating and Rolling Back: Kubernetes Deployments

Pods are typically rolled out using Deployments, which are objects defined by YAML files that
declare a particular desired state. For example, an application state could be running three replicas
of the Express/Node.js web app container and exposing Pod port 8080. Once created, a controller
on the Control Plane gradually brings the actual state of the cluster to match the desired state

RUNNING CLOUD NATIVE APPLICATIONS ON DIGITALOCEAN KUBERNETES

declared in the Deployment by scheduling containers onto Nodes as required. Using Deploy-
ments, a service owner can easily scale a set of Pod replicas horizontally or perform a zero-down-
time rolling update to a new container image version by simply editing a YAML file and performing
an API call (e.g. by using the command line client kubectl). Deployments can quickly be rolled
back, paused, and resumed.

Exposing your Application: Kubernetes Services

Once deployed, a Service can be created to allow groups of similar deployed Pods to receive
traffic (Services can also be created simultaneously with Deployments). Services are used to grant
a set of Pod replicas a static IP and configure load balancing between them using either cloud
provider load balancers or user-specified custom load balancers. Services also allow users to
leverage cloud provider firewalls to lock down external access.

Pod Management: Kubernetes Node Agents

To start and manage Pods and their containers on worker machines, Nodes run an agent process
called kubelet which communicates with a kube-apiserver on the Control Plane. Using a contain-
er runtime like Docker, also running on Nodes, these scheduled containers are first pulled as
images from either a private or public image registry, and then created and launched. Nodes also
run a kube-proxy, which manages network rules on the host.

Control and Schedule: Kubernetes Control Plane

The Kubernetes Control Plane oversees the Nodes and manages their scheduling and maintains
their workloads. It consists of the kube-apiserver front-end, backed by the key-value store etcd to
store all the cluster data. Finally, a kube-scheduler schedules Pods to Nodes, and a set of control-
lers continuously observe the state of the cluster and drive its actual state towards the
desired state.

21

22

CONTROLLER

API SERVER

SCHEDULER

ETCD

KUBERNETES CONTROL PLANE

DEVOPS

NODE 1 NODE 2 NODE 3 NODE ... NODE N

CLI (KUBECTL)

WEB UI
(DASHBOARD)

cADVISOR KUBE-PROXY KUBELET cADVISOR KUBE-PROXY KUBELET

CONTAINER

CONTAINER

POD 1

C
O

N
T

A
IN

E
R

POD 2

CONTAINER

CONTAINER

POD 3

POD 4

CONTAINER RUNTIME CONTAINER RUNTIME

>_

CONTAINER

CONTAINER

POD

CONTAINER

POD

RUNNING CLOUD NATIVE APPLICATIONS ON DIGITALOCEAN KUBERNETES

23

This brief high-level architectural overview demonstrates that Kubernetes provides advanced and
extensible functionality for deploying and running containerized applications on cloud
infrastructure. However, provisioning, configuring, and managing a Kubernetes cluster, and
integrating existing CI/CD pipelines and automation servers often requires non-trivial lead and
maintenance time for operators and DevOps engineers. Managed Kubernetes solutions like
DigitalOcean Kubernetes allow development teams to quickly provision a fully featured
Kubernetes cluster on which they can launch their containerized workloads. This means that
software teams can spend more time building applications and less time managing integration,
deployment, and the infrastructure that apps run on.

DigitalOcean Kubernetes
Features described in this section will be ready for use when DigitalOcean Kubernetes
is generally available.

DigitalOcean Kubernetes provides a simple and cost-effective solution for developers seeking to
deploy and run their containerized applications on a Kubernetes cluster. With DigitalOcean,
developers can quickly launch their containerized workloads into a managed, self-healing
Kubernetes environment without having to provision, install, and manage a cluster from scratch.

Rolling your own production-ready Kubernetes cluster often involves several time-consuming and
costly steps: provisioning the underlying compute, storage, and networking infrastructure for the
Control Plane and Nodes; bootstrapping and configuring Kubernetes components like the etcd
cluster and Pod networking; and thoroughly testing the cluster for resiliency towards infrastructure
failures. Once set up, Kubernetes clusters need to be managed and monitored by DevOps teams,
while routine maintenance tasks like upgrading the cluster or the underlying infrastructure requires
manual intervention by engineers.

24

Completing the Shift to Cloud Native:
Snappy on DigitalOcean Kubernetes
The Snappy team has evaluated DigitalOcean Kubernetes and decided they would like to roll out
their microservices-based photo sharing application onto the platform. Running on Kubernetes,
Snappy consists of the following three Pods (it’s helpful to think of each as a microservice):

Web UI
Photo Management
User Management

Once the cluster has been provisioned with the desired number of Nodes, Snappy’s developers
create Kubernetes Services and Deployments for each microservice component, referencing
Docker images from their private registry. Using Kubernetes Secrets, they can store database
credentials and other sensitive information that they would like Pods to have access to in their
environment.

Subsequently, they could then use kubectl or their preferred Kubernetes management tool to
launch the Services into their cluster. Once launched, DigitalOcean Kubernetes will automatically
provision and configure remaining cloud infrastructure such as Block Storage, Load Balancers and
Firewalls, as declared by the developer.

Service owners can then independently scale their services by first increasing the number of replica
Pods in the Deployment configuration file, and then launching the deployment using the
Kubernetes API. This same flow can be automated and integrated with a CI/CD pipeline to
continuously roll out new versions of the application.

RUNNING CLOUD NATIVE APPLICATIONS ON DIGITALOCEAN KUBERNETES

25

LOAD BALANCER

KUBERNETES
CLUSTER

INTERNET

WEB UI POD

USER MGMT POD

PHOTO MGMT POD

NODE 2

WEB UI POD

NODE 3

WEB UI
POD

NODE 3

PHOTO MGMT
POD

SPACES
(OBJECT STORAGE)

PHOTO MGMT
RDBMS

USER MGMT
RDBMS

Simple, Flexible Scaling

Development teams using DigitalOcean Kubernetes can quickly create managed clusters for
workloads of all sizes — from a single Node, single Pod web server to a massive set of Nodes with
continuously churning compute-intensive processing pods. Regardless of the size or number of
running applications, cluster creation and operation remains simple via a streamlined web
interface and REST API, allowing developers to quickly launch and scale a managed Kubernetes
cluster. Users can define custom configurations of standard and compute-optimized Droplets to
handle variable workloads, optimizing price-to-performance and maximizing the use of
underlying resources.

Minimizing Day 2 Cost: Managed Operations and Maintenance

Automated cluster upgrades and Control Plane backup and recovery further reduce operations
and day-to-day management overhead. Teams can quickly integrate the latest security and
performance improvements from the Kubernetes community while keeping their clusters available
to run workloads and remaining resilient to failure. DigitalOcean Kubernetes clusters self-heal
automatically — Control Plane and Node health are continuously monitored, and recovery and Pod
rescheduling occurs in the background, preventing unnecessary and disruptive off-hours alerts.

Kubernetes in the DigitalOcean Cloud

DigitalOcean Kubernetes integrates seamlessly with other DigitalOcean infrastructure products,
bringing in all the cloud primitives needed to handle scaling and securing your team’s applications.
When creating a Service to expose your app, DigitalOcean Kubernetes can automatically
provision a Load Balancer and route traffic to the appropriate Pods. Additionally, you’ll be able to
set up a DigitalOcean Firewall to lock down and restrict web traffic to your running applications.
Finally, DigitalOcean Block Storage Volumes can be used as PersistentVolumes to provide
non-ephemeral and highly available shared storage between containers.

Harness the Kubernetes Ecosystem

By fully exposing the Kubernetes Control Plane API, developers have complete control over
workload deployment, scaling, and monitoring. Container images can be pulled directly from
public and private registries like Docker Hub and Quay.io, granting teams complete flexibility in
designing and implementing continuous integration and deployment pipelines. With this exposed
API, developers can also benefit from the rich ecosystem of third-party Kubernetes tools, as well as

26RUNNING CLOUD NATIVE APPLICATIONS ON DIGITALOCEAN KUBERNETES

build their own implementation-specific tooling should no existing solution meet their needs. In
addition, operations teams can quickly leverage the Kubernetes Dashboard UI as well as
Prometheus — built-in to DigitalOcean Kubernetes — for out-of-the-box cluster monitoring

and troubleshooting.

Simple, Transparent Pricing

Using DigitalOcean Kubernetes, software teams can maximize their cloud resource utilization and
accurately forecast spend with transparent, predictable pricing. Paying only for running Nodes,
teams have their bandwidth pooled at the account level, making DigitalOcean Kubernetes a market
leading price-to-performance container platform.

DigitalOcean Kubernetes supports development teams in quickly reaping the
benefits provided by Cloud Native computing patterns. Helping teams as they
build containerized, microservices-oriented applications that are designed to run
on the cloud, DigitalOcean Kubernetes reduces time to market and facilitates the
scaling of products and iteration of features. This streamlined, fully-managed,
CNCF-conformant platform runs all kinds of production container workloads. Your
team will experience increased development velocity while fully leveraging the
flexibility offered by cloud infrastructure. DigitalOcean Kubernetes provides you
with simplicity as you scale.

Hanif Jetha

Lisa Tagliaferri

DigitalOcean

June 2018

© 2018 DigitalOcean Inc.

All rights reserved.

