


This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0

International License.

ISBN 978-0-9997730-8-6



Rails on Containers

Kathleen Juell

DigitalOcean, New York City, New York, USA

2020-12



Rails on Containers

1. About DigitalOcean
2. Preface - Getting Started with this Book
3. Introduction
4. How To Build a Ruby on Rails Application
5. How To Create Nested Resources for a Ruby on Rails

Application
6. How To Add Stimulus to a Ruby on Rails Application
7. How To Add Bootstrap to a Ruby on Rails Application
8. How To Add Sidekiq and Redis to a Ruby on Rails Application
9. Containerizing a Ruby on Rails Application for Development with

Docker Compose
10. How To Migrate a Docker Compose Workflow for Rails

Development to Kubernetes



About DigitalOcean

DigitalOcean is a cloud services platform delivering the simplicity
developers love and businesses trust to run production applications at scale.
It provides highly available, secure and scalable compute, storage and
networking solutions that help developers build great software faster.
Founded in 2012 with offices in New York and Cambridge, MA,
DigitalOcean offers transparent and affordable pricing, an elegant user
interface, and one of the largest libraries of open source resources available.
For more information, please visit https://www.digitalocean.com or follow
@digitalocean on Twitter.

https://www.digitalocean.com/
https://twitter.com/digitalocean


Preface - Getting Started with this Book

To work with the examples in this book, we recommend that you have a
local development environment running Ubuntu 18.04. You can also
provision a remote Ubuntu 18.04 server and develop Rails applications that
way if you prefer. The first chapter in this book covers all the prerequisites
that you will need to develop Rails applications in either a local or remote
environment.

When working with Kubernetes, we also recommend that you have a local
machine or server with the kubectl command line tool installed.

https://kubernetes.io/docs/tasks/tools/install-kubectl/


Introduction

About this Book

This book is designed as an introduction to building and containerizing a
Ruby on Rails application. It explains common development tasks that you
will encounter when building Rails applications – adding nested resources,
a JavaScript framework (Stimulus.js), Bootstrap CSS styles, and Sidekiq
and Redis to process background jobs. Once you have an application ready
for development, the last part of this book will guide you through
containerizing your Rails application for continued development.

Motivation for this Book

Often, resources on development and deployment are relatively independent
of one another: guides on containers and Kubernetes rarely cover
application development, and tutorials on languages and frameworks are
often focused on languages and other nuances rather than on deployment.

This book is designed to be a full-stack introduction to containers and
Kubernetes by way of Rails application development. It assumes that
readers want an introduction not only to the fundamentals of
containerization, but also to the basics of working with Rails and a database
backend.

Learning Goals and Outcomes



The goal for this guide is to serve readers interested in Rails application
development, as well as readers who would like to learn more about
working with containers and container orchestrators. It assumes a shared
interest in moving away from highly individuated local environments, in
favor of repeatable, reproducible application environments that ensure
consistency and ultimately resiliency over time.



How To Build a Ruby on Rails
Application

Written by Kathleen Juell

Rails is a web application framework written in Ruby. It takes an
opinionated approach to application development, assuming that set
conventions best serve developers where there is a common goal. Rails
therefore offers conventions for handling routing, stateful data, asset
management, and more to provide the baseline functionality that most web
applications need.

Rails follows the model-view-controller (MCV) architectural pattern, which
separates an application's logic, located in models, from the routing and
presentation of application information. This organizational structure —
along with other conventions that allow developers to extract code into
helpers and partials — ensures that application code isn't repeated
unnecessarily.

In this tutorial, you will build a Rails application that will enable users to
post information about sharks and their behavior. It will be a good starting
point for future application development.

Prerequisites

To follow this tutorial, you will need: - A local machine or development
server running Ubuntu 18.04. Your development machine should have a
non-root user with administrative privileges and a firewall configured with 

https://www.digitalocean.com/community/tutorials/how-to-build-a-ruby-on-rails-application
https://rubyonrails.org/
https://www.digitalocean.com/community/tags/ruby
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://api.rubyonrails.org/classes/ActionController/Helpers.html
https://api.rubyonrails.org/classes/ActionView/PartialRenderer.html
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself


ufw . For instructions on how to set this up, see our Initial Server Setup with

Ubuntu 18.04 tutorial. - Node.js and npm installed on your local machine or
development server. This tutorial uses Node.js version 10.16.3 and npm
version 6.9.0. For guidance on installing Node.js and npm on Ubuntu 18.04,
follow the instructions in the “Installing Using a PPA” section of How To
Install Node.js on Ubuntu 18.04. - Ruby, rbenv, and Rails installed on your
local machine or development server, following Steps 1-4 in How To Install
Ruby on Rails with rbenv on Ubuntu 18.04. This tutorial uses Ruby 2.5.1,
rbenv 1.1.2, and Rails 5.2.0.

Step 1 — Installing SQLite3

Before creating our Rails shark application, we will need to ensure that we
have a database to store user data. Rails is configured to use SQLite by
default, and this is often a good choice in development. Since our
application data doesn't require a high level programmatic extensibility,
SQLite will meet our needs.

First, update your package index:

sudo apt update

Next, install the sqlite3  and libsqlite3-dev  packages:

sudo apt install sqlite3 libsqlite3-dev

This will install both SQLite and its required development files.

https://www.digitalocean.com/community/tutorials/initial-server-setup-with-ubuntu-18-04
https://nodejs.org/
https://www.npmjs.com/
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-on-ubuntu-18-04#installing-using-a-ppa
https://github.com/rbenv/rbenv
https://www.digitalocean.com/community/tutorials/how-to-install-ruby-on-rails-with-rbenv-on-ubuntu-18-04
https://www.sqlite.org/index.html


Check your version to confirm that the installation was successful:

sqlite3 --version

Output
3.22.0 2018-01-22 18:45:57 0c55d179733b46d8d0ba4d88e01a25e1067

7046ee3da1d5b1581e86726f2alt1

With SQLite installed, you are ready to begin developing your application.

Step 2 — Creating a New Rails Project

With our database installed, we can create a new Rails project and look at
some of the default boilerplate code that Rails gives us with the rails new

command.

Create a project called sharkapp  with the following command:

rails new sharkapp

You will see a good deal of output telling you what Rails is creating for
your new project. The output below highlights some significant files,
directories, and commands:

https://guides.rubyonrails.org/command_line.html#rails-new


Output
     create   

     . . . 

     create  Gemfile  

     . . . 

      create  app  

      . . . 

      create  app/controllers/application_controller.rb 

      . . . 

      create  app/models/application_record.rb 

      . . . 

      create  app/views/layouts/application.html.erb 

      . . .  

      create  config 

      create  config/routes.rb 

      create  config/application.rb 

      . . .  

      create  config/environments 

      create  config/environments/development.rb 

      create  config/environments/production.rb 

      create  config/environments/test.rb 

      . . . 

      create  config/database.yml 

      create  db 

      create  db/seeds.rb 

      . . .  



         run  bundle install 

      . . .  

Bundle complete! 18 Gemfile dependencies, 78 gems now installe

d. 

Use `bundle info [gemname]` to see where a bundled gem is inst

alled. 

      . . .  

* bin/rake: Spring inserted 

* bin/rails: Spring inserted

The output highlighted here tells you that Rails has created the following: - 
Gemfile : This file lists the gem dependencies for your application. A gem is

a Ruby software package, and a Gemfile allows you to manage your
project's software needs. - app : The app  directory is where your main

application code lives. This includes the models, controllers, views, assets,
helpers, and mailers that make up the application itself. Rails gives you
some application-level boilerplate for the MCV model to start out in files
like app/models/application_record.rb , app/controllers/application_c

ontroller.rb , and app/views/layouts/application.html.erb . - config :

This directory contains your application's configuration settings: - config/r

outes.rb : Your application's route declarations live in this file. - config/ap

plication.rb : General settings for your application components are located

in this file. - config/environments : This directory is where configuration

settings for your environments live. Rails includes three environments by
default: development , production , and test . - config/database.yml :

Database configuration settings live in this file, which is broken into four

https://guides.rubygems.org/what-is-a-gem/


sections: default , development , production , and test . Thanks to the

Gemfile that came with the rails new  command, which included the sqli

te3  gem, our config/database.yml  file has its adapter  parameter set to sq

lite3  already, specifying that we will use an SQLite database with this

application. - db : This folder includes a directory for database migrations

called migrate , along with the schema.rb  and seeds.rb  files. schema.db

contains information about your database, while seeds.rb  is where you can

place seed data for the database.

Finally, Rails runs the bundle install command to install the dependencies

listed in your Gemfile .

Once everything is set up, navigate to the sharkapp  directory:

cd sharkapp

You can now start the Rails server to ensure that your application is
working, using the rails server command. If you are working on your

local machine, type:

rails server 

Rails binds to localhost  by default, so you can now access your

application by navigating your browser to locahost:3000 , where you will

see the following image:

https://guides.rubyonrails.org/active_record_migrations.html
https://bundler.io/man/bundle-install.1.html
https://guides.rubyonrails.org/command_line.html#rails-server


Rails Landing Page

If you are working on a development server, first ensure that connections
are allowed on port 3000 :

sudo ufw allow 3000

Then start the server with the --binding  flag, to bind to your server IP:

rails server --binding=your_server_ip

Navigate to http://your_server_ip:3000  in your browser, where you will

see the Rails welcome message.

Once you have looked around, you can stop the server with CTRL+C .



With your application created and in place, you are ready to start building
from the Rails boilerplate to create a unique application.

Step 3 — Scaffolding the Application

To create our shark information application, we will need to create a model
to manage our application data, views to enable user interaction with that
data, and a controller to manage communication between the model and the
views. To build these things we will use the rails generate scaffold

command, which will give us a model, a database migration to alter the
database schema, a controller, a full set of views to manage Create, Read,
Update, and Delete (CRUD) operations for the application, and templates
for partials, helpers, and tests.

Because the generate scaffold  command does so much work for us, we'll

take a closer look at the resources it creates to understand the work that
Rails is doing under the hood.

Our generate scaffold  command will include the name of our model and

the fields we want in our database table. Rails uses Active Record to
manage relationships between application data, constructed as objects with
models, and the application database. Each of our models is a Ruby class,
while also inheriting from the ActiveRecord::Base  class. This means that

we can work with our model class in the same way that we would work
with a Ruby class, while also pulling in methods from Active Record.
Active Record will then ensure that each class is mapped to a table in our
database, and each instance of that class to a row in that table.

https://guides.rubyonrails.org/active_record_migrations.html
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://github.com/rails/rails/tree/master/activerecord
https://ruby-doc.org/core-2.5.3/Class.html


Type the following command to generate a Shark  model, controller, and

associated views:

rails generate scaffold Shark name:string facts:text

With name:string  and facts:text  we are giving Rails information about

the fields we would like in our database table and the type of data they
should accept. Both will give us room to input what we would like, though 
text  will allow more characters for shark facts.

When you type this command, you will again see a long list of output that
explains everything Rails is generating for you. The output below highlights
some of the more significant things for our setup:



Output
      invoke  active_record 

      create    db/migrate/20190804181822_create_sharks.rb 

      create    app/models/shark.rb 

      . . . 

      invoke  resource_route 

       route    resources :sharks 

      invoke  scaffold_controller 

      create    app/controllers/sharks_controller.rb 

      invoke    erb 

      create      app/views/sharks 

      create      app/views/sharks/index.html.erb 

      create      app/views/sharks/edit.html.erb 

      create      app/views/sharks/show.html.erb 

      create      app/views/sharks/new.html.erb 

      create      app/views/sharks/_form.html.erb 

      . . .

Rails has created the model at app/models/shark.rb  and a database

migration to go with it: db/migrate/20190804181822_create_sharks.rb .

The timestamp on your migration file will differ from what you see here.

It has also created a controller, app/controllers/sharks_controller.rb , as

well as the views associated with our application's CRUD operations,
collected under app/views/sharks . Among these views is a partial, _form.h

tml.erb , that contains code used across views.



Finally, Rails added a new resourceful route, resources :sharks , to confi

g/routes.rb . This enables the Rails router to match incoming HTTP

requests with the sharks  controller and its associated views.

Though Rails has done much of the work of building out our application
code for us, it is worth taking a look at some files to understand what is
happening.

First, let's look at the controller file with the following command:

cat app/controllers/sharks_controller.rb



Output
class SharksController < ApplicationController 

  before_action :set_shark, only: [:show, :edit, :update, :des

troy] 

 

  # GET /sharks 

  # GET /sharks.json 

  def index 

    @sharks = Shark.all 

  end 

 

  # GET /sharks/1 

  # GET /sharks/1.json 

  def show 

  end 

 

  # GET /sharks/new 

  def new 

    @shark = Shark.new 

  end 

 

  # GET /sharks/1/edit 

  def edit 

  end 

 

  # POST /sharks 



  # POST /sharks.json 

  def create 

    @shark = Shark.new(shark_params) 

 

    respond_to do |format| 

      if @shark.save 

        format.html { redirect_to @shark, notice: 'Shark was s

uccessfully created.' } 

        format.json { render :show, status: :created, locatio

n: @shark } 

      else 

        format.html { render :new } 

        format.json { render json: @shark.errors, status: :unp

rocessable_entity } 

      end 

    end 

  end 

 

  # PATCH/PUT /sharks/1 

  # PATCH/PUT /sharks/1.json 

  def update 

    respond_to do |format| 

      if @shark.update(shark_params) 

        format.html { redirect_to @shark, notice: 'Shark was s

uccessfully updated.' } 

        format.json { render :show, status: :ok, location: @sh

ark } 



      else 

        format.html { render :edit } 

        format.json { render json: @shark.errors, status: :unp

rocessable_entity } 

      end 

    end 

  end 

 

  # DELETE /sharks/1 

  # DELETE /sharks/1.json 

  def destroy 

    @shark.destroy 

    respond_to do |format| 

      format.html { redirect_to sharks_url, notice: 'Shark was 

successfully destroyed.' } 

      format.json { head :no_content } 

    end 

  end 

 

  private 

    # Use callbacks to share common setup or constraints betwe

en actions. 

    def set_shark 

      @shark = Shark.find(params[:id]) 

    end 

 

    # Never trust parameters from the scary internet, only all



ow the white list through. 

    def shark_params 

      params.require(:shark).permit(:name, :facts) 

    end 

end

The controller is responsible for managing how information gets fetched
and passed to its associated model, and how it gets associated with
particular views. As you can see, our sharks  controller includes a series of

methods that map roughly to standard CRUD operations. However, there
are more methods than CRUD functions, to enable efficiency in the case of
errors.

For example, consider the create  method:



~/sharkapp/app/controllers/sharks_controller.rb
. . . 

  def create 

    @shark = Shark.new(shark_params) 

 

    respond_to do |format| 

      if @shark.save 

        format.html { redirect_to @shark, notice: 'Shark was s

uccessfully created.' } 

        format.json { render :show, status: :created, locatio

n: @shark } 

      else 

        format.html { render :new } 

        format.json { render json: @shark.errors, status: :unp

rocessable_entity } 

      end 

    end 

  end 

. . . 

If a new instance of the Shark  class is successfully saved, redirect_to  will

spawn a new request that is then directed to the controller. This will be a GE

T  request, and it will be handled by the show  method, which will show the

user the shark they've just added.



If there is a failure, then Rails will render the app/views/sharks/new.html.

erb  template again rather than making another request to the router, giving

users another chance to submit their data.

In addition to the sharks controller, Rails has given us a template for an ind

ex  view, which maps to the index  method in our controller. We will use

this as the root view for our application, so it's worth taking a look at it.

Type the following to output the file:

cat app/views/sharks/index.html.erb



Output
<p id="notice"><%= notice %></p> 

 

<h1>Sharks</h1> 

 

<table> 

  <thead> 

    <tr> 

      <th>Name</th> 

      <th>Facts</th> 

      <th colspan="3"></th> 

    </tr> 

  </thead> 

 

  <tbody> 

    <% @sharks.each do |shark| %> 

      <tr> 

        <td><%= shark.name %></td> 

        <td><%= shark.facts %></td> 

        <td><%= link_to 'Show', shark %></td> 

        <td><%= link_to 'Edit', edit_shark_path(shark) %></td> 

        <td><%= link_to 'Destroy', shark, method: :delete, dat

a: { confirm: 'Are you sure?' } %></td> 

      </tr> 

    <% end %> 

  </tbody> 



</table> 

 

<br> 

 

<%= link_to 'New Shark', new_shark_path %>

The index  view iterates through the instances of our Shark  class, which

have been mapped to the sharks  table in our database. Using ERB

templating, the view outputs each field from the table that is associated with
an individual shark instance: name  and facts .

The view then uses the link_to helper to create a hyperlink, with the

provided string as the text for the link and the provided path as the
destination. The paths themselves are made possible through the helpers
that became available to us when we defined the sharks  resourceful route

with the rails generate scaffold  command.

In addition to looking at our index  view, we can also take a look at the new

view to see how Rails uses partials in views. Type the following to output
the app/views/sharks/new.html.erb  template:

cat app/views/sharks/new.html.erb

https://ruby-doc.org//stdlib-1.9.3/libdoc/erb/rdoc/ERB.html
https://api.rubyonrails.org/v5.2.3/classes/ActionView/Helpers/UrlHelper.html#method-i-link_to
https://guides.rubyonrails.org/routing.html#path-and-url-helpers


Output
<h1>New Shark</h1> 

 

<%= render 'form', shark: @shark %> 

 

<%= link_to 'Back', sharks_path %>

Though this template may look like it lacks input fields for a new shark
entry, the reference to render 'form'  tells us that the template is pulling in

the _form.html.erb  partial, which extracts code that is repeated across

views.

Looking at that file will give us a full sense of how a new shark instance
gets created:

cat app/views/sharks/_form.html.erb



Output
<%= form_with(model: shark, local: true) do |form| %> 

  <% if shark.errors.any? %> 

    <div id="error_explanation"> 

      <h2><%= pluralize(shark.errors.count, "error") %> prohib

ited this shark from being saved:</h2> 

 

      <ul> 

      <% shark.errors.full_messages.each do |message| %> 

        <li><%= message %></li> 

      <% end %> 

      </ul> 

    </div> 

  <% end %> 

 

  <div class="field"> 

    <%= form.label :name %> 

    <%= form.text_field :name %> 

  </div> 

 

  <div class="field"> 

    <%= form.label :facts %> 

    <%= form.text_area :facts %> 

  </div> 

 

  <div class="actions"> 



    <%= form.submit %> 

  </div> 

<% end %>

This template makes use of the form_with form helper. Form helpers are

designed to facilitate the creation of new objects from user input using the
fields and scope of particular models. Here, form_with  takes model: shark

as an argument, and the new form builder object that it creates has field
inputs that correspond to the fields in the sharks  table. Thus users have

form fields to enter both a shark name  and shark facts .

Submitting this form will create a JSON response with user data that the
rest of your application can access by way of the params method, which
creates a ActionController::Parameters  object with that data.

Now that you know what rails generate scaffold  has produced for you,

you can move on to setting the root view for your application.

Step 4 — Creating the Application Root View and Testing
Functionality

Ideally, you want the landing page of your application to map to the
application's root, so users can immediately get a sense of the application's
purpose.

There are a number of ways you could handle this: for example, you could
create a Welcome  controller and an associated index  view, which would

https://api.rubyonrails.org/v5.2.3/classes/ActionView/Helpers/FormHelper.html#method-i-form_with
https://api.rubyonrails.org/v5.2.3/classes/ActionView/Helpers/FormHelper.html
https://api.rubyonrails.org/classes/ActionController/Parameters.html


give users a generic landing page that could also link out to different parts
of the application. In our case, however, having users land on our index

sharks view will be enough of an introduction to the application's purpose
for now.

To set this up, you will need to modify the routing settings in config/route

s.rb  to specify the root of the application.

Open config/routes.rb  for editing, using nano  or your favorite editor:

nano config/routes.rb

The file will look like this:

~/sharkapp/config/routes.rb
Rails.application.routes.draw do 

  resources :sharks 

  # For details on the DSL available within this file, see htt

p://guides.rubyonrails.org/routing.html 

end

Without setting something more specific, the default view at http://localh

ost:3000  or http://your_server_ip:3000  will be the default Rails

welcome page.

In order to map the root view of the application to the index  view of the

sharks controller, you will need to add the following line to the file:



~/sharkapp/config/routes.rb
Rails.application.routes.draw do 

  resources :sharks 

 

  root 'sharks#index' 

  # For details on the DSL available within this file, see htt

p://guides.rubyonrails.org/routing.html 

end

Now, when users navigate to your application root, they will see a full
listing of sharks, and have the opportunity to create a new shark entry, look
at existing entries, and edit or delete given entries.

Save the file and exit your editor when you are finished editing. If you used 
nano  to edit the file, you can do so by pressing CTRL+X , Y , then ENTER

You can now run your migrations with the following command:

rails db:migrate

You will see output confirming the migration.

Start your Rails server once again. If you are working locally, type:

rails s

On a development server, type:



rails s --binding=your_server_ip

Navigate to localhost:3000  if you are working locally, or http://your_se

rver_ip:3000  if you are working on a development server.

Your application landing page will look like this:

Application Landing Page

To create a new shark, click on the New Shark link at the bottom of the
page, which will take you to the sharks/new  route:



Create New Shark

Let's add some demo information to test our application. Input “Great
White” into the Name field and “Scary” into the Facts field:



Add Great White Shark

Click on the Create button to create the shark.

This will direct you to the show  route, which, thanks to the before_action

filter, is set with the set_shark  method, which grabs the id  of the shark

we've just created:



~/sharkapp/app/controllers/sharks_controller.rb
class SharksController < ApplicationController 

  before_action :set_shark, only: [:show, :edit, :update, :des

troy] 

 

  . . .  

 

  def show 

  end 

 

  . . .  

 

  private 

    # Use callbacks to share common setup or constraints betwe

en actions. 

    def set_shark 

      @shark = Shark.find(params[:id]) 

    end 

  . . .



Show Shark

You can test the edit function now by clicking Edit on your shark entry.
This will take you to the edit  route for that shark:



Edit Shark

Change the facts  about the Great White to read “Large” instead of “Scary”

and click Update Shark. This will take you back to the show  route:



Updated Shark

Finally, clicking Back will take you to your updated index  view:

New Index View



Now that you have tested your application's basic functionality, you can add
some validations and security checks to make everything more secure.

Step 5 — Adding Validations

Your shark application can accept input from users, but imagine a case
where a user attempts to create a shark without adding facts to it, or creates
an entry for a shark that's already in the database. You can create
mechanisms to check data before it gets entered into the database by adding
validations to your models. Since your application's logic is located in its
models, validating data input here makes more sense than doing so
elsewhere in the application.

Note that we will not cover writing validation tests in this tutorial, but you
can find out more about testing by consulting the Rails documentation.

If you haven't stopped the server yet, go ahead and do that by typing CTRL+

C .

Open your shark.rb  model file:

nano app/models/shark.rb

Currently, the file tells us that the Shark  class inherits from ApplicationRe

cord , which in turn inherits from ActiveRecord::Base:

https://guides.rubyonrails.org/testing.html
https://api.rubyonrails.org/classes/ActiveRecord/Base.html


~/sharkapp/app/models/shark.rb
class Shark < ApplicationRecord 

end

Let's first add some validations to our name  field to confirm that the field is

filled out and that the entry is unique, preventing duplicate entries:

~/sharkapp/app/models/shark.rb
class Shark < ApplicationRecord 

  validates :name, presence: true, uniqueness: true 

end

Next, add a validation for the facts  field to ensure that it, too, is filled out:

~/sharkapp/app/models/shark.rb
class Shark < ApplicationRecord 

  validates :name, presence: true, uniqueness: true 

  validates :facts, presence: true 

end

We are less concerned here with the uniqueness of the facts, as long as they
are associated with unique shark entries.

Save and close the file when you are finished.



Start up your server once again with either rails s  or rails s --binding=

your_server_ip , depending on whether you are working locally or with a

development server.

Navigate to your application's root at http://localhost:3000  or http://yo

ur_server_ip:3000 .

Click on New Shark. In the form, add “Great White” to the Name field and
“Big Teeth” to the Facts field, and then click on Create Shark. You should
see the following warning:

Unique Validation Warning

Now, let's see if we can check our other validation. Click Back to return to
the homepage, and then New Shark once again. In the new form, enter
“Tiger Shark” in the Name field, and leave Facts blank. Clicking Create
Shark will trigger the following warning:



Fact Presence Warning

With these changes, your application has some validations in place to
ensure consistency in the data that's saved to the database. Now you can
turn your attention to your application's users and defining who can modify
application data.

Step 6 — Adding Authentication

With validations in place, we have some guarantees about the data that's
being saved to the database. But what about users? If we don't want any and
all users adding to the database, then we should add some authentication
measures to ensure that only permitted users can add sharks. In order to do
this, we'll use the http_basic_authenticate_with method, which will allow

us to create a username and password combination to authenticate users.

https://api.rubyonrails.org/classes/ActionController/HttpAuthentication/Basic.html


There are a number of ways to authenticate users with Rails, including
working with the bcrypt or devise gems. For now, however, we will add a

method to our application controller that will apply to actions across our
application. This will be useful if we add more controllers to the application
in the future.

Stop your server again with CTRL+C .

Open the file that defines your ApplicationController :

nano app/controllers/application_controller.rb

Inside, you will see the definition for the ApplicationController  class,

which the other controllers in your application inherit from:

~/sharkapp/app/controllers/application_controlle
r.rb
class ApplicationController < ActionController::Base 

end

To authenticate users, we'll use a hardcoded username and password with
the http_basic_authenticate_with  method. Add the following code to the

file:

https://rubygems.org/gems/bcrypt/versions/3.1.12
https://rubygems.org/gems/devise


~/sharkapp/app/controllers/application_controlle
r.rb
class ApplicationController < ActionController::Base 

  http_basic_authenticate_with name: 'sammy', password: 'shar

k', except: [:index, :show] 

end

In addition to supplying the username and password here, we've also
restricted authentication by specifying the routes where it should not be
required: index  and show . Another way of accomplishing this would have

been to write only: [:create, :update, :destroy] . This way, all users

will be able to look at all of the sharks and read facts about particular
sharks. When it comes to modifying site content, however, users will need
to prove that they have access.

In a more robust setup, you would not want to hardcode values in this way,
but for the purposes of demonstration, this will allow you to see how you
can include authentication for your application's routes. It also lets you see
how Rails stores session data by default in cookies: once you authenticate
on a specified action, you will not be required to authenticate again in the
same session.

Save and close app/controllers/application_controller.rb  when you

are finished editing. You can now test authentication in action.

Start the server with either rails s  or rails s --binding=your_server_ip

and navigate to your application at either http://localhost:3000  or htt



p://your_server_ip:3000 .

On the landing page, click on the New Shark button. This will trigger the
following authentication window:

User Authentication

If you enter the username and password combination you added to app/con

trollers/application_controller.rb , you will be able to securely create a

new shark.

You now have a working shark application, complete with data validations
and a basic authentication scheme.

Conclusion

The Rails application you created in this tutorial is a jumping off point that
you can use for further development. If you are interested in exploring the
Rails ecosystem, the project documentation is a great place to start.

You can also learn more about adding nested resources to your project by
reading How To Create Nested Resources for a Ruby on Rails Application,

https://guides.rubyonrails.org/
https://www.digitalocean.com/community/tutorials/how-to-create-nested-resources-for-a-ruby-on-rails-application


which will show you how to build out your application's models and routes.

Additionally, you might want to explore how to set up a more robust
frontend for your project with a framework such as React. How To Set Up a
Ruby on Rails Project with a React Frontend offers guidance on how to do
this.

If you would like to explore different database options, you can also check
out How To Use PostgreSQL with Your Ruby on Rails Application on
Ubuntu 18.04, which walks through how to work with PostgreSQL instead
of SQLite. You can also consult our library of PostgreSQL tutorials to learn
more about working with this database.

https://reactjs.org/
https://www.digitalocean.com/community/tutorials/how-to-set-up-a-ruby-on-rails-project-with-a-react-frontend
https://www.digitalocean.com/community/tutorials/how-to-use-postgresql-with-your-ruby-on-rails-application-on-ubuntu-18-04
https://www.postgresql.org/
https://www.digitalocean.com/community/tags/postgresql?type=tutorials


How To Create Nested Resources for
a Ruby on Rails Application

Written by Kathleen Juell

Ruby on Rails is a web application framework written in Ruby that offers
developers an opinionated approach to application development. Working
with Rails gives developers: - Conventions for handling things like routing,
stateful data, and asset management. - A firm grounding in the model-view-
controller (MCV) architectural pattern, which separates an application's
logic, located in models, from the presentation and routing of application
information.

As you add complexity to your Rails applications, you will likely work with
multiple models, which represent your application's business logic and
interface with your database. Adding related models means establishing
meaningful relationships between them, which then affect how information
gets relayed through your application's controllers, and how it is captured
and presented back to users through views.

In this tutorial, you will build on an existing Rails application that offers
users facts about sharks. This application already has a model for handling
shark data, but you will add a nested resource for posts about individual
sharks. This will allow users to build out a wider body of thoughts and
opinions about individual sharks.

Prerequisites

https://www.digitalocean.com/community/tutorials/how-to-create-nested-resources-for-a-ruby-on-rails-application
https://rubyonrails.org/
https://www.digitalocean.com/community/tags/ruby
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller


To follow this tutorial, you will need: - A local machine or development
server running Ubuntu 18.04. Your development machine should have a
non-root user with administrative privileges and a firewall configured with 
ufw . For instructions on how to set this up, see our Initial Server Setup with

Ubuntu 18.04 tutorial. - Node.js and npm installed on your local machine or
development server. This tutorial uses Node.js version <>10.16.3<> and npm
version <>6.9.0<>. For guidance on installing Node.js and npm on Ubuntu
18.04, follow the instructions in the “Installing Using a PPA” section of
How To Install Node.js on Ubuntu 18.04. - Ruby, rbenv, and Rails installed
on your local machine or development server, following Steps 1-4 in How
To Install Ruby on Rails with rbenv on Ubuntu 18.04. This tutorial uses
Ruby <>2.5.1<>, rbenv <>1.1.2<>, and Rails <>5.2.3<>. - SQLite installed, and a basic
shark information application created, following the directions in How To
Build a Ruby on Rails Application.

Step 1 — Scaffolding the Nested Model

Our application will take advantage of Active Record associations to build
out a relationship between Shark  and Post  models: posts will belong to

particular sharks, and each shark can have multiple posts. Our Shark  and P

ost  models will therefore be related through belongs_to and has_many

associations.

The first step to building out the application in this way will be to create a 
Post  model and related resources. To do this, we can use the rails genera

te scaffold  command, which will give us a model, a database migration to

alter the database schema, a controller, a full set of views to manage

https://www.digitalocean.com/community/tutorials/initial-server-setup-with-ubuntu-18-04
https://nodejs.org/
https://www.npmjs.com/
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-on-ubuntu-18-04#installing-using-a-ppa
https://github.com/rbenv/rbenv
https://www.digitalocean.com/community/tutorials/how-to-install-ruby-on-rails-with-rbenv-on-ubuntu-18-04
https://www.digitalocean.com/community/tutorials/how-to-build-a-ruby-on-rails-application
https://guides.rubyonrails.org/association_basics.html
https://guides.rubyonrails.org/association_basics.html#the-belongs-to-association
https://guides.rubyonrails.org/association_basics.html#the-has-many-association
https://guides.rubyonrails.org/active_record_migrations.html


standard Create, Read, Update, and Delete (CRUD) operations, and
templates for partials, helpers, and tests. We will need to modify these
resources, but using the scaffold  command will save us some time and

energy since it generates a structure we can use as a starting point.

First, make sure that you are in the sharkapp  directory for the Rails project

that you created in the prerequisites:

cd sharkapp

Create your Post  resources with the following command:

rails generate scaffold Post body:text shark:references

With body:text , we're telling Rails to include a body  field in the posts

database table — the table that maps to the Post  model. We're also

including the :references  keyword, which sets up an association between

the Shark  and Post  models. Specifically, this will ensure that a foreign key

representing each shark entry in the sharks  database is added to the posts

database.

Once you have run the command, you will see output confirming the
resources that Rails has generated for the application. Before moving on,
you can check your database migration file to look at the relationship that
now exists between your models and database tables. Use the following
command to look at the contents of the file, making sure to substitute the
timestamp on your own migration file for what's shown here:

https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/Foreign_key


cat db/migrate/20190805132506_create_posts.rb

You will see the following output:

Output
class CreatePosts < ActiveRecord::Migration[5.2] 

  def change 

    create_table :posts do |t| 

      t.text :body 

      t.references :shark, foreign_key: true 

 

      t.timestamps 

    end 

  end 

end

As you can see, the table includes a column for a shark foreign key. This
key will take the form of model_name_id  — in our case, shark_id .

Rails has established the relationship between the models elsewhere as well.
Take a look at the newly generated Post  model with the following

command:

cat app/models/post.rb



Output
class Post < ApplicationRecord 

  belongs_to :shark 

end

The belongs_to  association sets up a relationship between models in which

a single instance of the declaring model belongs to a single instance of the
named model. In the case of our application, this means that a single post
belongs to a single shark.

In addition to setting this relationship, the rails generate scaffold

command also created routes and views for posts, as it did for our shark
resources in Step 3 of How To Build a Ruby on Rails Application.

This is a useful start, but we will need to configure some additional routing
and solidify the Active Record association for the Shark  model in order for

the relationship between our models and routes to work as desired.

Step 2 — Specifying Nested Routes and Associations for
the Parent Model

Rails has already set the belongs_to  association in our Post  model, thanks

to the :references  keyword in the rails generate scaffold  command,

but in order for that relationship to function properly we will need to
specify a has_many  association in our Shark  model as well. We will also

need to make changes to the default routing that Rails gave us in order to
make post resources the children of shark resources.

https://www.digitalocean.com/community/tutorials/how-to-build-a-ruby-on-rails-application#step-3-%E2%80%94-scaffolding-the-application
https://www.digitalocean.com/community/tutorials/how-to-build-a-ruby-on-rails-application


To add the has_many  association to the Shark  model, open app/models/sha

rk.rb  using nano  or your favorite editor:

nano app/models/shark.rb

Add the following line to the file to establish the relationship between
sharks and posts:

~/sharkapp/app/models/shark.rb
class Shark < ApplicationRecord 

  has_many :posts 

  validates :name, presence: true, uniqueness: true 

  validates :facts, presence: true 

end

One thing that is worth thinking about here is what happens to posts once a
particular shark is deleted. We likely do not want the posts associated with a
deleted shark persisting in the database. To ensure that any posts associated
with a given shark are eliminated when that shark is deleted, we can include
the dependent  option with the association.

Add the following code to the file to ensure that the destroy  action on a

given shark deletes any associated posts:



~/sharkapp/app/models/shark.rb
class Shark < ApplicationRecord 

  has_many :posts , dependent: :destroy 

  validates :name, presence: true, uniqueness: true 

  validates :facts, presence: true 

end

Once you have finished making these changes, save and close the file. If
you are using nano , you can do this by pressing CTRL+X , Y , then ENTER .

Next, open your config/routes.rb  file to modify the relationship between

your resourceful routes:

nano config/routes.rb

Currently, the file looks like this:

~/sharkapp/config/routes.rb
Rails.application.routes.draw do 

  resources :posts  

  resources :sharks 

 

  root 'sharks#index' 

  # For details on the DSL available within this file, see htt

p://guides.rubyonrails.org/routing.html 

end



The current code establishes an independent relationship between our
routes, when what we would like to express is a dependent relationship
between sharks and their associated posts.

Let's update our route declaration to make :sharks  the parent of :posts .

Update the code in the file to look like the following:

~/sharkapp/config/routes.rb
Rails.application.routes.draw do 

  resources :sharks do 

    resources :posts 

  end 

  root 'sharks#index' 

  # For details on the DSL available within this file, see htt

p://guides.rubyonrails.org/routing.html 

end

Save and close the file when you are finished editing.

With these changes in place, you can move on to updating your posts

controller.

Step 3 — Updating the Posts Controller

The association between our models gives us methods that we can use to
create new post instances associated with particular sharks. To use these
methods, we will need to add them our posts controller.

https://guides.rubyonrails.org/routing.html#nested-resources


Open the posts controller file:

nano app/controllers/posts_controller.rb

Currently, the file looks like this:



~/sharkapp/controllers/posts_controller.rb
class PostsController < ApplicationController 

  before_action :set_post, only: [:show, :edit, :update, :dest

roy] 

 

  # GET /posts 

  # GET /posts.json 

  def index 

    @posts = Post.all 

  end 

 

  # GET /posts/1 

  # GET /posts/1.json 

  def show 

  end 

 

  # GET /posts/new 

  def new 

    @post = Post.new 

  end 

 

  # GET /posts/1/edit 

  def edit 

  end 

 

  # POST /posts 



  # POST /posts.json 

  def create 

    @post = Post.new(post_params) 

 

    respond_to do |format| 

      if @post.save 

        format.html { redirect_to @post, notice: 'Post was suc

cessfully created.' } 

        format.json { render :show, status: :created, locatio

n: @post } 

      else 

        format.html { render :new } 

        format.json { render json: @post.errors, status: :unpr

ocessable_entity } 

      end 

    end 

  end 

 

  # PATCH/PUT /posts/1 

  # PATCH/PUT /posts/1.json 

  def update 

    respond_to do |format| 

      if @post.update(post_params) 

        format.html { redirect_to @post, notice: 'Post was suc

cessfully updated.' } 

        format.json { render :show, status: :ok, location: @po

st } 



      else 

        format.html { render :edit } 

        format.json { render json: @post.errors, status: :unpr

ocessable_entity } 

      end 

    end 

  end 

 

  # DELETE /posts/1 

  # DELETE /posts/1.json 

  def destroy 

    @post.destroy 

    respond_to do |format| 

      format.html { redirect_to posts_url, notice: 'Post was s

uccessfully destroyed.' } 

      format.json { head :no_content } 

    end 

  end 

 

  private 

    # Use callbacks to share common setup or constraints betwe

en actions. 

    def set_post 

      @post = Post.find(params[:id]) 

    end 

 

    # Never trust parameters from the scary internet, only all



ow the white list through. 

    def post_params 

      params.require(:post).permit(:body, :shark_id) 

    end 

end

Like our sharks controller, this controller's methods work with instances of
the associated Post  class. For example, the new  method creates a new

instance of the Post  class, the index  method grabs all instances of the

class, and the set_post  method uses find  and params  to select a particular

post by id . If, however, we want our post instances to be associated with

particular shark instances, then we will need to modify this code, since the 
Post  class is currently operating as an independent entity.

Our modifications will make use of two things: - The methods that became
available to us when we added the belongs_to  and has_many  associations

to our models. Specifically, we now have access to the build method thanks

to the has_many  association we defined in our Shark  model. This method

will allow us to create a collection of post objects associated with a
particular shark object, using the shark_id  foreign key that exists in our po

sts  database. - The routes and routing helpers that became available when

we created a nested posts  route. For a full list of example routes that

become available when you create nested relationships between resources,
see the Rails documentation. For now, it will be enough for us to know that
for each specific shark — say sharks/1  — there will be an associated route

for posts related to that shark: sharks/1/posts . There will also be routing

https://api.rubyonrails.org/classes/ActiveRecord/Associations/ClassMethods.html#method-i-has_many
https://guides.rubyonrails.org/routing.html#nested-resources


helpers like shark_posts_path(@shark)  and edit_sharks_posts_path(@sha

rk)  that refer to these nested routes.

In the file, we'll begin by writing a method, get_shark , that will run before

each action in the controller. This method will create a local @shark

instance variable by finding a shark instance by shark_id . With this

variable available to us in the file, it will be possible to relate posts to a
specific shark in the other methods.

Above the other private  methods at the bottom of the file, add the

following method:

~/sharkapp/controllers/posts_controller.rb
. . .  

private 

  def get_shark 

    @shark = Shark.find(params[:shark_id]) 

  end 

  # Use callbacks to share common setup or constraints between 

actions. 

. . . 

Next, add the corresponding filter to the top of the file, before the existing
filter:



~/sharkapp/controllers/posts_controller.rb
class PostsController < ApplicationController 

  before_action :get_shark

This will ensure that get_shark  runs before each action defined in the file.

Next, you can use this @shark  instance to rewrite the index  method.

Instead of grabbing all instances of the Post  class, we want this method to

return all post instances associated with a particular shark instance.

Modify the index  method to look like this:

~/sharkapp/controllers/posts_controller.rb
. . . 

  def index 

    @posts = @shark.posts 

  end 

. . .

The new  method will need a similar revision, since we want a new post

instance to be associated with a particular shark. To achieve this, we can
make use of the build  method, along with our local @shark  instance

variable.

Change the new  method to look like this:



~/sharkapp/controllers/posts_controller.rb
. . .  

  def new 

    @post = @shark.posts.build 

  end 

. . . 

This method creates a post object that's associated with the specific shark
instance from the get_shark  method.

Next, we'll address the method that's most closely tied to new : create . The 

create  method does two things: it builds a new post instance using the

parameters that users have entered into the new  form, and, if there are no

errors, it saves that instance and uses a route helper to redirect users to
where they can see the new post. In the case of errors, it renders the new

template again.

Update the create  method to look like this:



~/sharkapp/controllers/posts_controller.rb
  def create 

    @post = @shark.posts.build(post_params) 

 

        respond_to do |format| 

         if @post.save   

            format.html { redirect_to shark_posts_path(@shark)

, notice: 'Post was successfully created.' } 

            format.json { render :show, status: :created, loca

tion: @post } 

         else 

            format.html { render :new } 

            format.json { render json: @post.errors, status: :

unprocessable_entity } 

      end 

    end 

  end

Next, take a look at the update  method. This method uses a @post  instance

variable, which is not explicitly set in the method itself. Where does this
variable come from?

Take a look at the filters at the top of the file. The second, auto-generated b

efore_action  filter provides an answer:



~/sharkapp/controllers/posts_controller.rb
class PostsController < ApplicationController 

  before_action :get_shark 

  before_action :set_post, only: [:show, :edit, :update, :dest

roy] 

  . . .

The update  method (like show , edit , and destroy ) takes a @post  variable

from the set_post  method. That method, listed under the get_shark

method with our other private  methods, currently looks like this:

~/sharkapp/controllers/posts_controller.rb
. . .  

private 

. . .  

  def set_post 

    @post = Post.find(params[:id]) 

  end 

. . .

In keeping with the methods we've used elsewhere in the file, we will need
to modify this method so that @post  refers to a particular instance in the

collection of posts that's associated with a particular shark. Keep the build

method in mind here — thanks to the associations between our models, and
the methods (like build ) that are available to us by virtue of those



associations, each of our post instances is part of a collection of objects
that's associated with a particular shark. So it makes sense that when
querying for a particular post, we would query the collection of posts
associated with a particular shark.

Update set_post  to look like this:

~/sharkapp/controllers/posts_controller.rb
. . .  

private 

. . .  

  def set_post 

    @post = @shark.posts.find(params[:id]) 

  end 

. . .

Instead of finding a particular instance of the entire Post  class by id , we

instead search for a matching id  in the collection of posts associated with a

particular shark.

With that method updated, we can look at the update  and destroy

methods.

The update  method makes use of the @post  instance variable from set_po

st , and uses it with the post_params  that the user has entered in the edit

form. In the case of success, we want Rails to send the user back to the ind



ex  view of the posts associated with a particular shark. In the case of errors,

Rails will render the edit  template again.

In this case, the only change we will need to make is to the redirect_to

statement, to handle successful updates. Update it to redirect to shark_post

_path(@shark) , which will redirect to the index  view of the selected

shark's posts:

~/sharkapp/controllers/posts_controller.rb
. . .  

  def update 

    respond_to do |format| 

      if @post.update(post_params) 

        format.html { redirect_to shark_post_path(@shark), not

ice: 'Post was successfully updated.' } 

        format.json { render :show, status: :ok, location: @po

st } 

      else 

        format.html { render :edit } 

        format.json { render json: @post.errors, status: :unpr

ocessable_entity } 

      end 

    end 

  end 

. . .



Next, we will make a similar change to the destroy  method. Update the re

direct_to  method to redirect requests to shark_posts_path(@shark)  in the

case of success:

~/sharkapp/controllers/posts_controller.rb
. . .  

  def destroy 

    @post.destroy 

     respond_to do |format| 

      format.html { redirect_to shark_posts_path(@shark), noti

ce: 'Post was successfully destroyed.' } 

      format.json { head :no_content } 

    end 

  end 

. . .

This is the last change we will make. You now have a posts controller file
that looks like this:



~/sharkapp/controllers/posts_controller.rb
class PostsController < ApplicationController 

  before_action :get_shark 

  before_action :set_post, only: [:show, :edit, :update, :dest

roy] 

 

  # GET /posts 

  # GET /posts.json 

  def index 

    @posts = @shark.posts 

  end 

 

  # GET /posts/1 

  # GET /posts/1.json 

  def show 

  end 

 

  # GET /posts/new 

  def new 

    @post = @shark.posts.build 

  end 

 

  # GET /posts/1/edit 

  def edit 

  end 

 



  # POST /posts 

  # POST /posts.json 

  def create 

    @post = @shark.posts.build(post_params) 

 

        respond_to do |format| 

         if @post.save   

            format.html { redirect_to shark_posts_path(@shar

k), notice: 'Post was successfully created.' } 

            format.json { render :show, status: :created, loca

tion: @post } 

         else 

            format.html { render :new } 

            format.json { render json: @post.errors, status: :

unprocessable_entity } 

      end 

    end 

  end 

 

  # PATCH/PUT /posts/1 

  # PATCH/PUT /posts/1.json 

  def update 

    respond_to do |format| 

      if @post.update(post_params) 

        format.html { redirect_to shark_post_path(@shark), not

ice: 'Post was successfully updated.' } 

        format.json { render :show, status: :ok, location: @po



st } 

      else 

        format.html { render :edit } 

        format.json { render json: @post.errors, status: :unpr

ocessable_entity } 

      end 

    end 

  end 

 

  # DELETE /posts/1 

  # DELETE /posts/1.json 

  def destroy 

    @post.destroy 

    respond_to do |format| 

      format.html { redirect_to shark_posts_path(@shark), noti

ce: 'Post was successfully destroyed.' } 

      format.json { head :no_content } 

    end 

  end 

 

  private 

 

   def get_shark 

     @shark = Shark.find(params[:shark_id]) 

   end 

    # Use callbacks to share common setup or constraints betwe

en actions. 



    def set_post 

      @post = @shark.posts.find(params[:id]) 

    end 

 

    # Never trust parameters from the scary internet, only all

ow the white list through. 

    def post_params 

      params.require(:post).permit(:body, :shark_id) 

    end 

end

The controller manages how information is passed from the view templates
to the database and vice versa. Our controller now reflects the relationship
between our Shark  and Post  models, in which posts are associated with

particular sharks. We can move on to modifying the view templates
themselves, which are where users will pass in and modify post information
about particular sharks.

Step 4 — Modifying Views

Our view template revisions will involve changing the templates that relate
to posts, and also modifying our sharks show  view, since we want users to

see the posts associated with particular sharks.

Let's start with the foundational template for our posts: the form  partial that

is reused across multiple post templates. Open that form now:



nano app/views/posts/_form.html.erb

Rather than passing only the post  model to the form_with  form helper, we

will pass both the shark  and post  models, with post  set as a child

resource.

Change the first line of the file to look like this, reflecting the relationship
between our shark and post resources:

~/sharkapp/views/posts/_form.html.erb
<%= form_with(model: [@shark, post], local: true) do |form| %> 

. . . 

Next, delete the section that lists the shark_id  of the related shark, since

this is not essential information in the view.

The finished form, complete with our edits to the first line and without the
deleted shark_id  section, will look like this:



~/sharkapp/views/posts/_form.html.erb
<%= form_with(model: [@shark, post], local: true) do |form| %> 

  <% if post.errors.any? %> 

    <div id="error_explanation"> 

      <h2><%= pluralize(post.errors.count, "error") %> prohibi

ted this post from being saved:</h2> 

 

      <ul> 

      <% post.errors.full_messages.each do |message| %> 

        <li><%= message %></li> 

      <% end %> 

      </ul> 

    </div> 

  <% end %> 

 

  <div class="field"> 

    <%= form.label :body %> 

    <%= form.text_area :body %> 

  </div> 

 

  <div class="actions"> 

    <%= form.submit %> 

  </div> 

<% end %>

Save and close the file when you are finished editing.



Next, open the index  view, which will show the posts associated with a

particular shark:

nano app/views/posts/index.html.erb

Thanks to the rails generate scaffold  command, Rails has generated the

better part of the template, complete with a table that shows the body  field

of each post and its associated shark .

Much like the other code we have already modified, however, this template
treats posts as independent entities, when we would like to make use of the
associations between our models and the collections and helper methods
that these associations give us.

In the body of the table, make the following updates:

First, update post.shark  to post.shark.name , so that the table will include

the name field of the associated shark, rather than identifying information
about the shark object itself:



~/sharkapp/app/views/posts/index.html.erb
. . .  

  <tbody> 

    <% @posts.each do |post| %> 

      <tr> 

        <td><%= post.body %></td> 

        <td><%= post.shark.name %></td> 

. . . 

Next, change the Show  redirect to direct users to the show  view for the

associated shark, since they will most likely want a way to navigate back to
the original shark. We can make use of the @shark  instance variable that we

set in the controller here, since Rails makes instance variables created in the
controller available to all views. We'll also change the text for the link from 
Show  to Show Shark , so that users will better understand its function.

Update the this line to the following:

~/sharkapp/app/views/posts/index.html.erb
. . .  

  <tbody> 

    <% @posts.each do |post| %> 

      <tr> 

        <td><%= post.body %></td> 

        <td><%= post.shark.name %></td> 

        <td><%= link_to 'Show Shark', [@shark] %></td>



In the next line, we want to ensure that users are routed the right nested path
when they go to edit a post. This means that rather than being directed to po

sts/post_id/edit , users will be directed to sharks/shark_id/posts/post_i

d/edit . To do this, we'll use the shark_post_path  routing helper and our

models, which Rails will treat as URLs. We'll also update the link text to
make its function clearer.

Update the Edit  line to look like the following:

~/sharkapp/app/views/posts/index.html.erb
. . .  

  <tbody> 

    <% @posts.each do |post| %> 

      <tr> 

        <td><%= post.body %></td> 

        <td><%= post.shark.name %></td> 

        <td><%= link_to 'Show Shark', [@shark] %></td> 

        <td><%= link_to 'Edit Post', edit_shark_post_path(@sha

rk, post) %></td>

Next, let's add a similar change to the Destroy  link, updating its function in

the string, and adding our shark  and post  resources:



~/sharkapp/app/views/posts/index.html.erb
. . .  

  <tbody> 

    <% @posts.each do |post| %> 

      <tr> 

        <td><%= post.body %></td> 

        <td><%= post.shark.name %></td> 

        <td><%= link_to 'Show Shark', [@shark] %></td> 

        <td><%= link_to 'Edit Post', edit_shark_post_path(@sha

rk, post) %></td> 

        <td><%= link_to 'Destroy Post', [@shark, post], metho

d: :delete, data: { confirm: 'Are you sure?' } %></td>

Finally, at the bottom of the form, we will want to update the New Post  path

to take users to the appropriate nested path when they want to create a new
post. Update the last line of the file to make use of the new_shark_post_pat

h(@shark)  routing helper:

~/sharkapp/app/views/posts/index.html.erb
. . .  

<%= link_to 'New Post', new_shark_post_path(@shark) %>

The finished file will look like this:



~/sharkapp/app/views/posts/index.html.erb
<p id="notice"><%= notice %></p> 

 

<h1>Posts</h1> 

 

<table> 

  <thead> 

    <tr> 

      <th>Body</th> 

      <th>Shark</th> 

      <th colspan="3"></th> 

    </tr> 

  </thead> 

 

  <tbody> 

    <% @posts.each do |post| %> 

      <tr> 

        <td><%= post.body %></td> 

        <td><%= post.shark.name %></td> 

        <td><%= link_to 'Show Shark', [@shark] %></td> 

        <td><%= link_to 'Edit Post', edit_shark_post_path(@sha

rk, post) %></td> 

        <td><%= link_to 'Destroy Post', [@shark, post], metho

d: :delete, data: { confirm: 'Are you sure?' } %></td> 

      </tr> 

    <% end %> 



  </tbody> 

</table> 

 

<br> 

 

<%= link_to 'New Post', new_shark_post_path(@shark) %>

Save and close the file when you are finished editing.

The other edits we will make to post views won't be as numerous, since our
other views use the form  partial we have already edited. However, we will

want to update the link_to  references in the other post templates to reflect

the changes we have made to our form  partial.

Open app/views/posts/new.html.erb :

nano app/views/posts/new.html.erb

Update the link_to  reference at the bottom of the file to make use of the s

hark_posts_path(@shark)  helper:

~/sharkapp/app/views/posts/new.html.erb
. . .  

<%= link_to 'Back', shark_posts_path(@shark) %>

Save and close the file when you are finished making this change.



Next, open the edit  template:

nano app/views/posts/edit.html.erb

In addition to the Back  path, we'll update Show  to reflect our nested

resources. Change the last two lines of the file to look like this:

~/sharkapp/app/views/posts/edit.html.erb
. . .  

<%= link_to 'Show', [@shark, @post] %> | 

<%= link_to 'Back', shark_posts_path(@shark) %>

Save and close the file.

Next, open the show  template:

nano app/views/posts/show.html.erb

Make the following edits to the Edit  and Back  paths at the bottom of the

file:

~/sharkapp/app/views/posts/edit.html.erb
. . . 

<%= link_to 'Edit', edit_shark_post_path(@shark, @post) %> | 

<%= link_to 'Back', shark_posts_path(@shark) %>

Save and close the file when you are finished.



As a final step, we will want to update the show  view for our sharks so that

posts are visible for individual sharks. Open that file now:

nano app/views/sharks/show.html.erb

Our edits here will include adding a Posts  section to the form and an Add 

Post  link at the bottom of the file.

Below the Facts  for a given shark, we will add a new section that iterates

through each instance in the collection of posts associated with this shark,
outputting the body  of each post.

Add the following code below the Facts  section of the form, and above the

redirects at the bottom of the file:



~/sharkapp/app/views/sharks/show.html.erb
. . . 

<p> 

  <strong>Facts:</strong> 

  <%= @shark.facts %> 

</p> 

 

<h2>Posts</h2>

<% for post in @shark.posts %> 

    <ul> 

      <li><%= post.body %></li> 

  </ul>

<% end %> 

 

<%= link_to 'Edit', edit_shark_path(@shark) %> | 

. . . 

Next, add a new redirect to allow users to add a new post for this particular
shark:

~/sharkapp/app/views/sharks/show.html.erb
. . . 

<%= link_to 'Edit', edit_shark_path(@shark) %> | 

<%= link_to 'Add Post', shark_posts_path(@shark) %> | 

<%= link_to 'Back', sharks_path %>



Save and close the file when you are finished editing.

You have now made changes to your application's models, controllers, and
views to ensure that posts are always associated with a particular shark. As
a final step, we can add some validations to our Post  model to guarantee

consistency in the data that's saved to the database.

Step 5 — Adding Validations and Testing the Application

In Step 5 of How To Build a Ruby on Rails Application, you added
validations to your Shark  model to ensure uniformity and consistency in

the data that gets saved to the sharks  database. We'll now take a similar

step to ensure guarantees for the posts  database as well.

Open the file where your Post  model is defined:

nano app/models/post.rb

Here, we want to ensure that posts are not blank and that they don't
duplicate content other users may have posted. To achieve this, add the
following line to the file:

~/sharkapp/app/models/post.rb
class Post < ApplicationRecord 

  belongs_to :shark 

  validates :body, presence: true, uniqueness: true 

end

https://www.digitalocean.com/community/tutorials/how-to-build-a-ruby-on-rails-application#step-5-%E2%80%94-adding-validations
https://www.digitalocean.com/community/tutorials/how-to-build-a-ruby-on-rails-application


Save and close the file when you are finished editing.

With this last change in place, you are ready to run your migrations and test
the application.

First, run your migrations:

rails db:migrate

Next, start your server. If you're working locally, you can do so by running:

rails s

If you are working on a development server, run the following command
instead:

rails s --binding=your_server_ip

Navigate to your application's root at http://localhost:3000  or http://yo

ur_server_ip:3000 .

The prerequisite Rails project tutorial walked you through adding and
editing a Great White shark entry. If you have not added any further
sharks, the application landing page will look like this:



Shark App Landing Page

Click on Show next to the Great White's name. This will take you to the s

how  view for this shark. You will see the name of the shark and its facts, and

a Posts header with no content. Let's add a post to populate this part of the
form.

Click on Add Post below the Posts header. This will bring you to the post i

ndex  view, where you will have the chance to select New Post:



Post Index View

Thanks to the authentication mechanisms you put in place in Step 6 of How
To Build a Ruby on Rails Application, you may be asked to authenticate
with the username and password you created in that Step, depending on
whether or not you have created a new session.

Click on New Post, which will bring you to your post new  template:

https://www.digitalocean.com/community/tutorials/how-to-build-a-ruby-on-rails-application#step-6--%E2%80%94-adding-authentication
https://www.digitalocean.com/community/tutorials/how-to-build-a-ruby-on-rails-application


New Post

In the Body field, type, “These sharks are scary!”



New Shark Post

Click on Create Post. You will be redirected to the index  view for all posts

that belong to this shark:

Post Success



With our post resources working, we can now test our data validations to
ensure that only desired data gets saved to the database.

From the index  view, click on New Post. In the Body field of the new

form, try entering “These sharks are scary!” again:

Repeat Shark Post

Click on Create Post. You will see the following error:



Unique Post Error

Click on Back to return to the main posts page.

To test our other validation, click on New Post again. Leave the post blank
and click Create Post. You will see the following error:



Blank Post Error

With your nested resources and validations working properly, you now have
a working Rails application that you can use as a starting point for further
development.

Conclusion

With your Rails application in place, you can now work on things like
styling and developing other front-end components. If you would like to
learn more about routing and nested resources, the Rails documentation is a
great place to start.

To learn more about integrating front-end frameworks with your
application, take a look at How To Set Up a Ruby on Rails Project with a
React Frontend.

https://edgeguides.rubyonrails.org/routing.html
https://www.digitalocean.com/community/tutorials/how-to-set-up-a-ruby-on-rails-project-with-a-react-frontend


How To Add Stimulus to a Ruby on
Rails Application

Written by Kathleen Juell

If you are working with a Ruby on Rails project, your requirements may
include some interactivity with the HTML generated by your view
templates. If so, you have a few choices for how to implement this
interactivity.

For example, you could implement a JavaScript framework like React or
Ember. If your requirements include handling state on the client side, or if
you are concerned about performance issues associated with frequent
queries to the server, then choosing one of these frameworks may make
sense. Many Single Page Applications (SPAs) take this approach.

However, there are several considerations to keep in mind when
implementing a framework that manages state and frequent updates on the
client side: 1. It's possible for loading and conversion requirements —
things like parsing JavaScript, and fetching and converting JSON to HTML
— to limit performance. 2. Commitment to a framework may involve
writing more code than your particular use case requires, particularly if you
are looking for small-scale JavaScript enhancements. 3. State managed on
both the client and server side can lead to a duplication of efforts, and
increases the surface area for errors.

As an alternative, the team at Basecamp (the same team that wrote Rails)
has created Stimulus.js, which they describe as “a modest JavaScript

https://www.digitalocean.com/community/tutorials/how-to-add-stimulus-to-a-ruby-on-rails-application
https://rubyonrails.org/
https://guides.rubyonrails.org/v5.2/action_view_overview.html
https://www.digitalocean.com/community/tags/javascript?type=tutorials
https://reactjs.org/
https://emberjs.com/
https://basecamp.com/
https://stimulusjs.org/


framework for the HTML you already have.” Stimulus is meant to enhance
a modern Rails application by working with server-side generated HTML.
State lives in the Document Object Model (DOM), and the framework
offers standard ways of interacting with elements and events in the DOM. It
works side by side with Turbolinks (included in Rails 5+ by default) to
improve performance and load times with code that is limited and scoped to
a clearly defined purpose.

In this tutorial, you will install and use Stimulus to build on an existing
Rails application that offers readers information about sharks. The
application already has a model for handling shark data, but you will add a
nested resource for posts about individual sharks, allowing users to build
out a body of thoughts and opinions about sharks. This piece runs roughly
parallel to How To Create Nested Resources for a Ruby on Rails
Application, except that we will be using JavaScript to manipulate the
position and appearance of posts on the page. We will also take a slightly
different approach to building out the post model itself.

Prerequisites

To follow this tutorial, you will need: - A local machine or development
server running Ubuntu 18.04. Your development machine should have a
non-root user with administrative privileges and a firewall configured with 
ufw . For instructions on how to set this up, see our Initial Server Setup with

Ubuntu 18.04 tutorial. - Node.js and npm installed on your local machine or
development server. This tutorial uses Node.js version <>10.16.3<> and npm
version <>6.9.0<>. For guidance on installing Node.js and npm on Ubuntu

https://www.digitalocean.com/community/tutorial_series/understanding-the-dom-document-object-model
https://github.com/turbolinks/turbolinks
https://www.digitalocean.com/community/tutorials/how-to-create-nested-resources-for-a-ruby-on-rails-application
https://www.digitalocean.com/community/tutorials/initial-server-setup-with-ubuntu-18-04
https://nodejs.org/
https://www.npmjs.com/


18.04, follow the instructions in the “Installing Using a PPA” section of
How To Install Node.js on Ubuntu 18.04. - Ruby, rbenv, and Rails installed
on your local machine or development server, following Steps 1-4 in How
To Install Ruby on Rails with rbenv on Ubuntu 18.04. This tutorial uses
Ruby <>2.5.1<>, rbenv <>1.1.2<>, and Rails <>5.2.3<>. - SQLite installed, and a basic
shark information application created, following the directions in How To
Build a Ruby on Rails Application.

Step 1 — Creating a Nested Model

Our first step will be to create a nested Post  model, which we will

associate with our existing Shark  model. We will do this by creating Active

Record associations between our models: posts will belong to particular
sharks, and each shark can have multiple posts.

To get started, navigate to the sharkapp  directory that you created for your

Rails project in the prerequisites:

cd sharkapp

To create our Post  model, we'll use the rails generate command with the 

model  generator. Type the following command to create the model:

rails generate model Post body:text shark:references

With body:text , we're telling Rails to include a body  field in the posts

database table — the table that maps to the Post  model. We're also

including the :references  keyword, which sets up an association between

https://www.digitalocean.com/community/tutorials/how-to-install-node-js-on-ubuntu-18-04#installing-using-a-ppa
https://github.com/rbenv/rbenv
https://www.digitalocean.com/community/tutorials/how-to-install-ruby-on-rails-with-rbenv-on-ubuntu-18-04
https://www.digitalocean.com/community/tutorials/how-to-build-a-ruby-on-rails-application
https://guides.rubyonrails.org/active_record_basics.html
https://guides.rubyonrails.org/association_basics.html
https://guides.rubyonrails.org/command_line.html#rails-generate


the Shark  and Post  models. Specifically, this will ensure that a foreign key

representing each shark entry in the sharks  database is added to the posts

database.

Once you have run the command, you will see output confirming the
resources that Rails has generated for the application. Before moving on,
you can check your database migration file to look at the relationship that
now exists between your models and database tables. Use the following
command to look at the contents of the file, making sure to substitute the
timestamp on your own migration file for what's shown here:

cat db/migrate/20190805132506_create_posts.rb

You will see the following output:

Output
class CreatePosts < ActiveRecord::Migration[5.2] 

  def change 

    create_table :posts do |t| 

      t.text :body 

      t.references :shark, foreign_key: true 

 

      t.timestamps 

    end 

  end 

end

https://en.wikipedia.org/wiki/Foreign_key


As you can see, the table includes a column for a shark foreign key. This
key will take the form of model_name_id  — in our case, shark_id .

Rails has established the relationship between the models elsewhere as well.
Take a look at the newly generated Post  model with the following

command:

cat app/models/post.rb

Output
class Post < ApplicationRecord 

  belongs_to :shark 

end

The belongs_to  association sets up a relationship between models in which

a single instance of the declaring model belongs to a single instance of the
named model. In the case of our application, this means that a single post
belongs to a single shark.

Though Rails has already set the belongs_to  association in our Post

model, we will need to specify a has_many  association in our Shark  model

as well in order for that relationship to function properly.

To add the has_many  association to the Shark  model, open app/models/sha

rk.rb  using nano  or your favorite editor:

nano app/models/shark.rb



Add the following line to the file to establish the relationship between
sharks and posts:

~/sharkapp/app/models/shark.rb
class Shark < ApplicationRecord 

  has_many :posts 

  validates :name, presence: true, uniqueness: true 

  validates :facts, presence: true 

end

One thing that is worth thinking about here is what happens to posts once a
particular shark is deleted. We likely do not want the posts associated with a
deleted shark persisting in the database. To ensure that any posts associated
with a given shark are eliminated when that shark is deleted, we can include
the dependent  option with the association.

Add the following code to the file to ensure that the destroy  action on a

given shark deletes any associated posts:

~/sharkapp/app/models/shark.rb
class Shark < ApplicationRecord 

  has_many :posts, dependent: :destroy 

  validates :name, presence: true, uniqueness: true 

  validates :facts, presence: true 

end



Once you have finished making these changes, save and close the file. If
you are working with nano , do this by pressing CTRL+X , Y , then ENTER .

You now have a model generated for your posts, but you will also need a
controller to coordinate between the data in your database and the HTML
that's generated and presented to users.

Step 2 — Creating a Controller for a Nested Resource

Creating a posts controller will involve setting a nested resource route in the
application's main routing file and creating the controller file itself to
specify the methods we want associated with particular actions.

To begin, open your config/routes.rb  file to establish the relationship

between your resourceful routes:

nano config/routes.rb

Currently, the file looks like this:

~/sharkapp/config/routes.rb
Rails.application.routes.draw do 

  resources :sharks 

 

  root 'sharks#index' 

  # For details on the DSL available within this file, see htt

p://guides.rubyonrails.org/routing.html 

end

https://guides.rubyonrails.org/action_controller_overview.html


We want to create a dependent relationship relationship between shark and
post resources. To do this, update your route declaration to make :sharks

the parent of :posts . Update the code in the file to look like the following:

~/sharkapp/config/routes.rb
Rails.application.routes.draw do 

  resources :sharks do 

    resources :posts 

  end 

  root 'sharks#index' 

  # For details on the DSL available within this file, see htt

p://guides.rubyonrails.org/routing.html 

end

Save and close the file when you are finished editing.

Next, create a new file called app/controllers/posts_controller.rb  for

the controller:

nano app/controllers/posts_controller.rb

In this file, we'll define the methods that we will use to create and destroy
individual posts. However, because this is a nested model, we'll also want to
create a local instance variable, @shark , that we can use to associate

particular posts with specific sharks.

https://guides.rubyonrails.org/routing.html#nested-resources


First, we can create the PostsController  class itself, along with two priva

te  methods: get_shark , which will allow us to reference a particular shark,

and post_params , which gives us access to user-submitted information by

way of the params method.

Add the following code to the file:

~/sharkapp/app/controllers/posts_controller.rb
class PostsController < ApplicationController 

  before_action :get_shark  

 

  private 

 

  def get_shark 

    @shark = Shark.find(params[:shark_id]) 

  end 

 

  def post_params 

    params.require(:post).permit(:body, :shark_id) 

  end 

end

You now have methods to get the particular shark instances with which
your posts will be associated, using the :shark_id  key, and the data that

users are inputting to create posts. Both of these objects will now be

https://api.rubyonrails.org/classes/ActionController/Parameters.html


available for the methods you will define to handle creating and destroying
posts.

Next, above the private  methods, add the following code to the file to

define your create  and destroy  methods:

~/sharkapp/app/controllers/posts_controller.rb
. . . 

  def create 

    @post = @shark.posts.create(post_params) 

  end 

       

  def destroy 

    @post = @shark.posts.find(params[:id]) 

    @post.destroy    

  end 

. . .

These methods associate @post  instances with particular @shark  instances,

and use the collection methods that became available to us when we created
the has_many  association between sharks and posts. Methods such as find

and create  allow us to target the collection of posts associated with a

particular shark.

The finished file will look like this:

https://api.rubyonrails.org/classes/ActiveRecord/Associations/ClassMethods.html#method-i-has_many


~/sharkapp/app/controllers/posts_controller.rb
class PostsController < ApplicationController 

  before_action :get_shark  

 

  def create 

    @post = @shark.posts.create(post_params) 

  end 

       

  def destroy 

    @post = @shark.posts.find(params[:id]) 

    @post.destroy    

  end 

 

  private 

 

  def get_shark 

    @shark = Shark.find(params[:shark_id]) 

  end 

 

  def post_params 

    params.require(:post).permit(:body, :shark_id) 

  end 

end

Save and close the file when you are finished editing.



With your controller and model in place, you can begin thinking about your
view templates and how you will organize your application's generated
HTML.

Step 3 — Reorganizing Views with Partials

You have created a Post  model and controller, so the last thing to think

about from a Rails perspective will be the views that present and allow
users to input information about sharks. Views are also the place where you
will have a chance to build out interactivity with Stimulus.

In this step, you will map out your views and partials, which will be the
starting point for your work with Stimulus.

The view that will act as the base for posts and all partials associated with
posts is the sharks/show  view.

Open the file:

nano app/views/sharks/show.html.erb

Currently, the file looks like this:



~/sharkapp/app/views/sharks/show.html.erb
<p id="notice"><%= notice %></p> 

 

<p> 

  <strong>Name:</strong> 

  <%= @shark.name %> 

</p> 

 

<p> 

  <strong>Facts:</strong> 

  <%= @shark.facts %> 

</p> 

 

<%= link_to 'Edit', edit_shark_path(@shark) %> | 

<%= link_to 'Back', sharks_path %>

When we created our Post  model, we opted not to generate views for our

posts, since we will handle them through our sharks/show  view. So in this

view, the first thing we will address is how we will accept user input for
new posts, and how we will present posts back to the user.

Note: For an alternative to this approach, please see How To Create Nested
Resources for a Ruby on Rails Application, which sets up post views using
the full range of Create, Read, Update, Delete (CRUD) methods defined in
the posts controller. For a discussion of these methods and how they work,
please see Step 3 of How To Build a Ruby on Rails Application.

https://www.digitalocean.com/community/tutorials/how-to-create-nested-resources-for-a-ruby-on-rails-application
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://www.digitalocean.com/community/tutorials/how-to-build-a-ruby-on-rails-application#step-3-%E2%80%94-scaffolding-the-application
https://www.digitalocean.com/community/tutorials/how-to-build-a-ruby-on-rails-application


Instead of building all of our functionality into this view, we will use
partials — reusable templates that serve a particular function. We will
create one partial for new posts, and another to control how posts are
displayed back to the user. Throughout, we'll be thinking about how and
where we can use Stimulus to manipulate the appearance of posts on the
page, since our goal is to control the presentation of posts with JavaScript.

First, below shark facts, add an <h2>  header for posts and a line to render a

partial called sharks/posts :

~/sharkapp/app/views/sharks/show.html.erb
. . .  

<p> 

  <strong>Facts:</strong> 

  <%= @shark.facts %> 

</p> 

 

<h2>Posts</h2>

<%= render 'sharks/posts' %> 

. . . 

This will render the partial with the form builder for new post objects.

Next, below the Edit  and Back  links, we will add a section to control the

presentation of older posts on the page. Add the following lines to the file to
render a partial called sharks/all :



~/sharkapp/app/views/sharks/show.html.erb
<%= link_to 'Edit', edit_shark_path(@shark) %> | 

<%= link_to 'Back', sharks_path %> 

 

<div> 

  <%= render 'sharks/all' %>

</div>

The <div>  element will be useful when we start integrating Stimulus into

this file.

Once you are finished making these edits, save and close the file. With the
changes you've made on the Rails side, you can now move on to installing
and integrating Stimulus into your application.

Step 4 — Installing Stimulus

The first step in using Stimulus will be to install and configure our
application to work with it. This will include making sure we have the
correct dependencies, including the Yarn package manager and Webpacker,
the gem that will allow us to work with the JavaScript pre-processor and
bundler webpack. With these dependencies in place, we will be able to
install Stimulus and use JavaScript to manipulate events and elements in the
DOM.

Let's begin by installing Yarn. First, update your package list:

https://yarnpkg.com/
https://github.com/rails/webpacker
https://webpack.js.org/


sudo apt update

Next, add the GPG key for the Debian Yarn repository:

curl -sS https://dl.yarnpkg.com/debian/pubkey.gpg | sudo apt-k

ey add -

Add the repository to your APT sources:

echo "deb https://dl.yarnpkg.com/debian/ stable main" | sudo t

ee /etc/apt/sources.list.d/yarn.list

Update the package database with the newly added Yarn packages:

sudo apt update

And finally, install Yarn:

sudo apt install yarn

With yarn  installed, you can move on to adding the webpacker  gem to your

project.

Open your project's Gemfile, which lists the gem dependencies for your
project:

nano Gemfile

Inside the file, you will see Turbolinks enabled by default:



~/sharkapp/Gemfile
. . .  

# Turbolinks makes navigating your web application faster. Rea

d more: https://github.com/turbolinks/turbolinks 

gem 'turbolinks', '~> 5' 

. . . 

Turbolinks is designed to improve performance by optimizing page loads:
instead of having link clicks navigate to a new page, Turbolinks intercepts
these click events and makes the page request using Asynchronous
JavaScript and HTML (AJAX). It then replaces the body of the current page
and merges the contents of the <head>  sections, while the JavaScript windo

w  and document  objects and the <html>  element persist between renders.

This addresses one of the main causes of slow page load times: the
reloading of CSS and JavaScript resources.

We get Turbolinks by default in our Gemfile, but we will need to add the we

bpacker  gem so that we can install and use Stimulus. Below the turbolink

s  gem, add webpacker :

https://en.wikipedia.org/wiki/Ajax_(programming)


~/sharkapp/Gemfile
. . .  

# Turbolinks makes navigating your web application faster. Rea

d more: https://github.com/turbolinks/turbolinks 

gem 'turbolinks', '~> 5' 

gem 'webpacker', '~> 4.x' 

. . . 

Save and close the file when you are finished.

Next, add the gem to your project's bundle with the bundle  command:

bundle

This will generate a new Gemfile.lock  file — the definitive record of gems

and versions for your project.

Next, install the gem in the context of your bundle with the following bundl

e exec  command:

bundle exec rails webpacker:install

Once the installation is complete, we will need to make one small
adjustment to our application's content security file. This is due to the fact
that we are working with Rails 5.2+, which is a Content Security Policy
(CSP) restricted environment, meaning that the only scripts allowed in the
application must be from trusted sources.

https://guides.rubyonrails.org/security.html#content-security-policy


Open config/initializers/content_security_policy.rb , which is the

default file Rails gives us for defining application-wide security policies:

nano config/initializers/content_security_policy.rb

Add the following lines to the bottom of the file to allow webpack-dev-serv

er  — the server that serves our application's webpack bundle — as an

allowed origin:

~/sharkapp/config/initializers/content_security_
policy.rb
. . .  

Rails.application.config.content_security_policy do |policy| 

  policy.connect_src :self, :https, 'http://localhost:3035',

 'ws://localhost:3035' if Rails.env.development? 

end

This will ensure that the webpacker-dev-server  is recognized as a trusted

asset source.

Save and close the file when you are finished making this change.

By installing webpacker , you created two new directories in your project's 

app  directory, the directory where your main application code is located.

The new parent directory, app/javascript , will be where your project's

JavaScript code will live, and it will have the following structure:



Output
├── javascript 

│   ├── controllers 

│   │   ├── hello_controller.js 

│   │   └── index.js 

│   └── packs 

│       └── application.js

The app/javascript  directory will contain two child directories: app/javas

cript/packs , which will have your webpack entry points, and app/javascr

ipt/controllers , where you will define your Stimulus controllers. The bun

dle exec  command that we just used will create the app/javascript/packs

directory, but we will need to install Stimulus for the app/javascript/contr

ollers  directory to be autogenerated.

With webpacker  installed, we can now install Stimulus with the following

command:

bundle exec rails webpacker:install:stimulus

You will see output like the following, indicating that the installation was
successful:

https://stimulusjs.org/reference/controllers


Output
. . .  

success Saved lockfile. 

success Saved 5 new dependencies. 

info Direct dependencies 

└─ stimulus@1.1.1 

info All dependencies 

├─ @stimulus/core@1.1.1 

├─ @stimulus/multimap@1.1.1 

├─ @stimulus/mutation-observers@1.1.1 

├─ @stimulus/webpack-helpers@1.1.1 

└─ stimulus@1.1.1 

Done in 8.30s. 

Webpacker now supports Stimulus.js 🎉

We now have Stimulus installed, and the main directories we need to work
with it in place. Before moving on to writing any code, we'll need to make a
few application-level adjustments to complete the installation process.

First, we'll need to make an adjustment to app/views/layouts/applicatio

n.html.erb  to ensure that our JavaScript code is available and that the code

defined in our main webpacker  entry point, app/javascript/packs/applica

tion.js , runs each time a page is loaded.

Open that file:

nano app/views/layouts/application.html.erb



Change the following javascript_include_tag  tag to javascript;pack_ta

g  to load app/javascript/packs/application.js :

~/sharkapp/app/views/layouts/application.html.er
b
. . . 

    <%= stylesheet_link_tag    'application', media: 'all', 'd

ata-turbolinks-track': 'reload' %> 

    <%= javascript_pack_tag 'application', 'data-turbolinks-tr

ack': 'reload' %> 

. . . 

Save and close the file when you have made this change.

Next, open app/javascript/packs/application.js :

nano app/javascript/packs/application.js

Initially, the file will look like this:

~/sharkapp/app/javascript/packs/application.js
. . .  

console.log('Hello World from Webpacker') 

 

import "controllers"



Delete the boilerplate code that's there, and add the following code to load
your Stimulus controller files and boot the application instance:

~/sharkapp/app/javascript/packs/application.js
. . .  

import { Application } from "stimulus" 

import { definitionsFromContext } from "stimulus/webpack-helpe

rs" 

 

const application = Application.start() 

const context = require.context("../controllers", true, /\.js

$/) 

application.load(definitionsFromContext(context))

This code uses webpack helper methods to require the controllers in the ap

p/javascript/controllers  directory and load this context for use in your

application.

Save and close the file when you are finished editing.

You now have Stimulus installed and ready to use in your application. Next,
we'll build out the partials that we referenced in our sharks show  view — s

harks/posts  and sharks/all  — using Stimulus controllers, targets, and

actions.

Step 5 — Using Stimulus in Rails Partials



Our sharks/posts  partial will use the form_with form helper to create a

new post object. It will also make use of Stimulus's three core concepts:
controllers, targets, and actions. These concepts work as follows: -
Controllers are JavaScript classes that are defined in JavaScript modules
and exported as the module's default object. Through controllers, you have
access to particular HTML elements and the Stimulus Application instance
defined in app/javascript/packs/application.js . - Targets allow you to

reference particular HTML elements by name, and are associated with
particular controllers. - Actions control how DOM events are handled by
controllers, and are also associated with particular controllers. They create a
connection between the HTML element associated with the controller, the
methods defined in the controller, and a DOM event listener.

In our partial, we're first going to build a form as we normally would using
Rails. We will then add a Stimulus controller, action, and targets to the form
in order to use JavaScript to control how new posts get added to the page.

First, create a new file for the partial:

nano app/views/sharks/_posts.html.erb

Inside the file, add the following code to create a new post object using the 
form_with helper:

https://api.rubyonrails.org/v5.2.3/classes/ActionView/Helpers/FormHelper.html


~/sharkapp/app/views/sharks/_posts.html.erb
        <%= form_with model: [@shark, @shark.posts.build] do |

form| %> 

                <%= form.text_area :body, placeholder: "Your p

ost here" %> 

                <br> 

                <%= form.submit %> 

        <% end %>

So far, this form behaves like a typical Rails form, using the form_with

helper to build a post object with the fields defined for the Post  model.

Thus, the form has a field for the post :body , to which we've added a place

holder  with a prompt for filling in a post.

Additionally, the form is scoped to take advantage of the collection methods
that come with the associations between the Shark  and Post  models. In

this case, the new post object that's created from user-submitted data will
belong to the collection of posts associated with the shark we're currently
viewing.

Our goal now is to add some Stimulus controllers, events, and actions to
control how the post data gets displayed on the page. The user will
ultimately submit post data and see it posted to the page thanks to a
Stimulus action.

First, we'll add a controller to the form called posts  in a <div>  element:



~/sharkapp/app/views/sharks/_posts.html.erb
<div data-controller="posts"> 

        <%= form_with model: [@shark, @shark.posts.build] do |

form| %> 

                 <%= form.text_area :body, placeholder: "Your

 post here" %> 

                 <br> 

                 <%= form.submit %> 

        <% end %> 

</div>

Make sure you add the closing <div> tag to scope the controller properly.

Next, we'll attach an action to the form that will be triggered by the form
submit event. This action will control how user input is displayed on the
page. It will reference an addPost  method that we will define in the posts

Stimulus controller:

~/sharkapp/app/views/sharks/_posts.html.erb
<div data-controller="posts"> 

        <%= form_with model: [@shark, @shark.posts.build], dat

a: { action: "posts#addBody" } do |form| %> 

        . . .  

                 <%= form.submit %> 

        <% end %> 

</div>



We use the :data  option with form_with  to submit the Stimulus action as

an additional HTML data attribute. The action itself has a value called an
action descriptor made up of the following: - The DOM event to listen for.
Here, we are using the default event associated with form elements, submit,
so we do not need to specify the event in the descriptor itself. For more
information about common element/event pairs, see the Stimulus
documentation. - The controller identifier, in our case posts . - The

method that the event should invoke. In our case, this is the addBody

method that we will define in the controller.

Next, we'll attach a data target to the user input defined in the :body  <texta

rea>  element, since we will use this inputted value in the addBody  method.

Add the following :data  option to the :body  <textarea>  element:

~/sharkapp/app/views/sharks/_posts.html.erb
<div data-controller="posts"> 

        <%= form_with model: [@shark, @shark.posts.build], dat

a: { action: "posts#addBody" } do |form| %> 

                <%= form.text_area :body, placeholder: "Your p

ost here", data: { target: "posts.body" } %> 

. . .

Much like action descriptors, Stimulus targets have target descriptors,
which include the controller identifier and the target name. In this case, pos

ts  is our controller, and body  is the target itself.

https://stimulusjs.org/reference/actions#event-shorthand


As a last step, we'll add a data target for the inputted body  values so that

users will be able to see their posts as soon as they are submitted.

Add the following <ul>  element with an add  target below the form and

above the closing <div> :

~/sharkapp/app/views/sharks/_posts.html.erb
. . . 

        <% end %> 

  <ul data-target="posts.add"> 

  </ul> 

 

</div>

As with the body  target, our target descriptor includes both the name of the

controller and the target — in this case, add .

The finished partial will look like this:



~/sharkapp/app/views/sharks/_posts.html.erb
<div data-controller="posts"> 

        <%= form_with model: [@shark, @shark.posts.build], dat

a: { action: "posts#addBody"} do |form| %> 

                <%= form.text_area :body, placeholder: "Your p

ost here", data: { target: "posts.body" } %> 

                <br> 

                <%= form.submit %> 

        <% end %> 

  <ul data-target="posts.add"> 

  </ul> 

 

</div>

Once you have made these changes, you can save and close the file.

You have now created one of the two partials you added to the sharks/show

view template. Next, you'll create the second, sharks/all , which will show

all of the older posts from the database.

Create a new file named _all.html.erb  in the app/views/sharks/

directory:

nano app/views/sharks/_all.html.erb

Add the following code to the file to iterate through the collection of posts
associated with the selected shark:



~/sharkapp/app/views/sharks/_all.html.erb
<% for post in @shark.posts  %> 

    <ul> 

 

        <li class="post"> 

            <%= post.body %> 

        </li> 

 

    </ul> 

    <% end %>

This code uses a for loop to iterate through each post instance in the
collection of post objects associated with a particular shark.

We can now add some Stimulus actions to this partial to control the
appearance of posts on the page. Specifically, we will add actions that will
control upvotes and whether or not posts are visible on the page

Before we do that, however, we will need to add a gem to our project so
that we can work with Font Awesome icons, which we'll use to register
upvotes. Open a second terminal window, and navigate to your sharkapp

project directory.

Open your Gemfile:

[environment second] 

nano Gemfile

https://fontawesome.com/


Below your webpacker  gem, add the following line to include the font-awe

some-rails gem in the project:

~/sharkapp/Gemfile
[environment second] 

. . .  

gem 'webpacker', '~> 4.x' 

gem 'font-awesome-rails', '~>4.x' 

. . . 

Save and close the file.

Next, install the gem:

[environment second] 

bundle install

Finally, open your application's main stylesheet, app/assets/stylesheets/a

pplication.css :

[environment second] 

nano app/assets/stylesheets/application.css

Add the following line to include Font Awesome's styles in your project:

https://github.com/bokmann/font-awesome-rails


~/sharkapp/app/assets/stylesheets/application.cs
s
[environment second] 

. . .  

* 

 *= require_tree . 

 *= require_self 

 *= require font-awesome 

 */

Save and close the file. You can now close your second terminal window.

Back in your app/views/sharks/_all.html.erb  partial, you can now add

two button_tags with associated Stimulus actions, which will be triggered

on click events. One button will give users the option to upvote a post and
the other will give them the option to remove it from the page view.

Add the following code to app/views/sharks/_all.html.erb :

https://api.rubyonrails.org/v5.2.3/classes/ActionView/Helpers/FormTagHelper.html#method-i-button_tag


~/sharkapp/app/views/sharks/_all.html.erb
<% for post in @shark.posts  %> 

    <ul> 

 

        <li class="post"> 

            <%= post.body %> 

            <%= button_tag "Remove Post", data: { controller:

 "posts", action: "posts#remove" } %> 

            <%= button_tag "Upvote Post", data: { controller:

 "posts", action: "posts#upvote" } %> 

        </li> 

 

    </ul> 

    <% end %>

Button tags also take a :data  option, so we've added our posts Stimulus

controller and two actions: remove  and upvote . Once again, in the action

descriptors, we only need to define our controller and method, since the
default event associated with button elements is click. Clicking on each of
these buttons will trigger the respective remove  and upvote  methods

defined in our controller.

Save and close the file when you have finished editing.

The final change we will make before moving on to defining our controller
is to set a data target and action to control how and when the sharks/all

partial will be displayed.



Open the show  template again, where the initial call to render sharks/all

is currently defined:

nano app/views/sharks/show.html.erb

At the bottom of the file, we have a <div>  element that currently looks like

this:

~/sharkapp/app/views/sharks/show.html.erb
. . .  

<div> 

  <%= render 'sharks/all' %> 

</div>

First, add a controller to this <div>  element to scope actions and targets:

~/sharkapp/app/views/sharks/show.html.erb
. . .  

<div data-controller="posts"> 

  <%= render 'sharks/all' %> 

</div>

Next, add a button to control the appearance of the partial on the page. This
button will trigger a showAll  method in our posts controller.

Add the button below the <div>  element and above the render  statement:



~/sharkapp/app/views/sharks/show.html.erb
. . .  

<div data-controller="posts"> 

 

<button data-action="posts#showAll">Show Older Posts</button> 

 

  <%= render 'sharks/all' %>

Again, we only need to identify our posts  controller and showAll  method

here — the action will be triggered by a click event.

Next, we will add a data target. The goal of setting this target is to control
the appearance of the partial on the page. Ultimately, we want users to see
older posts only if they have opted into doing so by clicking on the Show Ol

der Posts  button.

We will therefore attach a data target called show  to the sharks/all  partial,

and set its default style to visibility:hidden. This will hide the partial

unless users opt in to seeing it by clicking on the button.

Add the following <div>  element with the show  target and style

definition below the button and above the partial render statement:

https://developer.mozilla.org/en-US/docs/Web/CSS/visibility


~/sharkapp/app/views/sharks/show.html.erb
. . .  

<div data-controller="posts"> 

 

<button data-action="posts#showAll">Show Older Posts</button> 

 

<div data-target="posts.show" style="visibility:hidden"> 

  <%= render 'sharks/all' %> 

</div>

Be sure to add the closing </div> tag.

The finished show  template will look like this:



~/sharkapp/app/views/sharks/show.html.erb
<p id="notice"><%= notice %></p> 

 

<p> 

  <strong>Name:</strong> 

  <%= @shark.name %> 

</p> 

 

<p> 

  <strong>Facts:</strong> 

  <%= @shark.facts %> 

</p> 

 

<h2>Posts</h2> 

 

<%= render 'sharks/posts' %> 

 

<%= link_to 'Edit', edit_shark_path(@shark) %> | 

<%= link_to 'Back', sharks_path %> 

 

<div data-controller="posts"> 

 

<button data-action="posts#showAll">Show Older Posts</button> 

 

<div data-target="posts.show" style="visibility:hidden"> 

  <%= render 'sharks/all' %> 



</div> 

</div>

Save and close the file when you are finished editing.

With this template and its associated partials finished, you can move on to
creating the controller with the methods you've referenced in these files.

Step 6 — Creating the Stimulus Controller

Installing Stimulus created the app/javascript/controllers  directory,

which is where webpack is loading our application context from, so we will
create our posts controller in this directory. This controller will include each
of the methods we referenced in the previous step: - addBody() , to add new

posts. - showAll() , to show older posts. - remove() , to remove posts from

the current view. - upvote() , to attach an upvote icon to posts.

Create a file called posts_controller.js  in the app/javascript/controll

ers  directory:

nano app/javascript/controllers/posts_controller.js

First, at the top of the file, extend Stimulus's built-in Controller  class:



~/sharkapp/app/javascript/controllers/posts_cont
roller.js
import { Controller } from "stimulus" 

 

export default class extends Controller { 

}

Next, add the following target definitions to the file:

~/sharkapp/app/javascript/controllers/posts_cont
roller.js
. . . 

export default class extends Controller { 

    static targets = ["body", "add", "show"] 

}

Defining targets in this way will allow us to access them in our methods
with the this.target-nameTarget  property, which gives us the first

matching target element. So, for example, to match the body  data target

defined in our targets array, we would use this.bodyTarget . This property

allows us to manipulate things like input values or css styles.

Next, we can define the addBody  method, which will control the appearance

of new posts on the page. Add the following code below the target
definitions to define this method:



~/sharkapp/app/javascript/controllers/posts_cont
roller.js
. . . 

export default class extends Controller { 

    static targets = [ "body", "add", "show"] 

 

    addBody() { 

        let content = this.bodyTarget.value; 

        this.addTarget.insertAdjacentHTML('beforebegin', "<li

>" + content + "</li>"); 

    } 

}

This method defines a content  variable with the let keyword and sets it

equal to the post input string that users entered into the posts form. It does
this by virtue of the body  data target that we attached to the <textarea>

element in our form. Using this.bodyTarget  to match this element, we can

then use the value property that is associated with that element to set the

value of content  as the post input users have entered.

Next, the method adds this post input to the add  target we added to the <ul

>  element below the form builder in the sharks/posts  partial. It does this

using the Element.insertAdjacentHTML() method, which will insert the

content of the new post, set in the content  variable, before the add  target

element. We've also enclosed the new post in an <li>  element, so that new

posts appear as bulleted list items.

https://www.digitalocean.com/community/tutorials/understanding-variables-scope-hoisting-in-javascript#difference-between-var,-let,-and-const
https://developer.mozilla.org/en-US/docs/Web/API/HTMLTextAreaElement
https://developer.mozilla.org/en-US/docs/Web/API/Element/insertAdjacentHTML


Next, below the addBody  method, we can add the showAll  method, which

will control the appearance of older posts on the page:

~/sharkapp/app/javascript/controllers/posts_cont
roller.js
. . .  

export default class extends Controller { 

. . . 

    addBody() { 

        let content = this.bodyTarget.value; 

        this.addTarget.insertAdjacentHTML('beforebegin', "<li

>" + content + "</li>"); 

    } 

 

    showAll() { 

        this.showTarget.style.visibility = "visible"; 

    } 

 

}

Here, we again use the this.target-nameTarget  property to match our sho

w  target, which is attached to the <div>  element with the sharks/all

partial. We gave it a default style, "visibility:hidden" , so in this method,

we simply change the style to "visible" . This will show the partial to users

who have opted into seeing older posts.



Below showAll , we'll next add an upvote  method, to allow users to

“upvote” posts on the page by attaching the free Font Awesome check-circ

le  icon to a particular post.

Add the following code to define this method:

~/sharkapp/app/javascript/controllers/posts_cont
roller.js
. . .  

export default class extends Controller { 

. . .  

 

    showAll() { 

        this.showTarget.style.visibility = "visible"; 

    } 

 

    upvote() { 

        let post = event.target.closest(".post"); 

        post.insertAdjacentHTML('beforeend', '<i class="fa fa-

check-circle"></i>'); 

    } 

 

}

Here, we're creating a post  variable that will target the closest <li>

element with the class post  — the class we attached to each <li>  element

https://fontawesome.com/icons?d=gallery&m=free


in our loop iteration in sharks/all . This will target the closest post and add

the check-circle  icon just inside <li>  element, after its last child.

Next, we'll use a similar method to hide posts on the page. Add the
following code below the upvote  method to define a remove  method:

~/sharkapp/app/javascript/controllers/posts_cont
roller.js
. . .  

export default class extends Controller { 

. . .  

 

    upvote() { 

        let post = event.target.closest(".post"); 

        post.insertAdjacentHTML('beforeend', '<i class="fa fa-

check-circle"></i>'); 

    } 

 

    remove() { 

        let post = event.target.closest(".post"); 

        post.style.visibility = "hidden"; 

    } 

}

Once again, our post  variable will target the closest <li>  element with the

class post . It will then set the visibility property to "hidden"  to hide the



post on the page.

The finished controller file will now look like this:



~/sharkapp/app/javascript/controllers/posts_cont
roller.js
import { Controller } from "stimulus" 

 

export default class extends Controller { 

 

    static targets = ["body", "add", "show"] 

 

    addBody() { 

        let content = this.bodyTarget.value; 

        this.addTarget.insertAdjacentHTML('beforebegin', "<li

>" + content + "</li>"); 

    } 

 

    showAll() { 

        this.showTarget.style.visibility = "visible"; 

    } 

 

    upvote() { 

        let post = event.target.closest(".post"); 

        post.insertAdjacentHTML('beforeend', '<i class="fa fa-

check-circle"></i>'); 

    } 

 

    remove() { 

        let post = event.target.closest(".post"); 



        post.style.visibility = "hidden"; 

    } 

} 

Save and close the file when you are finished editing.

With your Stimulus controller in place, you can move on to making some
final changes to the index  view and testing your application.

Step 7 — Modifying the Index View and Testing the
Application

With one final change to the sharks index  view you will be ready to test

out your application. The index  view is the root of the application, which

you set in Step 4 of How To Build a Ruby on Rails Application.

Open the file:

nano app/views/sharks/index.html.erb

In place of the link_to  helpers that were autogenerated for us to display

and destroy sharks, we'll use button_to  helpers. This will help us work

with generated HTML code instead of the default Rails JavaScript assets,
which we specified we would no longer use in Step 1, when we changed ja

vascript_include_tag  to javascript_pack_tag  in app/views/layouts/app

lication.html.erb .

https://www.digitalocean.com/community/tutorials/how-to-build-a-ruby-on-rails-application#step-4-%E2%80%94-creating-the-application-root-view-and-testing-functionality
https://www.digitalocean.com/community/tutorials/how-to-build-a-ruby-on-rails-application


Replace the existing link_to  helpers in the file with the following button_

to  helpers:

~/sharkapp/app/views/sharks/index.html.erb
. . .  

  <tbody> 

    <% @sharks.each do |shark| %> 

      <tr> 

        <td><%= shark.name %></td> 

        <td><%= shark.facts %></td> 

        <td><%= button_to 'Show', shark_path(:id => shark.id), 

:method => :get %></td> 

        <td><%= button_to 'Edit', edit_shark_path(:id => shar

k.id), :method => :get %></td> 

        <td><%= button_to 'Destroy', shark_path(:id => shark.i

d), :method => :delete %></td> 

      </tr> 

    <% end %> 

  </tbody> 

. . . 

These helpers accomplish much the same things as their link_to

counterparts, but the Destroy  helper now relies on generated HTML rather

than Rails's default JavaScript.

Save and close the file when you are finished editing.



You are now ready to test your application.

First, run your database migrations:

rails db:migrate

Next, start your server. If you are working locally, you can do this with the
following command:

rails s

If you are working on a development server, you can start the application
with:

rails s --binding=your_server_ip

Navigate to the application landing page in your browser. If you are
working locally, this will be localhost:3000 , or http://your_server_ip:3

000  if you are working on a server.

You will see the following landing page:



Application Landing Page

Clicking on Show will take you to the show  view for this shark. Here you

will see a form to fill out a post:

Shark Show Page

In the post form, type “These sharks are scary!”:



Filled in Post

Click on Create Post. You will now see the new post on the page:

New Post Added to Page



You can add another new post, if you would like. This time, type “These
sharks are often misrepresented in films” and click Create Post:

Second Post Added to Page

In order to test the functionality of the Show Older Posts feature, we will
need to leave this page, since our Great White does not currently have any
posts that are older than the ones we've just added.

Click Back to get to the main page, and then Show to return to the Great
White landing page:



Shark Show Page

Clicking on Show Older Posts will now show you the posts you created:

Show Older Posts

You can now upvote a post by clicking on the Upvote Post button:



Upvote a Post

Similarly, clicking Remove Post will hide the post:

Remove a Post

You have now confirmed that you have a working Rails application that
uses Stimulus to control how nested post resources are displayed on



individual shark pages. You can use this as the jumping off point for future
development and experimentation with Stimulus.

Conclusion

Stimulus represents a possible alternative to working with rails-ujs, JQuery,
and frameworks like React and Vue.

As discussed in the introduction, Stimulus makes the most sense when you
need to work directly with HTML generated by the server. It is lightweight,
and aims to make code – particularly HTML – self-explanatory to the
highest degree possible. If you don't need to manage state on the client side,
then Stimulus may be a good choice.

If you are interested in how to create nested resources without a Stimulus
integration, you can consult How To Create Nested Resources for a Ruby
on Rails Application.

For more information on how you would integrate React with a Rails
application, see How To Set Up a Ruby on Rails Project with a React
Frontend.

https://github.com/rails/rails/tree/master/actionview/app/assets/javascripts
https://jquery.com/
https://www.digitalocean.com/community/tutorials/how-to-create-nested-resources-for-a-ruby-on-rails-application
https://www.digitalocean.com/community/tutorials/how-to-set-up-a-ruby-on-rails-project-with-a-react-frontend


How To Add Bootstrap to a Ruby on
Rails Application

Written by Kathleen Juell

If you are developing a Ruby on Rails application, you may be interested in
adding styles to your project to facilitate user engagement. One way to do
this is by adding Bootstrap, an HTML, CSS, and JavaScript framework
designed to simplify the process of making web projects responsive and
mobile ready. By implementing Bootstrap in a Rails project, you can
integrate its layout conventions and components into your application to
make user interactions with your site more engaging.

In this tutorial, you will add Bootstrap to an existing Rails project that uses
the webpack bundler to serve its JavaScript and CSS assets. The goal will
be to create a visually appealing site that users can interact with to share
information about sharks:

https://www.digitalocean.com/community/tutorials/how-to-add-bootstrap-to-a-ruby-on-rails-application
https://rubyonrails.org/
https://getbootstrap.com/
https://webpack.js.org/


Application Landing Page

Prerequisites

To follow this tutorial, you will need: - A local machine or development
server running Ubuntu 18.04. Your development machine should have a
non-root user with administrative privileges and a firewall configured with 
ufw . For instructions on how to set this up, see our Initial Server Setup with

Ubuntu 18.04 tutorial. - Node.js and npm installed on your local machine or
development server. This tutorial uses Node.js version <>10.16.3<> and npm
version <>6.9.0<>. For guidance on installing Node.js and npm on Ubuntu
18.04, follow the instructions in the “Installing Using a PPA” section of
How To Install Node.js on Ubuntu 18.04. - Ruby, rbenv, and Rails installed
on your local machine or development server, following Steps 1-4 in How
To Install Ruby on Rails with rbenv on Ubuntu 18.04. This tutorial uses
Ruby <>2.5.1<>, rbenv <>1.1.2<>, and Rails <>5.2.3<>. - SQLite installed, following

https://www.digitalocean.com/community/tutorials/initial-server-setup-with-ubuntu-18-04
https://nodejs.org/
https://www.npmjs.com/
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-on-ubuntu-18-04#installing-using-a-ppa
https://github.com/rbenv/rbenv
https://www.digitalocean.com/community/tutorials/how-to-install-ruby-on-rails-with-rbenv-on-ubuntu-18-04


Step 1 of How To Build a Ruby on Rails Application. This tutorial uses
SQLite 3 <>3.22.0<>.

Step 1 — Cloning the Project and Installing
Dependencies

Our first step will be to clone the rails-stimulus repository from the
DigitalOcean Community GitHub account. This repository includes the
code from the setup described in How To Add Stimulus to a Ruby on Rails
Application, which described how to add Stimulus.js to an existing Rails 5
project.

Clone the repository into a directory called rails-bootstrap :

git clone https://github.com/do-community/rails-stimulus.git r

ails-bootstrap

Navigate to the rails-bootstrap  directory:

cd rails-bootstrap

In order to work with the project code, you will first need to install the
project's dependencies, which are listed in its Gemfile. Use the following
command to install the required gems:

bundle install

https://www.digitalocean.com/community/tutorials/how-to-build-a-ruby-on-rails-application
https://github.com/do-community/rails-stimulus.git
https://github.com/do-community
https://www.digitalocean.com/community/tutorials/how-to-add-stimulus-to-a-ruby-on-rails-application
https://stimulusjs.org/


Next, you will install your Yarn dependencies. Because this Rails 5 project
has been modified to serve assets with webpack, its JavaScript
dependencies are now managed by Yarn. This means that it's necessary to
install and verify the dependencies listed in the project's package.json  file.

Run the following command to install these dependencies:

yarn install --check-files

The --check-files  flag checks to make sure that any files already installed

in the node_modules  directory have not been removed.

Next, run your database migrations:

rails db:migrate

Once your migrations have finished, you can test the application to ensure
that it is working as expected. Start your server with the following
command if you are working locally:

rails s

If you are working on a development server, you can start the application
with:

rails s --binding=your_server_ip

Navigate to localhost:3000  or http://your_server_ip:3000 . You will see

the following landing page:

https://yarnpkg.com/


Application Landing Page

To create a new shark, click on the New Shark link at the bottom of the
page, which will take you to the sharks/new  route. You will be prompted

for a username (sammy) and password (shark), thanks to the project's
authentication settings. The new  view looks like this:

https://www.digitalocean.com/community/tutorials/how-to-build-a-ruby-on-rails-application#step-%E2%80%94-adding-authentication


Create New Shark

To verify that the application is working, we can add some demo
information to it. Input “Great White” into the Name field and “Scary” into
the Facts field:



Add Great White Shark

Click on the Create Shark button to create the shark:



Show Shark

You have now installed the necessary dependencies for your project and
tested its functionality. Next, you can make a few changes to the Rails
application so that users encounter a main landing page before navigating to
the shark information application itself.

Step 2 — Adding a Main Landing Page and Controller

The current application sets the root view to the main shark information
page, the index  view for the sharks  controller. While this works to get

users to the main application, it may be less desirable if we decide to
develop the application in the future and add other capabilities and features.
We can reorganize the application to have the root view set to a home

controller, which will include an index  view. From there, we can link out to

other parts of the application.



To create the home  controller, you can use the rails generate command

with the controller  generator. In this case, we will specify that we want an

index  view for our main landing page:

rails generate controller home index

With the controller created, you'll need to modify the root view in the
project's config/routes.rb  file — the file that specifies the application's

route declarations — since the root view is currently set to the sharks index

view.

Open the file:

nano config/routes.rb

Find the following line:

~/rails-bootstrap/config/routes.rb
. . .  

root 'sharks#index' 

. . .

Change it to the following:

https://guides.rubyonrails.org/command_line.html#rails-generate


~/rails-bootstrap/config/routes.rb
. . .  

root 'home#index' 

. . .

This will set the home  controller's index  view as the root of the application,

making it possible to branch off to other parts of the application from there.

Save and close the file when you are finished editing.

With these changes in place, you are ready to move on to adding Bootstrap
to the application.

Step 3 — Installing Bootstrap and Adding Custom Styles

In this step, you will add Bootstrap to your project, along with the tool
libraries that it requires to function properly. This will involve importing
libraries and plugins into the application's webpack entry point and
environment files. It will also involve creating a custom style sheet in your
application's app/javascript  directory, the directory where the project's

JavaScript assets live.

First, use yarn  to install Bootstrap and its required dependencies:

yarn add bootstrap jquery popper.js

Many of Bootstrap's components require JQuery and Popper.js, along with
Bootstrap's own custom plugins, so this command will ensure that you have

https://jquery.com/
https://popper.js.org/


the libraries you need.

Next, open your main webpack configuration file, config/webpack/environ

ment.js  with nano  or your favorite editor:

nano config/webpack/environment.js

Inside the file, add the webpack library, along with a ProvidePlugin that

tells Bootstrap how to interpret JQuery and Popper variables.

Add the following code to the file:

~/rails-bootstrap/config/webpack/environment.js
const { environment } = require('@rails/webpacker') 

const webpack = require("webpack")  

 

environment.plugins.append("Provide", new webpack.ProvidePlugi

n({  

  $: 'jquery', 

  jQuery: 'jquery', 

  Popper: ['popper.js', 'default']

}))   

 

module.exports = environment

The ProvidePlugin  helps us avoid the multiple import  or require

statements we would normally use when working with JQuery or Popper

https://webpack.js.org/plugins/provide-plugin/


modules. With this plugin in place, webpack will automatically load the
correct modules and point the named variables to each module's loaded
exports.

Save and close the file when you are finished editing.

Next, open your main webpack entry point file, app/javascript/packs/app

lication.js :

nano app/javascript/packs/application.js

Inside the file, add the following import  statements to import Bootstrap

and the custom scss  styles file that you will create next:

. . .  

[label ~/rails-bootstrap/app/javascript/packs/application.js] 

import { Application } from "stimulus" 

import { definitionsFromContext } from "stimulus/webpack-helpers" 

 

import "bootstrap"

import "../stylesheets/application" 

. . . 

Save and close the file when you are finished editing.

Next, create a stylesheets  directory for your application style sheet:

mkdir app/javascript/stylesheets



Open the custom styles file:

nano app/javascript/stylesheets/application.scss

This is an scss  file, which uses Sass instead of CSS. Sass, or Syntactically

Awesome Style Sheets, is a CSS extension language that lets developers
integrate programming logic and conventions like shared variables into
styling rules.

In the file, add the following statements to import the custom Bootstrap scs

s  styles and Google fonts for the project:

~/rails-
bootstrap/app/javascript/stylesheets/application
.scss
@import "~bootstrap/scss/bootstrap"; 

@import url('https://fonts.googleapis.com/css?family=Merriweat

her:400,700');

Next, add the following custom variable definitions and styles for the
application:

https://sass-lang.com/
https://en.wikipedia.org/wiki/Cascading_Style_Sheets


~/rails-
bootstrap/app/javascript/stylesheets/application
.scss
. . . 

$white: white; 

$black: black; 

 

.navbar { 

        margin-bottom: 0; 

        background: $black; 

} 

body { 

        background: $black; 

        color: $white; 

        font-family: 'Merriweather', sans-serif; 

} 

h1, 

h2 { 

        font-weight: bold; 

} 

p { 

        font-size: 16px; 

        color: $white; 

} 

a:visited { 

        color: $black; 



} 

.jumbotron { 

        background: #0048CD; 

        color: $white; 

        text-align: center; 

        p { 

                color: $white; 

                font-size: 26px; 

        } 

} 

.link { 

        color: $white; 

} 

.btn-primary { 

        color: $white; 

        border-color: $white; 

        margin-bottom: 5px; 

} 

.btn-sm { 

        background-color: $white; 

        display: inline-block; 

} 

img, 

video, 

audio { 

        margin-top: 20px; 

        max-width: 80%; 



} 

caption { 

 

        float: left; 

        clear: both; 

 

}

Save and close the file when you are finished editing.

You have added Bootstrap to your project, along with some custom styles.
Now you can move on to integrating Bootstrap layout conventions and
components into your application files.

Step 4 — Modifying the Application Layout

Our first step in integrating Bootstrap conventions and components into the
project will be adding them to the main application layout file. This file sets
the elements that will be included with each rendered view template for the
application. In this file, we'll make sure our webpack entry point is defined,
while also adding references to a shared navigation headers partial and
some logic that will allow us to render a layout for the views associated
with the shark application.

First, open app/views/layouts/application.html.erb , your application's

main layout file:

https://guides.rubyonrails.org/layouts_and_rendering.html#using-partials


nano app/views/layouts/application.html.erb

Currently, the file looks like this:

~/rails-
bootstrap/app/views/layouts/application.html.erb
<!DOCTYPE html> 

<html> 

  <head> 

    <title>Sharkapp</title> 

    <%= csrf_meta_tags %> 

    <%= csp_meta_tag %> 

 

    <%= stylesheet_link_tag 'application', media: 'all', 'data

-turbolinks-track': 'reload' %> 

    <%= javascript_pack_tag 'application', 'data-turbolinks-tr

ack': 'reload' %> 

  </head> 

 

  <body> 

    <%= yield %> 

  </body> 

</html>

The code renders things like cross-site request forgery protection
parameters and tokens for dynamic forms, a csp-nonce for per-session

https://api.rubyonrails.org/classes/ActionView/Helpers/CsrfHelper.html
https://api.rubyonrails.org/v5.2.3/classes/ActionView/Helpers/CspHelper.html


nonces that allows in-line script tags, and the application's style sheets and
javascript assets. Note that rather than having a javascript_link_tag , our

code includes a javascript_pack_tag , which tells Rails to load our main

webpack entry point at app/javascript/packs/application.js .

In the <body>  of the page, a yield  statement tells Rails to insert the content

from a view. In this case, because our application root formerly mapped to
the index  shark view, this would have inserted the content from that view.

Now, however, because we have changed the root view, this will insert
content from the home  controller's index  view.

This raises a couple of questions: Do we want the home view for the
application to be the same as what users see when they view the shark
application? And if we want these views to be somewhat different, how do
we implement that?

The first step will be deciding what should be replicated across all
application views. We can leave everything included under the <header>  in

place, since it is primarily tags and metadata that we want to be present on
all application pages. Within this section, however, we can also add a few
things that will customize all of our application views.

First, add the viewport  meta tag that Bootstrap recommends for responsive

behaviors:



~/rails-
bootstrap/app/views/layouts/application.html.erb
<!DOCTYPE html> 

<html> 

  <head> 

    <meta name="viewport" content="width=device-width, initial

-scale=1.0"> 

    <title>Sharkapp</title> 

    <%= csrf_meta_tags %> 

    <%= csp_meta_tag %> 

. . .

Next, replace the existing title  code with code that will render the

application title in a more dynamic way:



~/rails-
bootstrap/app/views/layouts/application.html.erb
<!DOCTYPE html> 

<html> 

  <head> 

    <meta name="viewport" content="width=device-width, initial

-scale=1.0"> 

    <title><%= content_for?(:title) ? yield(:title) : "About S

harks" %></title> 

    <%= csrf_meta_tags %> 

    <%= csp_meta_tag %> 

. . .

Add a <meta>  tag to include a description of the site:



~/rails-
bootstrap/app/views/layouts/application.html.erb
<!DOCTYPE html> 

<html> 

  <head> 

    <meta name="viewport" content="width=device-width, initial

-scale=1.0"> 

    <title><%= content_for?(:title) ? yield(:title) : "About S

harks" %></title> 

    <meta name="description" content="<%= content_for?(:descri

ption) ? yield(:description) : "About Sharks" %>"> 

    <%= csrf_meta_tags %> 

    <%= csp_meta_tag %> 

. . .

With this code in place, you can add a navigation partial to the layout.
Ideally, each of our application's pages should include a navbar component
at the top of the page, so that users can easily navigate from one part of the
site to another.

Under the <body>  tag, add a <header>  tag and the following render

statement:

https://getbootstrap.com/docs/4.0/components/navbar/


~/rails-
bootstrap/app/views/layouts/application.html.erb
  <body> 

    <header> 

      <%= render 'layouts/navigation' %> 

    </header> 

 

    <%= yield %> 

. . .

This <header>  tag allows you to organize your page content, separating the

navbar from the main page contents.

Finally, you can add a <main>  element tag and some logic to control which

view, and thus which layout, the application will render. This code uses the 
content_for method to reference a content identifier that we will associate

with our sharks layout in the next step.

Replace the existing yield  statement with the following content:

https://api.rubyonrails.org/classes/ActionView/Helpers/CaptureHelper.html#method-i-content_for


~/rails-
bootstrap/app/views/layouts/application.html.erb
. . .  

  <body> 

    <header> 

      <%= render 'layouts/navigation' %> 

    </header> 

    <main role="main"> 

    <%= content_for?(:content) ? yield(:content) : yield %> 

    </main> 

  </body> 

</html>

Now, if the :content  block is set, the application will yield the associated

layout. Otherwise, thanks to the ternary operator, it will do an implicit yield
of the view associated with the home  controller.

Once you have made these changes, save and close the file.

With the application-wide layout set, you can move on to creating the
shared navbar partial and the sharks layout for your shark views.

Step 5 — Creating the Shared Partial and Specific
Layouts

In addition to the changes you made to the application layout in the
previous Step, you will want to create the shared navbar partial, the sharks



layout that you referenced in app/views/layouts/application.html.erb ,

and a view for the application landing page. You can also add Bootstrap
styles to your application's current link_to  elements in order to take

advantage of built-in Bootstrap styles.

First, open a file for the shared navbar partial:

nano app/views/layouts/_navigation.html.erb

Add the following code to the file to create the navbar:



~/rails-
bootstrap/app/views/layouts/_navigation.html.erb
<nav class="navbar navbar-dark navbar-static-top navbar-expand

-md"> 

    <div class="container"> 

        <button type="button" class="navbar-toggler collapsed" 

data-toggle="collapse" data-target="#bs-example-navbar-collaps

e-1" aria-expanded="false"> <span class="sr-only">Toggle navig

ation</span> 

        </button> <%= link_to "Everything Sharks", root_path,

 class: 'navbar-brand' %> 

        <div class="collapse navbar-collapse" id="bs-example-n

avbar-collapse-1"> 

            <ul class="nav navbar-nav mr-auto"> 

            <li class='nav-item'><%= link_to 'Home', home_inde

x_path, class: 'nav-link' %></li> 

            <li class='nav-item'><%= link_to 'Sharks', sharks_

path, class: 'nav-link' %></li>   

                 

                </li> 

            </ul> 

        </div> 

    </div> 

</nav>



This navbar creates a link for the application root using the link_to method,

which maps to the application root path. The navbar also includes two
additional links: one to the Home  path, which maps to the home  controller's 

index  view, and another to the shark application path, which maps to the s

hark  index  view.

Save and close the file when you are finished editing.

Next, open a file in the layouts  directory for the sharks layout:

nano app/views/layouts/sharks.html.erb

Before adding layout features, we will need to ensure that the content of the
layout is set as the :content  block that we reference in the main

application layout. Add the following lines to the file to create the block:

~/rails-
bootstrap/app/views/layouts/sharks.html.erb
<% content_for :content do %> 

<% end %>

The code we're about to write in this block will be rendered inside the :con

tent  block in the app/views/layouts/application.html.erb  file whenever

a sharks view is requested by a controller.

Next, inside the block itself, add the following code to create a jumbotron
component and two containers:

https://api.rubyonrails.org/v5.2.3/classes/ActionView/Helpers/UrlHelper.html#method-i-link_to
https://getbootstrap.com/docs/4.3/components/jumbotron/
https://getbootstrap.com/docs/4.3/layout/overview/#containers


~/rails-
bootstrap/app/views/layouts/sharks.html.erb
<% content_for :content do %> 

    <div class="jumbotron text-center"> 

        <h1>Shark Info</h1> 

    </div> 

    <div class="container"> 

        <div class="row"> 

            <div class="col-lg-6"> 

                <p> 

                    <%= yield %> 

                </p> 

            </div> 

            <div class="col-lg-6"> 

                <p> 

 

                    <div class="caption">You can always count

 on some sharks to be friendly and welcoming!</div> 

                    <img src="https://assets.digitalocean.com/

articles/docker_node_image/sammy.png" alt="Sammy the Shark"> 

                </p> 

 

            </div> 

        </div> 

    </div> 

    <% end %>



The first container includes a yield  statement that will insert the content

from the shark  controller's views, while the second includes a reminder

that certain sharks are always friendly and welcoming.

Finally, at the bottom of the file, add the following render  statement to

render the application layout:

~/rails-
bootstrap/app/views/layouts/sharks.html.erb
. . .  

            </div> 

        </div> 

    </div> 

    <% end %> 

        <%= render template: "layouts/application" %>

This sharks layout will provide the content for the named :content  block

in the main application layout; it will then render the application layout
itself to ensure that our rendered application pages have everything we want
at the application-wide level.

Save and close the file when you are finished editing.

We now have our partials and layouts in place, but we haven't yet created
the view that users will see when they navigate to the application home
page, the home  controller's index  view.



Open that file now:

nano app/views/home/index.html.erb

The structure of this view will match the layout we defined for shark views,
with a main jumbotron component and two containers. Replace the
boilerplate code in the file with the following:



~/rails-bootstrap/app/views/home/index.html.erb
<div class="jumbotron"> 

    <div class="container"> 

        <h1>Want to Learn About Sharks?</h1> 

        <p>Are you ready to learn about sharks?</p> 

        <br> 

        <p> 

            <%= button_to 'Get Shark Info', sharks_path, :meth

od => :get,  :class => "btn btn-primary btn-lg"%> 

        </p> 

    </div> 

</div> 

<div class="container"> 

    <div class="row"> 

        <div class="col-lg-6"> 

            <h3>Not all sharks are alike</h3> 

            <p>Though some are dangerous, sharks generally do

 not attack humans. Out of the 500 species known to researcher

s, only 30 have been known to attack humans. 

            </p> 

        </div> 

        <div class="col-lg-6"> 

            <h3>Sharks are ancient</h3> 

            <p>There is evidence to suggest that sharks lived

 up to 400 million years ago. 

            </p> 



        </div> 

    </div> 

</div>

Now, when landing on the home page of the application, users will have a
clear way to navigate to the shark section of the application, by clicking on
the Get Shark Info button. This button points to the shark_path  — the

helper that maps to the routes associated with the sharks  controller.

Save and close the file when you are finished editing.

Our last task will be to transform some of the link_to  methods in our

application into buttons that we can style using Bootstrap. We will also add
a way to navigate back to the home page from the sharks index  view.

Open the sharks index  view to start:

nano app/views/sharks/index.html.erb

At the bottom of the file, locate the link_to  method that directs to the new

shark view:

~/rails-
bootstrap/app/views/sharks/index.html.erb
. . . 

<%= link_to 'New Shark', new_shark_path %>



Modify the code to turn this link into a button that uses Bootstrap's "btn bt

n-primary btn-sm"  class:

~/rails-
bootstrap/app/views/sharks/index.html.erb
. . . 

<%= link_to 'New Shark', new_shark_path, :class => "btn btn-pr

imary btn-sm" %>

Next, add a link to the application home page:

~/rails-
bootstrap/app/views/sharks/index.html.erb
. . . 

<%= link_to 'New Shark', new_shark_path, :class => "btn btn-pr

imary btn-sm" %> <%= link_to 'Home', home_index_path, :class =

> "btn btn-primary btn-sm" %>

Save and close the file when you are finished editing.

Next, open the new  view:

nano app/views/sharks/new.html.erb

Add the button styles to the link_to  method at the bottom of the file:



~/rails-bootstrap/app/views/sharks/new.html.erb
. . .  

<%= link_to 'Back', sharks_path, :class => "btn btn-primary bt

n-sm" %>

Save and close the file.

Open the edit  view:

nano app/views/sharks/edit.html.erb

Currently, the link_to  methods are arranged like this:

~/rails-bootstrap/app/views/sharks/edit.html.erb
. . .  

<%= link_to 'Show', @shark %> | 

<%= link_to 'Back', sharks_path %>

Change their arrangement on the page and add the button styles, so that the
code looks like this:

~/rails-bootstrap/app/views/sharks/edit.html.erb
. . .  

<%= link_to 'Show', @shark, :class => "btn btn-primary btn-sm" 

%> <%= link_to 'Back', sharks_path, :class => "btn btn-primary 

btn-sm" %>



Save and close the file.

Finally, open the show  view:

nano app/views/sharks/show.html.erb

Find the following link_to  methods:

~/rails-bootstrap/app/views/sharks/show.html.erb
. . .  

<%= link_to 'Edit', edit_shark_path(@shark) %> | 

<%= link_to 'Back', sharks_path %> 

. . . 

Change them to look like this:

~/rails-bootstrap/app/views/sharks/show.html.erb
. . .  

<%= link_to 'Edit', edit_shark_path(@shark), :class => "btn bt

n-primary btn-sm" %> <%= link_to 'Back', sharks_path, :class =

> "btn btn-primary btn-sm" %> 

. . .

Save and close the file.

You are now ready to test the application.



Start your server with the appropriate command: - rails s  if you are

working locally - rails s --binding=your_server_ip  if you are working

with a development server

Navigate to localhost:3000  or http://your_server_ip:3000 , depending

on whether you are working locally or on a server. You will see the
following landing page:

Application Landing Page

Click on Get Shark Info. You will see the following page:



Sharks Index Page

You can now edit your shark, or add facts and posts, using the methods
described in How To Add Stimulus to a Ruby on Rails Application . You can
also add new sharks to the conversation.

As you navigate to other shark views, you will see that the shark layout is
always included:

https://www.digitalocean.com/community/tutorials/how-to-add-stimulus-to-a-ruby-on-rails-application


Sharks Show Page

You now have Bootstrap integrated into your Rails application. From here,
you can move forward by adding new styles and components to your
application to make it more appealing to users.

Conclusion

You now have Bootstrap integrated into your Rails application, which will
allow you to create responsive and visually appealing styles to enhance
your users' experience of the project.

To learn more about Bootstrap features and what they offer, please see the
Bootstrap documentation. You can also look at the documentation for Sass,
to get a sense of how you can use it to enhance and extend your CSS styles
and logic.

If you are interested in seeing how Bootstrap integrates with other
frameworks, please see How To Build a Weather App with Angular,

https://getbootstrap.com/docs/4.3/getting-started/introduction/
https://sass-lang.com/documentation
https://www.digitalocean.com/community/tutorials/how-to-build-a-weather-app-with-angular-bootstrap-and-the-apixu-api


Bootstrap, and the APIXU API. You can also learn about how it integrates
with Rails and React by reading How To Set Up a Ruby on Rails Project
with a React Frontend.

https://www.digitalocean.com/community/tutorials/how-to-build-a-weather-app-with-angular-bootstrap-and-the-apixu-api
https://www.digitalocean.com/community/tutorials/how-to-set-up-a-ruby-on-rails-project-with-a-react-frontend


How To Add Sidekiq and Redis to a
Ruby on Rails Application

Written by Kathleen Juell

When developing a Ruby on Rails application, you may find you have
application tasks that should be performed asynchronously. Processing data,
sending batch emails, or interacting with external APIs are all examples of
work that can be done asynchronously with background jobs. Using
background jobs can improve your application's performance by offloading
potentially time-intensive tasks to a background processing queue, freeing
up the original request/response cycle.

Sidekiq is one of the more widely used background job frameworks that
you can implement in a Rails application. It is backed by Redis, an in-
memory key-value store known for its flexibility and performance. Sidekiq
uses Redis as a job management store to process thousands of jobs per
second.

In this tutorial, you will add Redis and Sidekiq to an existing Rails
application. You will create a set of Sidekiq worker classes and methods to
handle: - A batch upload of endangered shark information to the application
database from a CSV file in the project repository. - The removal of this
data.

When you are finished, you will have a demo application that uses workers
and jobs to process tasks asynchronously. This will be a good foundation

https://www.digitalocean.com/community/tutorials/how-to-add-sidekiq-and-redis-to-a-ruby-on-rails-application
https://rubyonrails.org/
https://sidekiq.org/
https://redis.io/
https://github.com/mperham/sidekiq/#performance


for you to add workers and jobs to your own application, using this tutorial
as a jumping off point.

Prerequisites

To follow this tutorial, you will need: - A local machine or development
server running Ubuntu 18.04. Your development machine should have a
non-root user with administrative privileges and a firewall configured with 
ufw . For instructions on how to set this up, see our Initial Server Setup with

Ubuntu 18.04 tutorial. - Node.js and npm installed on your local machine or
development server. This tutorial uses Node.js version <>10.17.0<> and npm
version <>6.11.3<>. For guidance on installing Node.js and npm on Ubuntu
18.04, follow the instructions in the “Installing Using a PPA” section of
How To Install Node.js on Ubuntu 18.04. - The Yarn package manager
installed on your local machine or development server. You can following
the installation instructions in the official documentation. - Ruby, rbenv,
and Rails installed on your local machine or development server, following
Steps 1-4 in How To Install Ruby on Rails with rbenv on Ubuntu 18.04.
This tutorial uses Ruby <>2.5.1<>, rbenv <>1.1.2<>, and Rails <>5.2.3<>. - SQLite
installed, following Step 1 of How To Build a Ruby on Rails Application.
This tutorial uses SQLite 3 <>3.22.0<>. - Redis installed, following Steps 1-3 of
How To Install and Secure Redis on Ubuntu 18.04. This tutorial uses Redis
<>4.0.9<>.

Step 1 — Cloning the Project and Installing
Dependencies

https://www.digitalocean.com/community/tutorials/initial-server-setup-with-ubuntu-18-04
https://nodejs.org/
https://www.npmjs.com/
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-on-ubuntu-18-04#installing-using-a-ppa
https://yarnpkg.com/
https://yarnpkg.com/en/docs/install#debian-stable
https://github.com/rbenv/rbenv
https://www.digitalocean.com/community/tutorials/how-to-install-ruby-on-rails-with-rbenv-on-ubuntu-18-04
https://www.digitalocean.com/community/tutorials/how-to-build-a-ruby-on-rails-application
https://www.digitalocean.com/community/tutorials/how-to-install-and-secure-redis-on-ubuntu-18-04


Our first step will be to clone the rails-bootstrap repository from the
DigitalOcean Community GitHub account. This repository includes the
code from the setup described in How To Add Bootstrap to a Ruby on Rails
Application, which explains how to add Bootstrap to an existing Rails 5
project.

Clone the repository into a directory called rails-sidekiq :

git clone https://github.com/do-community/rails-bootstrap.git 

rails-sidekiq

Navigate to the rails-sidekiq  directory:

cd rails-sidekiq

In order to work with the code, you will first need to install the project's
dependencies, which are listed in its Gemfile. You will also need to add the
sidekiq gem to the project to work with Sidekiq and Redis.

Open the project's Gemfile for editing, using nano  or your favorite editor:

nano Gemfile

Add the gem anywhere in the main project dependencies (above
development dependencies):

https://github.com/do-community/rails-bootstrap
https://github.com/do-community
https://www.digitalocean.com/community/tutorials/how-to-add-bootstrap-to-a-ruby-on-rails-application
https://getbootstrap.com/
https://github.com/mperham/sidekiq


~/rails-sidekiq/Gemfile
. . .  

# Reduces boot times through caching; required in config/boot.

rb 

gem 'bootsnap', '>= 1.1.0', require: false 

gem 'sidekiq', '~>6.0.0' 

 

group :development, :test do 

. . .

Save and close the file when you are finished adding the gem.

Use the following command to install the gems:

bundle install

You will see in the output that the redis gem is also installed as a

requirement for sidekiq .

Next, you will install your Yarn dependencies. Because this Rails 5 project
has been modified to serve assets with webpack, its JavaScript
dependencies are now managed by Yarn. This means that it's necessary to
install and verify the dependencies listed in the project's package.json  file.

Run yarn install  to install these dependencies:

yarn install

https://github.com/redis/redis-rb
https://yarnpkg.com/


Next, run your database migrations:

rails db:migrate

Once your migrations have finished, you can test the application to ensure
that it is working as expected. Start your server in the context of your local
bundle with the following command if you are working locally:

bundle exec rails s

If you are working on a development server, you can start the application
with:

bundle exec rails s --binding=your_server_ip

Navigate to localhost:3000  or http://your_server_ip:3000 . You will see

the following landing page:



Application Landing Page

To create a new shark, click on the Get Shark Info button, which will take
you to the sharks/index  route:

Sharks Index Route



To verify that the application is working, we can add some demo
information to it. Click on New Shark. You will be prompted for a
username (sammy) and password (shark), thanks to the project's
authentication settings.

On the New Shark page, input “Great White” into the Name field and
“Scary” into the Facts field:

Shark Create

Click on the Create Shark button to create the shark. Once you see that
your shark has been created, you can kill the server with CTRL+C .

You have now installed the necessary dependencies for your project and
tested its functionality. Next, you can make a few changes to the Rails
application to work with your endangered sharks resources.

https://www.digitalocean.com/community/tutorials/how-to-build-a-ruby-on-rails-application#step-%E2%80%94-adding-authentication


Step 2 — Generating a Controller for Endangered Shark
Resources

To work with our endangered shark resources, we will add a new model to
the application and a controller that will control how information about
endangered sharks is presented to users. Our ultimate goal is to make it
possible for users to upload a large batch of information about endangered
sharks without blocking our application's overall functionality, and to delete
that information when they no longer need it.

First, let's create an Endangered  model for our endangered sharks. We'll

include a string field in our database table for the shark name, and another
string field for the International Union for the Conservation of Nature
(IUCN) categories that determine the degree to which each shark is at risk.

Ultimately, our model structure will match the columns in the CSV file that
we will use to create our batch upload. This file is located in the db

directory, and you can check its contents with the following command:

cat db/sharks.csv

The file contains a list of 73 endangered sharks and their IUCN statuses -
vu for vulnerable, en for endangered, and cr for critically endangered.

Our Endangered  model will correlate with this data, allowing us to create

new Endangered  instances from this CSV file. Create the model with the

following command:

https://www.iucn.org/
https://www.iucn.org/resources/conservation-tools/iucn-red-list-threatened-species#RL_categories


rails generate model Endangered name:string iucn:string

Next, generate an Endangered  controller with an index  action:

rails generate controller endangered index

This will give us a starting point to build out our application's functionality,
though we will also need to add custom methods to the controller file that
Rails has generated for us.

Open that file now:

nano app/controllers/endangered_controller.rb

Rails has provided us with a skeletal outline that we can begin to fill in.

First, we'll need to determine what routes we require to work with our data.
Thanks to the generate controller  command, we have an index  method

to begin with. This will correlate to an index  view, where we will present

users with the option to upload endangered sharks.

However, we will also want to deal with cases where users may have
already uploaded the sharks; they will not need an upload option in this
case. We will somehow need to assess how many instances of the Endanger

ed  class already exist, since more than one indicates that the batch upload

has already occurred.



Let's start by creating a set_endangered  private  method that will grab

each instance of our Endangered  class from the database. Add the following

code to the file:

~/rails-
sidekiq/app/controllers/endangered_controller.rb
class EndangeredController < ApplicationController 

  before_action :set_endangered, only: [:index, :data] 

 

  def index 

  end 

 

  private 

 

    def set_endangered 

      @endangered = Endangered.all  

    end 

 

end

Note that the before_action  filter will ensure that the value of @endangere

d  is only set for the index  and data  routes, which will be where we handle

the endangered shark data.

Next, add the following code to the index  method to determine the correct

path for users visiting this part of the application:



~/rails-
sidekiq/app/controllers/endangered_controller.rb
class EndangeredController < ApplicationController 

  before_action :set_endangered, only: [:index, :data] 

 

  def index           

    if @endangered.length > 0 

      redirect_to endangered_data_path 

    else 

      render 'index' 

    end 

  end 

. . . 

If there are more than 0 instances of our Endangered  class, we will redirect

users to the data  route, where they can view information about the sharks

they've created. Otherwise, they will see the index  view.

Next, below the index  method, add a data  method, which will correlate to

a data  view:



~/rails-
sidekiq/app/controllers/endangered_controller.rb
. . .  

  def index           

    if @endangered.length > 0 

      redirect_to endangered_data_path 

    else 

      render 'index' 

    end 

  end 

 

  def data  

  end 

. . .

Next, we will add a method to handle the data upload itself. We'll call this
method upload , and it will call a Sidekiq worker class and method to

perform the data upload from the CSV file. We will create the definition for
this worker class, AddEndangeredWorker , in the next step.

For now, add the following code to the file to call the Sidekiq worker to
perform the upload:



~/rails-
sidekiq/app/controllers/endangered_controller.rb
. . .  

  def data  

  end 

 

  def upload 

    csv_file = File.join Rails.root, 'db', 'sharks.csv'    

    AddEndangeredWorker.perform_async(csv_file) 

    redirect_to endangered_data_path, notice: 'Endangered shar

ks have been uploaded!' 

  end 

. . .

By calling the perform_async  method on the AddEndangeredWorker  class,

using the CSV file as an argument, this code ensures that the shark data and
upload job get passed to Redis. The Sidekiq workers that we will set up
monitor the job queue and will respond when new jobs arise.

After calling perform_async , our upload  method redirects to the data

path, where users will be able to see the uploaded sharks.

Next, we'll add a destroy  method to destroy the data. Add the following

code below the upload  method:



~/rails-
sidekiq/app/controllers/endangered_controller.rb
. . .  

  def upload 

    csv_file = File.join Rails.root, 'db', 'sharks.csv'    

    AddEndangeredWorker.perform_async(csv_file) 

    redirect_to endangered_data_path, notice: 'Endangered shar

ks have been uploaded!' 

  end 

 

  def destroy 

    RemoveEndangeredWorker.perform_async 

    redirect_to root_path 

  end 

. . . 

Like our upload  method, our destroy  method includes a perform_async

call on a RemoveEndangeredWorker  class – the other Sidekiq worker that we

will create. After calling this method, it redirects users to the root
application path.

The finished file will look like this:



~/rails-
sidekiq/app/controllers/endangered_controller.rb
class EndangeredController < ApplicationController 

  before_action :set_endangered, only: [:index, :data] 

 

  def index           

    if @endangered.length > 0 

      redirect_to endangered_data_path 

    else 

      render 'index' 

    end 

  end 

 

  def data  

  end 

 

  def upload 

    csv_file = File.join Rails.root, 'db', 'sharks.csv'    

    AddEndangeredWorker.perform_async(csv_file) 

    redirect_to endangered_data_path, notice: 'Endangered shar

ks have been uploaded!' 

  end 

 

  def destroy 

    RemoveEndangeredWorker.perform_async 

    redirect_to root_path 



  end 

 

  private 

 

    def set_endangered 

      @endangered = Endangered.all  

    end  

 

end

Save and close the file when you are finished editing.

As a final step in solidifying our application's routes, we will modify the
code in config/routes.rb , the file where our route declarations live.

Open that file now:

nano config/routes.rb

The file currently looks like this:



~/rails-sidekiq/config/routes.rb
Rails.application.routes.draw do 

  get 'endangered/index' 

  get 'home/index' 

  resources :sharks do 

          resources :posts 

  end 

  root 'home#index' 

  # For details on the DSL available within this file, see htt

p://guides.rubyonrails.org/routing.html 

end

We will need to update the file to include the routes that we've defined in
our controller: data , upload , and destroy . Our data  route will match with

a GET request to retrieve the shark data, while our upload  and destroy

routes will map to POST requests that upload and destroy that data.

Add the following code to the file to define these routes:



~/rails-sidekiq/config/routes.rb
Rails.application.routes.draw do 

  get 'endangered/index' 

  get 'endangered/data', to: 'endangered#data' 

  post 'endangered/upload', to: 'endangered#upload' 

  post 'endangered/destroy', to: 'endangered#destroy' 

  get 'home/index' 

  resources :sharks do 

          resources :posts 

  end 

  root 'home#index' 

  # For details on the DSL available within this file, see htt

p://guides.rubyonrails.org/routing.html 

end

Save and close the file when you are finished editing.

With your Endangered  model and controller in place, you can now move on

to defining your Sidekiq worker classes.

Step 3 — Defining Sidekiq Workers

We have called perform_async  methods on our Sidekiq workers in our

controller, but we still need to create the workers themselves.

First, create a workers  directory for the workers:



mkdir app/workers

Open a file for the AddEndangeredWorker  worker:

nano app/workers/add_endangered_worker.rb

In this file, we will add code that will allow us to work with the data in our
CSV file. First, add code to the file that will create the class, include the
Ruby CSV library, and ensure that this class functions as a Sidekiq Worker:

~/rails-
sidekiq/app/workers/add_endangered_worker.rb
class AddEndangeredWorker 

  require 'csv' 

  include Sidekiq::Worker 

  sidekiq_options retry: false 

 

end

We're also including the retry: false  option to ensure that Sidekiq does

not retry the upload in the case of failure.

Next, add the code for the perform  function:

https://ruby-doc.org/stdlib-2.6.1/libdoc/csv/rdoc/CSV.html#method-c-foreach


~/rails-
sidekiq/app/workers/add_endangered_worker.rb
class AddEndangeredWorker 

  require 'csv' 

  include Sidekiq::Worker 

  sidekiq_options retry: false 

 

  def perform(csv_file) 

    CSV.foreach(csv_file, headers: true) do |shark| 

    Endangered.create(name: shark[0], iucn: shark[1]) 

  end 

 end 

 

end

The perform  method receives arguments from the perform_async  method

defined in the controller, so it's important that the argument values are
aligned. Here, we pass in csv_file , the variable we defined in the

controller, and we use the foreach  method from the CSV library to read the

values in the file. Setting headers: true  for this loop ensures that the first

row of the file is treated as a row of headers.

The block then reads the values from the file into the columns we set for
our Endangered  model: name  and iucn . Running this loop will create Enda

ngered  instances for each of the entries in our CSV file.



Once you have finished editing, save and close the file.

Next, we will create a worker to handle deleting this data. Open a file for
the RemoveEndangeredWorker  class:

nano app/workers/remove_endangered_worker.rb

Add the code to define the class, and to ensure that it uses the CSV library
and functions as a Sidekiq Worker:

~/rails-
sidekiq/app/workers/remove_endangered_worker.rb
class RemoveEndangeredWorker 

  include Sidekiq::Worker 

  sidekiq_options retry: false 

 

end

Next, add a perform  method to handle the destruction of the endangered

shark data:



~/rails-
sidekiq/app/workers/remove_endangered_worker.rb
class RemoveEndangeredWorker 

  include Sidekiq::Worker 

  sidekiq_options retry: false 

 

  def perform 

    Endangered.destroy_all 

  end 

 

end

The perform  method calls destroy_all  on the Endangered  class, which

will remove all instances of the class from the database.

Save and close the file when you are finished editing.

With your workers in place, you can move on to creating a layout for your 
endangered  views, and templates for your index  and data  views, so that

users can upload and view endangered sharks.

Step 4 — Adding Layouts and View Templates

In order for users to enjoy their endangered shark information, we will need
to address two things: the layout for the views defined in our endangered

controller, and the view templates for the index  and data  views.



Currently, our application makes use of an application-wide layout, located
at app/views/layouts/application.html.erb , a navigation partial, and a

layout for sharks  views. The application layout checks for a content block,

which allows us to load different layouts based on which part of the
application our user is engaging with: for the home  index  page, they will

see one layout, and for any views relating to individual sharks, they will see
another.

We can repurpose the sharks  layout for our endangered  views since this

format will also work for presenting shark data in bulk.

Copy the sharks  layout file over to create an endangered  layout:

cp app/views/layouts/sharks.html.erb app/views/layouts/endange

red.html.erb

Next, we'll work on creating the view templates for our index  and data

views.

Open the index  template first:

nano app/views/endangered/index.html.erb

Delete the boilerplate code and add the following code instead, which will
give users some general information about the endangered categories and
present them with the option to upload information about endangered
sharks:



~/rails-
sidekiq/app/views/endangered/index.html.erb
<p id="notice"><%= notice %></p> 

 

<h1>Endangered Sharks</h1> 

 

<p>International Union for Conservation of Nature (ICUN) statu

ses: <b>vu:</b> Vulnerable, <b>en:</b> Endangered, <b>cr:</b>

 Critically Endangered </p> 

 

<br> 

 

  <%= form_tag endangered_upload_path do %> 

  <%= submit_tag "Import Endangered Sharks" %> 

  <% end %> 

 

  <br> 

 

<%= link_to 'New Shark', new_shark_path, :class => "btn btn-pr

imary btn-sm" %> <%= link_to 'Home', home_index_path, :class =

> "btn btn-primary btn-sm" %>

A form_tag  makes the data upload possible by pointing a post action to the 

endangered_upload_path  – the route we defined for our uploads. A submit

button, created with the submit_tag , prompts users to "Import Endangered 

Sharks" .



In addition to this code, we've included some general information about
ICUN codes, so that users can interpret the data they will see.

Save and close the file when you are finished editing.

Next, open a file for the data  view:

nano app/views/endangered/data.html.erb

Add the following code, which will add a table with the endangered shark
data:



~/rails-
sidekiq/app/views/endangered/data.html.erb
<p id="notice"><%= notice %></p> 

 

<h1>Endangered Sharks</h1> 

 

<p>International Union for Conservation of Nature (ICUN) statu

ses: <b>vu:</b> Vulnerable, <b>en:</b> Endangered, <b>cr:</b>

 Critically Endangered </p> 

 

<div class="table-responsive"> 

<table class="table table-striped table-dark"> 

  <thead> 

    <tr> 

      <th>Name</th> 

      <th>IUCN Status</th> 

      <th colspan="3"></th> 

    </tr> 

  </thead> 

 

  <tbody> 

    <% @endangered.each do |shark| %> 

      <tr> 

        <td><%= shark.name %></td> 

        <td><%= shark.iucn %></td> 

      </tr> 



    <% end %> 

  </tbody> 

</table> 

</div> 

 

<br> 

 

  <%= form_tag endangered_destroy_path do %> 

  <%= submit_tag "Delete Endangered Sharks" %> 

  <% end %> 

 

  <br> 

 

<%= link_to 'New Shark', new_shark_path, :class => "btn btn-pr

imary btn-sm" %> <%= link_to 'Home', home_index_path, :class =

> "btn btn-primary btn-sm" %>

This code includes the ICUN status codes once again, and a Bootstrap table
for the outputted data. By looping through our @endangered  variable, we

output the name and ICUN status of each shark to the table.

Below the table, we have another set of form_tags  and submit_tags ,

which post to the destroy  path by offering users the option to "Delete End

angered Sharks" .

Save and close the file when you are finished editing.



The last modification we'll make to our views will be in the index  view

associated with our home  controller. You may recall that this view is set as

the root of the application in config/routes.rb .

Open this file for editing:

nano app/views/home/index.html.erb

Find the column in the row that states Sharks are ancient :

~/rails-sidekiq/app/views/home/index.html.erb
. . .  

        <div class="col-lg-6"> 

            <h3>Sharks are ancient</h3> 

            <p>There is evidence to suggest that sharks lived

 up to 400 million years ago. 

            </p> 

        </div> 

    </div> 

</div>

Add the following code to the file:



~/rails-sidekiq/app/views/home/index.html.erb
. . .  

        <div class="col-lg-6"> 

            <h3>Sharks are ancient and SOME are in danger</h3> 

            <p>There is evidence to suggest that sharks lived

 up to 400 million years ago. Without our help, some could dis

appear soon.</p> 

            <p><%= button_to 'Which Sharks Are in Danger?', en

dangered_index_path, :method => :get,  :class => "btn btn-prim

ary btn-sm"%> 

            </p> 

        </div> 

    </div> 

</div>

We've included a call to action for users to learn more about endangered
sharks, by first sharing a strong message, and then adding a button_to

helper that submits a GET request to our endangered  index  route, giving

users access to that part of the application. From there, they will be able to
upload and view endangered shark information.

Save and close the file when you are finished editing.

With your code in place, you are ready to start the application and upload
some sharks!



Step 5 — Starting Sidekiq and Testing the Application

Before we start the application, we'll need to run migrations on our database
and start Sidekiq to enable our workers. Redis should already be running on
the server, but we can check to be sure. With all of these things in place,
we'll be ready to test the application.

First, check that Redis is running:

systemctl status redis

You should see output like the following:

Output
● redis-server.service - Advanced key-value store 

   Loaded: loaded (/lib/systemd/system/redis-server.service; e

nabled; vendor preset: enabled) 

   Active: active (running) since Tue 2019-11-12 20:37:13 UTC; 

1 weeks 0 days ago

Next, run your database migrations:

rails db:migrate

You can now start Sidekiq in the context of your current project bundle by
using the bundle exec sidekiq  command:

bundle exec sidekiq



You will see output like this, indicating that Sidekiq is ready to process
jobs:



Output
 

 

               m, 

               `$b 

          .ss,  $$:         .,d$ 

          `$$P,d$P'    .,md$P"' 

           ,$$$$$b/md$$$P^' 

         .d$$$$$$/$$$P' 

         $$^' `"/$$$'       ____  _     _      _    _ 

         $:     ,$$:       / ___|(_) __| | ___| | _(_) __ _ 

         `b     :$$        \___ \| |/ _` |/ _ \ |/ / |/ _` | 

                $$:         ___) | | (_| |  __/   <| | (_| | 

                $$         |____/|_|\__,_|\___|_|\_\_|\__, | 

              .d$$                                       |_| 

       

 

2019-11-19T21:43:00.540Z pid=17621 tid=gpiqiesdl INFO: Running 

in ruby 2.5.1p57 (2018-03-29 revision 63029) [x86_64-linux] 

2019-11-19T21:43:00.540Z pid=17621 tid=gpiqiesdl INFO: See LIC

ENSE and the LGPL-3.0 for licensing details. 

2019-11-19T21:43:00.540Z pid=17621 tid=gpiqiesdl INFO: Upgrade 

to Sidekiq Pro for more features and support: http://sidekiq.o

rg 

2019-11-19T21:43:00.540Z pid=17621 tid=gpiqiesdl INFO: Booting 

Sidekiq 6.0.3 with redis options {:id=>"Sidekiq-server-PID-176



21", :url=>nil} 

2019-11-19T21:43:00.543Z pid=17621 tid=gpiqiesdl INFO: Startin

g processing, hit Ctrl-C to stop

Open a second terminal window, navigate to the rails-sidekiq  directory,

and start your application server.

If you are running the application locally, use the following command:

[environment second] 

bundle exec rails s

If you are working with a development server, run the following:

[environment second] 

bundle exec rails s --binding=your_server_ip

Navigate to localhost:3000  or http://your_server_ip:3000  in the

browser. You will see the following landing page:



Sidekiq App Home

Click on the Which Sharks Are in Danger? button. Since you have not
uploaded any endangered sharks, this will take you to the endangered  inde

x  view:

Endangered Index View



Click on Import Endangered Sharks to import the sharks. You will see a
status message telling you that the sharks have been imported:

Begin Import

You will also see the beginning of the import. Refresh your page to see the
entire table:



Refresh Table

Thanks to Sidekiq, our large batch upload of endangered sharks has
succeeded without locking up the browser or interfering with other
application functionality.

Click on the Home button at the bottom of the page, which will bring you
back to the application main page:



Sidekiq App Home

From here, click on Which Sharks Are in Danger? again. This will now
take you directly to the data  view, since you already uploaded the sharks.

To test the delete functionality, click on the Delete Endangered Sharks
button below the table. You should be redirected to the home application
page once again. Clicking on Which Sharks Are in Danger? one last time
will take you back to the index  view, where you will have the option to

upload sharks again:



Endangered Index View

Your application is now running with Sidekiq workers in place, which are
ready to process jobs and ensure that users have a good experience working
with your application.

Conclusion

You now have a working Rails application with Sidekiq enabled, which will
allow you to offload costly operations to a job queue managed by Sidekiq
and backed by Redis. This will allow you to improve your site's speed and
functionality as you develop.

If you would like to learn more about Sidekiq, the docs are a good place to
start.

To learn more about Redis, check out our library of Redis resources. You
can also learn more about running a managed Redis cluster on DigitalOcean
by looking at the product documentation.

https://github.com/mperham/sidekiq/wiki
https://www.digitalocean.com/community/tags/redis?type=tutorials
https://www.digitalocean.com/docs/databases/redis/


Containerizing a Ruby on Rails
Application for Development with
Docker Compose

Written by Kathleen Juell

If you are actively developing an application, using Docker can simplify
your workflow and the process of deploying your application to production.
Working with containers in development offers the following benefits: -
Environments are consistent, meaning that you can choose the languages
and dependencies you want for your project without worrying about system
conflicts. - Environments are isolated, making it easier to troubleshoot
issues and onboard new team members. - Environments are portable,
allowing you to package and share your code with others.

This tutorial will show you how to set up a development environment for a
Ruby on Rails application using Docker. You will create multiple containers
– for the application itself, the PostgreSQL database, Redis, and a Sidekiq
service – with Docker Compose. The setup will do the following: -
Synchronize the application code on the host with the code in the container
to facilitate changes during development. - Persist application data between
container restarts. - Configure Sidekiq workers to process jobs as expected.

At the end of this tutorial, you will have a working shark information
application running on Docker containers:

https://www.digitalocean.com/community/tutorials/containerizing-a-ruby-on-rails-application-for-development-with-docker-compose
https://www.docker.com/
https://rubyonrails.org/
https://www.postgresql.org/
https://redis.io/
https://sidekiq.org/
https://docs.docker.com/compose/


Sidekiq App Home

Prerequisites

To follow this tutorial, you will need: - A local development machine or
server running Ubuntu 18.04, along with a non-root user with sudo

privileges and an active firewall. For guidance on how to set these up,
please see this Initial Server Setup guide. - Docker installed on your local
machine or server, following Steps 1 and 2 of How To Install and Use
Docker on Ubuntu 18.04. - Docker Compose installed on your local
machine or server, following Step 1 of How To Install Docker Compose on
Ubuntu 18.04.

Step 1 — Cloning the Project and Adding Dependencies

Our first step will be to clone the rails-sidekiq repository from the
DigitalOcean Community GitHub account. This repository includes the
code from the setup described in How To Add Sidekiq and Redis to a Ruby

https://www.digitalocean.com/community/tutorials/initial-server-setup-with-ubuntu-18-04
https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-on-ubuntu-18-04
https://www.digitalocean.com/community/tutorials/how-to-install-docker-compose-on-ubuntu-18-04
https://github.com/do-community/rails-sidekiq.git
https://github.com/do-community
https://www.digitalocean.com/community/tutorials/how-to-add-sidekiq-and-redis-to-a-ruby-on-rails-application


on Rails Application, which explains how to add Sidekiq to an existing
Rails 5 project.

Clone the repository into a directory called rails-docker :

git clone https://github.com/do-community/rails-sidekiq.git ra

ils-docker

Navigate to the rails-docker  directory:

cd rails-docker

In this tutorial we will use PostgreSQL as a database. In order to work with
PostgreSQL instead of SQLite 3, you will need to add the pg gem to the

project's dependencies, which are listed in its Gemfile. Open that file for
editing using nano  or your favorite editor:

nano Gemfile

Add the gem anywhere in the main project dependencies (above
development dependencies):

https://www.digitalocean.com/community/tutorials/how-to-add-sidekiq-and-redis-to-a-ruby-on-rails-application
https://github.com/ged/ruby-pg


~/rails-docker/Gemfile
. . .  

# Reduces boot times through caching; required in config/boot.

rb 

gem 'bootsnap', '>= 1.1.0', require: false 

gem 'sidekiq', '~>6.0.0' 

gem 'pg', '~>1.1.3' 

 

group :development, :test do 

. . .

We can also comment out the sqlite gem, since we won't be using it

anymore:

~/rails-docker/Gemfile
. . .  

# Use sqlite3 as the database for Active Record 

# gem 'sqlite3' 

. . .

Finally, comment out the spring-watcher-listen gem under development :

https://github.com/sparklemotion/sqlite3-ruby
https://github.com/jonleighton/spring-watcher-listen


~/rails-docker/Gemfile
. . .  

gem 'spring' 

# gem 'spring-watcher-listen', '~> 2.0.0' 

. . .

If we do not disable this gem, we will see persistent error messages when
accessing the Rails console. These error messages derive from the fact that
this gem has Rails use listen to watch for changes in development, rather

than polling the filesystem for changes. Because this gem watches the root
of the project, including the node_modules  directory, it will throw error

messages about which directories are being watched, cluttering the console.
If you are concerned about conserving CPU resources, however, disabling
this gem may not work for you. In this case, it may be a good idea to
upgrade your Rails application to Rails 6.

Save and close the file when you are finished editing.

With your project repository in place, the pg  gem added to your Gemfile,

and the spring-watcher-listen  gem commented out, you are ready to

configure your application to work with PostgreSQL.

Step 2 — Configuring the Application to Work with
PostgreSQL and Redis

To work with PostgreSQL and Redis in development, we will want to do
the following: - Configure the application to work with PostgreSQL as the

https://github.com/guard/listen
https://github.com/rails/rails/issues/32700


default adapter. - Add an .env  file to the project with our database

username and password and Redis host. - Create an init.sql  script to

create a sammy  user for the database. - Add an initializer for Sidekiq so that

it can work with our containerized redis  service. - Add the .env  file and

other relevant files to the project's gitignore  and dockerignore  files. -

Create database seeds so that our application has some records for us to
work with when we start it up.

First, open your database configuration file, located at config/database.ym

l :

nano config/database.yml

Currently, the file includes the following default  settings, which are

applied in the absence of other settings:

~/rails-docker/config/database.yml
default: &default 

  adapter: sqlite3 

  pool: <%= ENV.fetch("RAILS_MAX_THREADS") { 5 } %> 

  timeout: 5000

We need to change these to reflect the fact that we will use the postgresql

adapter, since we will be creating a PostgreSQL service with Docker
Compose to persist our application data.

https://guides.rubyonrails.org/v2.3/configuring.html#using-initializers


Delete the code that sets SQLite as the adapter and replace it with the
following settings, which will set the adapter appropriately and the other
variables necessary to connect:

~/rails-docker/config/database.yml
default: &default 

  adapter: postgresql 

  encoding: unicode 

  database: <%= ENV['DATABASE_NAME'] %> 

  username: <%= ENV['DATABASE_USER'] %> 

  password: <%= ENV['DATABASE_PASSWORD'] %> 

  port: <%= ENV['DATABASE_PORT'] || '5432' %> 

  host: <%= ENV['DATABASE_HOST'] %> 

  pool: <%= ENV.fetch("RAILS_MAX_THREADS") { 5 } %> 

  timeout: 5000 

. . .

Next, we'll modify the setting for the development  environment, since this

is the environment we're using in this setup.

Delete the existing SQLite database configuration so that section looks like
this:



~/rails-docker/config/database.yml
. . .  

development: 

  <<: *default 

. . .

Finally, delete the database  settings for the production  and test

environments as well:

~/rails-docker/config/database.yml
. . .  

test: 

  <<: *default 

   

production: 

  <<: *default 

. . . 

These modifications to our default database settings will allow us to set our
database information dynamically using environment variables defined in .

env  files, which will not be committed to version control.

Save and close the file when you are finished editing.

Note that if you are creating a Rails project from scratch, you can set the
adapter with the rails new  command, as described in Step 3 of How To

https://www.digitalocean.com/community/tutorials/how-to-use-postgresql-with-your-ruby-on-rails-application-on-ubuntu-18-04#step-3-%E2%80%93-creating-a-new-rails-application
https://www.digitalocean.com/community/tutorials/how-to-use-postgresql-with-your-ruby-on-rails-application-on-ubuntu-18-04


Use PostgreSQL with Your Ruby on Rails Application on Ubuntu 18.04.
This will set your adapter in config/database.yml  and automatically add

the pg  gem to the project.

Now that we have referenced our environment variables, we can create a
file for them with our preferred settings. Extracting configuration settings in
this way is part of the 12 Factor approach to application development,
which defines best practices for application resiliency in distributed
environments. Now, when we are setting up our production and test
environments in the future, configuring our database settings will involve
creating additional .env  files and referencing the appropriate file in our

Docker Compose files.

Open an .env  file:

nano .env

Add the following values to the file:

~/rails-docker/.env
DATABASE_NAME=rails_development 

DATABASE_USER=sammy 

DATABASE_PASSWORD=shark 

DATABASE_HOST=database 

REDIS_HOST=redis

https://www.digitalocean.com/community/tutorials/how-to-use-postgresql-with-your-ruby-on-rails-application-on-ubuntu-18-04
https://12factor.net/config


In addition to setting our database name, user, and password, we've also set
a value for the DATABASE_HOST . The value, database , refers to the database

PostgreSQL service we will create using Docker Compose. We've also set a 
REDIS_HOST  to specify our redis  service.

Save and close the file when you are finished editing.

To create the sammy  database user, we can write an init.sql  script that we

can then mount to the database container when it starts.

Open the script file:

nano init.sql

Add the following code to create a sammy  user with administrative

privileges:

~/rails-docker/init.sql
CREATE USER sammy; 

ALTER USER sammy WITH SUPERUSER;

This script will create the appropriate user on the database and grant this
user administrative privileges.

Set appropriate permissions on the script:

chmod +x init.sql



Next, we'll configure Sidekiq to work with our containerized redis  service.

We can add an initializer to the config/initializers  directory, where

Rails looks for configuration settings once frameworks and plugins are
loaded, that sets a value for a Redis host.

Open a sidekiq.rb  file to specify these settings:

nano config/initializers/sidekiq.rb

Add the following code to the file to specify values for a REDIS_HOST  and R

EDIS_PORT :

~/rails-docker/config/initializers/sidekiq.rb
Sidekiq.configure_server do |config| 

  config.redis = { 

    host: ENV['REDIS_HOST'], 

    port: ENV['REDIS_PORT'] || '6379' 

  } 

end 

 

Sidekiq.configure_client do |config| 

  config.redis = { 

    host: ENV['REDIS_HOST'], 

    port: ENV['REDIS_PORT'] || '6379' 

  } 

end



Much like our database configuration settings, these settings give us the
ability to set our host and port parameters dynamically, allowing us to
substitute the appropriate values at runtime without having to modify the
application code itself. In addition to a REDIS_HOST , we have a default value

set for REDIS_PORT  in case it is not set elsewhere.

Save and close the file when you are finished editing.

Next, to ensure that our application's sensitive data is not copied to version
control, we can add .env  to our project's .gitignore  file, which tells Git

which files to ignore in our project. Open the file for editing:

nano .gitignore

At the bottom of the file, add an entry for .env :

~/rails-docker/.gitignore
yarn-debug.log* 

.yarn-integrity 

.env

Save and close the file when you are finished editing.

Next, we'll create a .dockerignore  file to set what should not be copied to

our containers. Open the file for editing:

.dockerignore



Add the following code to the file, which tells Docker to ignore some of the
things we don't need copied to our containers:

~/rails-docker/.dockerignore
.DS_Store 

.bin 

.git 

.gitignore 

.bundleignore 

.bundle 

.byebug_history 

.rspec 

tmp 

log 

test 

config/deploy 

public/packs 

public/packs-test 

node_modules 

yarn-error.log 

coverage/

Add .env  to the bottom of this file as well:



~/rails-docker/.dockerignore
. . . 

yarn-error.log 

coverage/ 

.env

Save and close the file when you are finished editing.

As a final step, we will create some seed data so that our application has a
few records when we start it up.

Open a file for the seed data in the db  directory:

nano db/seeds.rb

Add the following code to the file to create four demo sharks and one
sample post:

~/rails-docker/db/seeds.rb
# Adding demo sharks 

sharks = Shark.create([{ name: 'Great White', facts: 'Scary'

 }, { name: 'Megalodon', facts: 'Ancient' }, { name: 'Hammerhe

ad', facts: 'Hammer-like' }, { name: 'Speartooth', facts: 'End

angered' }]) 

Post.create(body: 'These sharks are misunderstood', shark: sha

rks.first)



This seed data will create four sharks and one post that is associated with
the first shark.

Save and close the file when you are finished editing.

With your application configured to work with PostgreSQL and your
environment variables created, you are ready to write your application
Dockerfile.

Step 3 — Writing the Dockerfile and Entrypoint Scripts

Your Dockerfile specifies what will be included in your application
container when it is created. Using a Dockerfile allows you to define your
container environment and avoid discrepancies with dependencies or
runtime versions.

Following these guidelines on building optimized containers, we will make
our image as efficient as possible by using an Alpine base and attempting to
minimize our image layers generally.

Open a Dockerfile in your current directory:

nano Dockerfile

Docker images are created using a succession of layered images that build
on one another. Our first step will be to add the base image for our
application, which will form the starting point of the application build.

Add the following code to the file to add the Ruby alpine image as a base:

https://www.digitalocean.com/community/tutorials/building-optimized-containers-for-kubernetes
https://alpinelinux.org/
https://hub.docker.com/_/ruby


~/rails-docker/Dockerfile
FROM ruby:2.5.1-alpine

The alpine  image is derived from the Alpine Linux project, and will help

us keep our image size down. For more information about whether or not
the alpine  image is the right choice for your project, please see the full

discussion under the Image Variants section of the Docker Hub Ruby
image page.

Some factors to consider when using alpine  in development: - Keeping

image size down will decrease page and resource load times, particularly if
you also keep volumes to a minimum. This helps keep your user experience
in development quick and closer to what it would be if you were working
locally in a non-containerized environment. - Having parity between
development and production images facilitates successful deployments.
Since teams often opt to use Alpine images in production for speed benefits,
developing with an Alpine base helps offset issues when moving to
production.

Next, set an environment variable to specify the Bundler version:

~/rails-docker/Dockerfile
. . . 

ENV BUNDLER_VERSION=2.0.2

https://hub.docker.com/_/ruby
https://bundler.io/


This is one of the steps we will take to avoid version conflicts between the
default bundler  version available in our environment and our application

code, which requires Bundler 2.0.2.

Next, add the packages that you need to work with the application to the
Dockerfile:



~/rails-docker/Dockerfile
. . .  

RUN apk add --update --no-cache \ 

      binutils-gold \ 

      build-base \ 

      curl \ 

      file \ 

      g++ \ 

      gcc \ 

      git \ 

      less \ 

      libstdc++ \ 

      libffi-dev \ 

      libc-dev \  

      linux-headers \ 

      libxml2-dev \ 

      libxslt-dev \ 

      libgcrypt-dev \ 

      make \ 

      netcat-openbsd \ 

      nodejs \ 

      openssl \ 

      pkgconfig \ 

      postgresql-dev \ 

      python \ 



      tzdata \ 

      yarn 

These packages include nodejs  and yarn , among others. Since our

application serves assets with webpack, we need to include Node.js and
Yarn for the application to work as expected.

Keep in mind that the alpine  image is extremely minimal: the packages

listed here are not exhaustive of what you might want or need in
development when you are containerizing your own application.

Next, install the appropriate bundler  version:

~/rails-docker/Dockerfile
. . .  

RUN gem install bundler -v 2.0.2

This step will guarantee parity between our containerized environment and
the specifications in this project's Gemfile.lock  file.

Now set the working directory for the application on the container:

~/rails-docker/Dockerfile
. . . 

WORKDIR /app

https://www.digitalocean.com/community/tutorials/how-to-add-stimulus-to-a-ruby-on-rails-application#step-4-%E2%80%94-installing-stimulus
https://nodejs.org/
https://yarnpkg.com/


Copy over your Gemfile  and Gemfile.lock :

~/rails-docker/Dockerfile
. . . 

COPY Gemfile Gemfile.lock ./

Copying these files as an independent step, followed by bundle install ,

means that the project gems do not need to be rebuilt every time you make
changes to your application code. This will work in conjunction with the
gem volume that we will include in our Compose file, which will mount
gems to your application container in cases where the service is recreated
but project gems remain the same.

Next, set the configuration options for the nokogiri  gem build:

~/rails-docker/Dockerfile
. . .  

RUN bundle config build.nokogiri --use-system-libraries 

. . .

This step builds nokigiri  with the libxml2 and libxslt library versions

that we added to the application container in the RUN apk add…  step above.

Next, install the project gems:

https://nokogiri.org/tutorials/installing_nokogiri.html#install-with-system-libraries


~/rails-docker/Dockerfile
. . .  

RUN bundle check || bundle install

This instruction checks that the gems are not already installed before
installing them.

Next, we'll repeat the same procedure that we used with gems with our
JavaScript packages and dependencies. First we'll copy package metadata,
then we'll install dependencies, and finally we'll copy the application code
into the container image.

To get started with the Javascript section of our Dockerfile, copy package.j

son  and yarn.lock  from your current project directory on the host to the

container:

~/rails-docker/Dockerfile
. . .  

COPY package.json yarn.lock ./

Then install the required packages with yarn install :

~/rails-docker/Dockerfile
. . .  

RUN yarn install --check-files



This instruction includes a --check-files  flag with the yarn  command, a

feature that makes sure any previously installed files have not been
removed. As in the case of our gems, we will manage the persistence of the
packages in the node_modules  directory with a volume when we write our

Compose file.

Finally, copy over the rest of the application code and start the application
with an entrypoint script:

~/rails-docker/Dockerfile
. . .  

COPY . ./  

 

ENTRYPOINT ["./entrypoints/docker-entrypoint.sh"]

Using an entrypoint script allows us to run the container as an executable.

The final Dockerfile will look like this:

https://docs.docker.com/engine/reference/builder/#entrypoint


~/rails-docker/Dockerfile
FROM ruby:2.5.1-alpine 

 

ENV BUNDLER_VERSION=2.0.2 

 

RUN apk add --update --no-cache \ 

      binutils-gold \ 

      build-base \ 

      curl \ 

      file \ 

      g++ \ 

      gcc \ 

      git \ 

      less \ 

      libstdc++ \ 

      libffi-dev \ 

      libc-dev \  

      linux-headers \ 

      libxml2-dev \ 

      libxslt-dev \ 

      libgcrypt-dev \ 

      make \ 

      netcat-openbsd \ 

      nodejs \ 

      openssl \ 

      pkgconfig \ 



      postgresql-dev \ 

      python \ 

      tzdata \ 

      yarn  

 

RUN gem install bundler -v 2.0.2 

 

WORKDIR /app 

 

COPY Gemfile Gemfile.lock ./ 

 

RUN bundle config build.nokogiri --use-system-libraries 

 

RUN bundle check || bundle install  

 

COPY package.json yarn.lock ./ 

 

RUN yarn install --check-files 

 

COPY . ./  

 

ENTRYPOINT ["./entrypoints/docker-entrypoint.sh"]

Save and close the file when you are finished editing.

Next, create a directory called entrypoints  for the entrypoint scripts:



mkdir entrypoints

This directory will include our main entrypoint script and a script for our
Sidekiq service.

Open the file for the application entrypoint script:

nano entrypoints/docker-entrypoint.sh

Add the following code to the file:

rails-docker/entrypoints/docker-entrypoint.sh
#!/bin/sh 

 

set -e 

 

if [ -f tmp/pids/server.pid ]; then 

  rm tmp/pids/server.pid 

fi 

 

bundle exec rails s -b 0.0.0.0

The first important line is set -e , which tells the /bin/sh  shell that runs

the script to fail fast if there are any problems later in the script. Next, the
script checks that tmp/pids/server.pid  is not present to ensure that there

won't be server conflicts when we start the application. Finally, the script
starts the Rails server with the bundle exec rails s  command. We use the 



-b  option with this command to bind the server to all IP addresses rather

than to the default, localhost . This invocation makes the Rails server route

incoming requests to the container IP rather than to the default localhost .

Save and close the file when you are finished editing.

Make the script executable:

chmod +x entrypoints/docker-entrypoint.sh

Next, we will create a script to start our sidekiq  service, which will

process our Sidekiq jobs. For more information about how this application
uses Sidekiq, please see How To Add Sidekiq and Redis to a Ruby on Rails
Application.

Open a file for the Sidekiq entrypoint script:

nano entrypoints/sidekiq-entrypoint.sh

Add the following code to the file to start Sidekiq:

https://www.digitalocean.com/community/tutorials/how-to-add-sidekiq-and-redis-to-a-ruby-on-rails-application


~/rails-docker/entrypoints/sidekiq-entrypoint.sh
#!/bin/sh 

 

set -e 

 

if [ -f tmp/pids/server.pid ]; then 

  rm tmp/pids/server.pid 

fi 

  

bundle exec sidekiq

This script starts Sidekiq in the context of our application bundle.

Save and close the file when you are finished editing. Make it executable:

chmod +x entrypoints/sidekiq-entrypoint.sh

With your entrypoint scripts and Dockerfile in place, you are ready to
define your services in your Compose file.

Step 4 — Defining Services with Docker Compose

Using Docker Compose, we will be able to run the multiple containers
required for our setup. We will define our Compose services in our main do

cker-compose.yml  file. A service in Compose is a running container, and

service definitions — which you will include in your docker-compose.yml

file — contain information about how each container image will run. The



Compose tool allows you to define multiple services to build multi-
container applications.

Our application setup will include the following services: - The application
itself - The PostgreSQL database - Redis - Sidekiq

We will also include a bind mount as part of our setup, so that any code
changes we make during development will be immediately synchronized
with the containers that need access to this code.

Note that we are not defining a test  service, since testing is outside of the

scope of this tutorial and series, but you could do so by following the
precedent we are using here for the sidekiq  service.

Open the docker-compose.yml  file:

nano docker-compose.yml

First, add the application service definition:

https://www.digitalocean.com/community/tutorial_series/rails-on-containers


~/rails-docker/docker-compose.yml
version: '3.4' 

 

services: 

  app:  

    build: 

      context: . 

      dockerfile: Dockerfile 

    depends_on: 

      - database 

      - redis 

    ports:  

      - "3000:3000" 

    volumes: 

      - .:/app 

      - gem_cache:/usr/local/bundle/gems 

      - node_modules:/app/node_modules 

    env_file: .env 

    environment: 

      RAILS_ENV: development

The app  service definition includes the following options: - build : This

defines the configuration options, including the context  and dockerfile ,

that will be applied when Compose builds the application image. If you
wanted to use an existing image from a registry like Docker Hub, you could
use the image instruction instead, with information about your username,

https://hub.docker.com/
https://docs.docker.com/compose/compose-file/#image


repository, and image tag. - context : This defines the build context for the

image build — in this case, the current project directory. - dockerfile : This

specifies the Dockerfile  in your current project directory as the file

Compose will use to build the application image. - depends_on : This sets

up the database  and redis  containers first so that they are up and running

before app . - ports : This maps port 3000  on the host to port 3000  on the

container. - volumes : We are including two types of mounts here: - The first

is a bind mount that mounts our application code on the host to the /app

directory on the container. This will facilitate rapid development, since any
changes you make to your host code will be populated immediately in the
container. - The second is a named volume, gem_cache . When the bundle i

nstall  instruction runs in the container, it will install the project gems.

Adding this volume means that if you recreate the container, the gems will
be mounted to the new container. This mount presumes that there haven't
been any changes to the project, so if you do make changes to your project
gems in development, you will need to remember to delete this volume
before recreating your application service. - The third volume is a named
volume for the node_modules  directory. Rather than having node_modules

mounted to the host, which can lead to package discrepancies and
permissions conflicts in development, this volume will ensure that the
packages in this directory are persisted and reflect the current state of the
project. Again, if you modify the project's Node dependencies, you will
need to remove and recreate this volume. - env_file : This tells Compose

that we would like to add environment variables from a file called .env

located in the build context. - environment : Using this option allows us to

https://docs.docker.com/storage/bind-mounts/
https://docs.docker.com/storage/volumes/


set a non-sensitive environment variable, passing information about the
Rails environment to the container.

Next, below the app  service definition, add the following code to define

your database  service:

~/rails-docker/docker-compose.yml
. . . 

  database: 

    image: postgres:12.1 

    volumes: 

      - db_data:/var/lib/postgresql/data 

      - ./init.sql:/docker-entrypoint-initdb.d/init.sql

Unlike the app  service, the database  service pulls a postgres  image

directly from Docker Hub. Note that we're also pinning the version here,
rather than setting it to latest  or not specifying it (which defaults to lates

t ). This way, we can ensure that this setup works with the versions

specified here and avoid unexpected surprises with breaking code changes
to the image.

We are also including a db_data  volume here, which will persist our

application data in between container starts. Additionally, we've mounted
our init.sql  startup script to the appropriate directory, docker-entrypoint

-initdb.d/  on the container, in order to create our sammy  database user.

After the image entrypoint creates the default postgres  user and database,

https://hub.docker.com/


it will run any scripts found in the docker-entrypoint-initdb.d/  directory,

which you can use for necessary initialization tasks. For more details, look
at the Initialization scripts section of the PostgreSQL image
documentation

Next, add the redis  service definition:

~/rails-docker/docker-compose.yml
. . . 

  redis: 

    image: redis:5.0.7

Like the database  service, the redis  service uses an image from Docker

Hub. In this case, we are not persisting the Sidekiq job cache.

Finally, add the sidekiq  service definition:

https://hub.docker.com/_/postgres


~/rails-docker/docker-compose.yml
. . . 

  sidekiq: 

    build: 

      context: . 

      dockerfile: Dockerfile 

    depends_on: 

      - app       

      - database 

      - redis 

    volumes: 

      - .:/app 

      - gem_cache:/usr/local/bundle/gems 

      - node_modules:/app/node_modules 

    env_file: .env 

    environment: 

      RAILS_ENV: development 

    entrypoint: ./entrypoints/sidekiq-entrypoint.sh

Our sidekiq  service resembles our app  service in a few respects: it uses

the same build context and image, environment variables, and volumes.
However, it is dependent on the app , redis , and database  services, and so

will be the last to start. Additionally, it uses an entrypoint  that will

override the entrypoint set in the Dockerfile. This entrypoint  setting points

to entrypoints/sidekiq-entrypoint.sh , which includes the appropriate

command to start the sidekiq  service.



As a final step, add the volume definitions below the sidekiq  service

definition:

~/rails-docker/docker-compose.yml
. . . 

volumes: 

  gem_cache: 

  db_data: 

  node_modules:

Our top-level volumes key defines the volumes gem_cache , db_data , and n

ode_modules . When Docker creates volumes, the contents of the volume are

stored in a part of the host filesystem, /var/lib/docker/volumes/ , that's

managed by Docker. The contents of each volume are stored in a directory
under /var/lib/docker/volumes/  and get mounted to any container that

uses the volume. In this way, the shark information data that our users will
create will persist in the db_data  volume even if we remove and recreate

the database  service.

The finished file will look like this:



~/rails-docker/docker-compose.yml
version: '3.4' 

 

services: 

  app:  

    build: 

      context: . 

      dockerfile: Dockerfile 

    depends_on:      

      - database 

      - redis 

    ports:  

      - "3000:3000" 

    volumes: 

      - .:/app 

      - gem_cache:/usr/local/bundle/gems 

      - node_modules:/app/node_modules 

    env_file: .env 

    environment: 

      RAILS_ENV: development 

 

  database: 

    image: postgres:12.1 

    volumes: 

      - db_data:/var/lib/postgresql/data 

      - ./init.sql:/docker-entrypoint-initdb.d/init.sql 



 

  redis: 

    image: redis:5.0.7 

 

  sidekiq: 

    build: 

      context: . 

      dockerfile: Dockerfile 

    depends_on: 

      - app       

      - database 

      - redis 

    volumes: 

      - .:/app 

      - gem_cache:/usr/local/bundle/gems 

      - node_modules:/app/node_modules 

    env_file: .env 

    environment: 

      RAILS_ENV: development 

    entrypoint: ./entrypoints/sidekiq-entrypoint.sh 

 

volumes: 

  gem_cache: 

  db_data: 

  node_modules:     



Save and close the file when you are finished editing.

With your service definitions written, you are ready to start the application.

Step 5 — Testing the Application

With your docker-compose.yml  file in place, you can create your services

with the docker-compose up command and seed your database. You can also

test that your data will persist by stopping and removing your containers
with docker-compose down and recreating them.

First, build the container images and create the services by running docker-

compose up  with the -d  flag, which will run the containers in the

background:

docker-compose up -d

You will see output that your services have been created:

Output
Creating rails-docker_database_1 ... done 

Creating rails-docker_redis_1    ... done 

Creating rails-docker_app_1      ... done 

Creating rails-docker_sidekiq_1  ... done

You can also get more detailed information about the startup processes by
displaying the log output from the services:

https://docs.docker.com/compose/reference/up/
https://docs.docker.com/compose/reference/down/


docker-compose logs 

You will see something like this if everything has started correctly:



Output
sidekiq_1   | 2019-12-19T15:05:26.365Z pid=6 tid=grk7r6xly INF

O: Booting Sidekiq 6.0.3 with redis options {:host=>"redis", :

port=>"6379", :id=>"Sidekiq-server-PID-6", :url=>nil} 

sidekiq_1   | 2019-12-19T15:05:31.097Z pid=6 tid=grk7r6xly INF

O: Running in ruby 2.5.1p57 (2018-03-29 revision 63029) [x86_6

4-linux-musl] 

sidekiq_1   | 2019-12-19T15:05:31.097Z pid=6 tid=grk7r6xly INF

O: See LICENSE and the LGPL-3.0 for licensing details. 

sidekiq_1   | 2019-12-19T15:05:31.097Z pid=6 tid=grk7r6xly INF

O: Upgrade to Sidekiq Pro for more features and support: htt

p://sidekiq.org 

app_1       | => Booting Puma 

app_1       | => Rails 5.2.3 application starting in developme

nt  

app_1       | => Run `rails server -h` for more startup option

s 

app_1       | Puma starting in single mode... 

app_1       | * Version 3.12.1 (ruby 2.5.1-p57), codename: Lla

mas in Pajamas 

app_1       | * Min threads: 5, max threads: 5 

app_1       | * Environment: development 

app_1       | * Listening on tcp://0.0.0.0:3000 

app_1       | Use Ctrl-C to stop 

. . . 

database_1  | PostgreSQL init process complete; ready for star



t up. 

database_1  |  

database_1  | 2019-12-19 15:05:20.160 UTC [1] LOG:  starting P

ostgreSQL 12.1 (Debian 12.1-1.pgdg100+1) on x86_64-pc-linux-gn

u, compiled by gcc (Debian 8.3.0-6) 8.3.0, 64-bit 

database_1  | 2019-12-19 15:05:20.160 UTC [1] LOG:  listening

 on IPv4 address "0.0.0.0", port 5432 

database_1  | 2019-12-19 15:05:20.160 UTC [1] LOG:  listening

 on IPv6 address "::", port 5432 

database_1  | 2019-12-19 15:05:20.163 UTC [1] LOG:  listening

 on Unix socket "/var/run/postgresql/.s.PGSQL.5432" 

database_1  | 2019-12-19 15:05:20.182 UTC [63] LOG:  database

 system was shut down at 2019-12-19 15:05:20 UTC 

database_1  | 2019-12-19 15:05:20.187 UTC [1] LOG:  database s

ystem is ready to accept connections 

. . .  

redis_1     | 1:M 19 Dec 2019 15:05:18.822 * Ready to accept c

onnections

You can also check the status of your containers with docker-compose ps:

docker-compose ps

You will see output indicating that your containers are running:

https://docs.docker.com/compose/reference/ps/


Output
         Name                        Command               Sta

te           Ports          

--------------------------------------------------------------

--------------------------- 

rails-docker_app_1        ./entrypoints/docker-resta ...   Up      

0.0.0.0:3000->3000/tcp 

rails-docker_database_1   docker-entrypoint.sh postgres    Up      

5432/tcp               

rails-docker_redis_1      docker-entrypoint.sh redis ...   Up      

6379/tcp               

rails-docker_sidekiq_1    ./entrypoints/sidekiq-entr ...   Up      

Next, create and seed your database and run migrations on it with the
following docker-compose exec command:

docker-compose exec app bundle exec rake db:setup db:migrate

The docker-compose exec  command allows you to run commands in your

services; we are using it here to run rake db:setup  and db:migrate  in the

context of our application bundle to create and seed the database and run
migrations. As you work in development, docker-compose exec  will prove

useful to you when you want to run migrations against your development
database.

You will see the following output after running this command:

https://docs.docker.com/compose/reference/exec/


Output
Created database 'rails_development' 

Database 'rails_development' already exists 

-- enable_extension("plpgsql") 

   -> 0.0140s 

-- create_table("endangereds", {:force=>:cascade}) 

   -> 0.0097s 

-- create_table("posts", {:force=>:cascade}) 

   -> 0.0108s 

-- create_table("sharks", {:force=>:cascade}) 

   -> 0.0050s 

-- enable_extension("plpgsql") 

   -> 0.0173s 

-- create_table("endangereds", {:force=>:cascade}) 

   -> 0.0088s 

-- create_table("posts", {:force=>:cascade}) 

   -> 0.0128s 

-- create_table("sharks", {:force=>:cascade}) 

   -> 0.0072s

With your services running, you can visit localhost:3000  or http://your_

server_ip:3000  in the browser. You will see a landing page that looks like

this:



Sidekiq App Home

We can now test data persistence. Create a new shark by clicking on Get
Shark Info button, which will take you to the sharks/index  route:

Sharks Index Page with Seeded Data



To verify that the application is working, we can add some demo
information to it. Click on New Shark. You will be prompted for a
username (sammy) and password (shark), thanks to the project's
authentication settings.

On the New Shark page, input “Mako” into the Name field and “Fast” into
the Facts field.

Click on the Create Shark button to create the shark. Once you have
created the shark, click Home on the site's navbar to get back to the main
application landing page. We can now test that Sidekiq is working.

Click on the Which Sharks Are in Danger? button. Since you have not
uploaded any endangered sharks, this will take you to the endangered  inde

x  view:

Endangered Index View

https://www.digitalocean.com/community/tutorials/how-to-build-a-ruby-on-rails-application#step-%E2%80%94-adding-authentication


Click on Import Endangered Sharks to import the sharks. You will see a
status message telling you that the sharks have been imported:

Begin Import

You will also see the beginning of the import. Refresh your page to see the
entire table:



Refresh Table

Thanks to Sidekiq, our large batch upload of endangered sharks has
succeeded without locking up the browser or interfering with other
application functionality.

Click on the Home button at the bottom of the page, which will bring you
back to the application main page:



Sidekiq App Home

From here, click on Which Sharks Are in Danger? again. You will see the
uploaded sharks once again.

Now that we know our application is working properly, we can test our data
persistence.

Back at your terminal, type the following command to stop and remove
your containers:

docker-compose down

Note that we are not including the --volumes  option; hence, our db_data

volume is not removed.

The following output confirms that your containers and network have been
removed:



Output
Stopping rails-docker_sidekiq_1  ... done 

Stopping rails-docker_app_1      ... done 

Stopping rails-docker_database_1 ... done 

Stopping rails-docker_redis_1    ... done 

Removing rails-docker_sidekiq_1  ... done 

Removing rails-docker_app_1      ... done 

Removing rails-docker_database_1 ... done 

Removing rails-docker_redis_1    ... done 

Removing network rails-docker_default

Recreate the containers:

docker-compose up -d

Open the Rails console on the app  container with docker-compose exec

and bundle exec rails console :

docker-compose exec app bundle exec rails console

At the prompt, inspect the last  Shark record in the database:

Shark.last.inspect

You will see the record you just created:



IRB session
  Shark Load (1.0ms)  SELECT  "sharks".* FROM "sharks" ORDER B

Y "sharks"."id" DESC LIMIT $1  [["LIMIT", 1]] 

=> "#<Shark id: 5, name: \"Mako\", facts: \"Fast\", created_a

t: \"2019-12-20 14:03:28\", updated_at: \"2019-12-20 14:03:28

\">"

You can then check to see that your Endangered  sharks have been persisted

with the following command:

Endangered.all.count

IRB session
   (0.8ms)  SELECT COUNT(*) FROM "endangereds" 

=> 73

Your db_data  volume was successfully mounted to the recreated database

service, making it possible for your app  service to access the saved data. If

you navigate directly to the index  shark  page by visiting localhost:3000/

sharks  or http://your_server_ip:3000/sharks  you will also see that

record displayed:



Sharks Index Page with Mako

Your endangered sharks will also be at the localhost:3000/endangered/da

ta  or http://your_server_ip:3000/endangered/data  view:

Refresh Table



Your application is now running on Docker containers with data persistence
and code synchronization enabled. You can go ahead and test out local code
changes on your host, which will be synchronized to your container thanks
to the bind mount we defined as part of the app  service.

Conclusion

By following this tutorial, you have created a development setup for your
Rails application using Docker containers. You've made your project more
modular and portable by extracting sensitive information and decoupling
your application's state from your code. You have also configured a
boilerplate docker-compose.yml  file that you can revise as your

development needs and requirements change.

As you develop, you may be interested in learning more about designing
applications for containerized and Cloud Native workflows. Please see
Architecting Applications for Kubernetes and Modernizing Applications for
Kubernetes for more information on these topics. Or, if you would like to
invest in a Kubernetes learning sequence, please have a look at out
Kubernetes for Full-Stack Developers curriculum.

To learn more about the application code itself, please see the other tutorials
in this series: - How To Build a Ruby on Rails Application - How To Create
Nested Resources for a Ruby on Rails Application - How To Add Stimulus
to a Ruby on Rails Application - How To Add Bootstrap to a Ruby on Rails
Application - How To Add Sidekiq and Redis to a Ruby on Rails
Application

https://12factor.net/config
https://github.com/cncf/toc/blob/master/DEFINITION.md
https://www.digitalocean.com/community/tutorials/architecting-applications-for-kubernetes
https://www.digitalocean.com/community/tutorials/modernizing-applications-for-kubernetes
https://www.digitalocean.com/community/curriculums/kubernetes-for-full-stack-developers
https://www.digitalocean.com/community/tutorial_series/rails-on-containers
https://www.digitalocean.com/community/tutorials/how-to-build-a-ruby-on-rails-application
https://www.digitalocean.com/community/tutorials/how-to-create-nested-resources-for-a-ruby-on-rails-application
https://www.digitalocean.com/community/tutorials/how-to-add-stimulus-to-a-ruby-on-rails-application
https://www.digitalocean.com/community/tutorials/how-to-add-bootstrap-to-a-ruby-on-rails-application
https://www.digitalocean.com/community/tutorials/how-to-add-sidekiq-and-redis-to-a-ruby-on-rails-application


How To Migrate a Docker Compose
Workflow for Rails Development to
Kubernetes

Written by Kathleen Juell and Jamon Camisso

When building modern, stateless applications, containerizing your
application's components is the first step in deploying and scaling on
distributed platforms. If you have used Docker Compose in development,
you will have modernized and containerized your application by:

Extracting necessary configuration information from your code
Offloading your application's state
Packaging your application for repeated use.

You will also have written service definitions that specify how your
container images should run.

To run your services on a distributed platform like Kubernetes, you will
need to translate your Compose service definitions to Kubernetes objects.
This will allow you to scale your application with resiliency. One tool that
can speed up the translation process to Kubernetes is kompose, a
conversion tool that helps developers move Compose workflows to
container orchestrators like Kubernetes or OpenShift.

In this tutorial, you will translate Compose services to Kubernetes objects
using kompose. You will use the object definitions that kompose provides
as a starting point and make adjustments to ensure that your setup will use

https://www.digitalocean.com/community/tutorials/how-to-migrate-a-docker-compose-workflow-for-rails-development-to-kubernetes
https://www.digitalocean.com/community/tutorials/architecting-applications-for-kubernetes#containerizing-application-components
https://docs.docker.com/compose/
https://kubernetes.io/
http://assets.digitalocean.com/white-papers/running-digitalocean-kubernetes.pdf
http://kompose.io/
https://www.openshift.com/
https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/


Secrets, Services, and PersistentVolumeClaims in the way that Kubernetes
expects. By the end of the tutorial, you will have a single-instance Rails
application with a PostgreSQL database running on a Kubernetes cluster.
This setup will mirror the functionality of the code described in
Containerizing a Ruby on Rails Application for Development with Docker
Compose and will be a good starting point to build out a production-ready
solution that will scale with your needs.

Prerequisites

A Kubernetes 1.19+ cluster with role-based access control (RBAC)
enabled. This setup will use a DigitalOcean Kubernetes cluster, but
you are free to create a cluster using another method.
The kubectl  command-line tool installed on your local machine or

development server and configured to connect to your cluster. You can
read more about installing kubectl  in the official documentation.

Docker installed on your local machine or development server. If you
are working with Ubuntu 20.04, follow Steps 1 and 2 of How To
Install and Use Docker on Ubuntu 20.04; otherwise, follow the official
documentation for information about installing on other operating
systems. Be sure to add your non-root user to the docker  group, as

described in Step 2 of the linked tutorial.
A Docker Hub account. For an overview of how to set this up, refer to
this introduction to Docker Hub.

Step 1 — Installing kompose

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://rubyonrails.org/
https://www.postgresql.org/
https://www.digitalocean.com/community/tutorials/containerizing-a-ruby-on-rails-application-for-development-with-docker-compose
https://www.digitalocean.com/products/kubernetes/
https://www.digitalocean.com/community/tutorials/how-to-create-a-kubernetes-cluster-using-kubeadm-on-ubuntu-18-04
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://www.docker.com/
https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-on-ubuntu-20-04
https://docs.docker.com/install/
https://hub.docker.com/
https://docs.docker.com/docker-hub/


To begin using kompose, navigate to the project's GitHub Releases page,
and copy the link to the current release (version 1.22.0 as of this writing).
Paste this link into the following curl  command to download the latest

version of kompose:

curl -L https://github.com/kubernetes/kompose/releases/downloa

d/v1.22.0/kompose-linux-amd64 -o kompose

For details about installing on non-Linux systems, please refer to the
installation instructions.

Make the binary executable:

chmod +x kompose

Move it to your PATH :

sudo mv ./kompose /usr/local/bin/kompose

To verify that it has been installed properly, you can do a version check:

kompose version

If the installation was successful, you will see output like the following:

Output
1.22.0 (955b78124)

https://github.com/kubernetes/kompose/releases
https://github.com/kubernetes/kompose/blob/master/README.md#installation


With kompose  installed and ready to use, you can now clone the Node.js

project code that you will be translating to Kubernetes.

Step 2 — Cloning and Packaging the Application

To use our application with Kubernetes, we will need to clone the project
code and package the application so that the kubelet  service can pull the

image.

Our first step will be to clone the rails-sidekiq repository from the
DigitalOcean Community GitHub account. This repository includes the
code from the setup described in Containerizing a Ruby on Rails
Application for Development with Docker Compose, which uses a demo
Rails application to demonstrate how to set up a development environment
using Docker Compose. You can find more information about the
application itself in the series Rails on Containers.

Clone the repository into a directory called rails_project :

git clone https://github.com/do-community/rails-sidekiq.git ra

ils_project

Navigate to the rails_project  directory:

cd rails_project

Now checkout the code for this tutorial from the compose-workflow  branch:

https://github.com/do-community/rails-sidekiq.git
https://github.com/do-community
https://www.digitalocean.com/community/tutorials/containerizing-a-ruby-on-rails-application-for-development-with-docker-compose
https://www.digitalocean.com/community/tutorial_series/rails-on-containers


git checkout compose-workflow

Output
Branch 'compose-workflow' set up to track remote branch 'compo

se-workflow' from 'origin'. 

Switched to a new branch 'compose-workflow'

The rails_project  directory contains files and directories for a shark

information application that works with user input. It has been modernized
to work with containers: sensitive and specific configuration information
has been removed from the application code and refactored to be injected at
runtime, and the application's state has been offloaded to a PostgreSQL
database.

For more information about designing modern, stateless applications, please
see Architecting Applications for Kubernetes and Modernizing Applications
for Kubernetes.

The project directory includes a Dockerfile  with instructions for building

the application image. Let's build the image now so that you can push it to
your Docker Hub account and use it in your Kubernetes setup.

Using the docker build command, build the image with the -t  flag, which

allows you to tag it with a memorable name. In this case, tag the image with
your Docker Hub username and name it rails-kubernetes  or a name of

your own choosing:

https://www.digitalocean.com/community/tutorials/architecting-applications-for-kubernetes
https://www.digitalocean.com/community/tutorials/modernizing-applications-for-kubernetes
https://docs.docker.com/engine/reference/commandline/build/


docker build -t your_dockerhub_user/rails-kubernetes .

The .  in the command specifies that the build context is the current

directory.

It will take a minute or two to build the image. Once it is complete, check
your images:

docker images

You will see the following output:

Output
REPOSITORY                                TAG                

 IMAGE ID            CREATED             SIZE 

your_dockerhub_user/rails-kubernetes     latest              2

4f7e88b6ef2        2 days ago          606MB 

alpine                                    latest             

 d6e46aa2470d        6 weeks ago         5.57MB

Next, log in to the Docker Hub account you created in the prerequisites:

docker login -u your_dockerhub_user

When prompted, enter your Docker Hub account password. Logging in this
way will create a ~/.docker/config.json  file in your user's home directory

with your Docker Hub credentials.



Push the application image to Docker Hub with the docker push command.

Remember to replace your_dockerhub_user  with your own Docker Hub

username:

docker push your_dockerhub_user/rails-kubernetes

You now have an application image that you can pull to run your
application with Kubernetes. The next step will be to translate your
application service definitions to Kubernetes objects.

Step 3 — Translating Compose Services to Kubernetes
Objects with kompose

Our Docker Compose file, here called docker-compose.yml , lays out the

definitions that will run our services with Compose. A service in Compose
is a running container, and service definitions contain information about
how each container image will run. In this step, we will translate these
definitions to Kubernetes objects by using kompose  to create yaml  files.

These files will contain specs for the Kubernetes objects that describe their
desired state.

We will use these files to create different types of objects: Services, which
will ensure that the Pods running our containers remain accessible;
Deployments, which will contain information about the desired state of our
Pods; a PersistentVolumeClaim to provision storage for our database data; a
ConfigMap for environment variables injected at runtime; and a Secret for
our application's database user and password. Some of these definitions will

https://docs.docker.com/engine/reference/commandline/push/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/
https://kubernetes.io/docs/concepts/configuration/secret/


be in the files kompose  will create for us, and others we will need to create

ourselves.

First, we will need to modify some of the definitions in our docker-compos

e.yml  file to work with Kubernetes. We will include a reference to our

newly-built application image in our app  service definition and remove the

bind mounts, volumes, and additional commands that we used to run the
application container in development with Compose. Additionally, we'll
redefine both containers' restart policies to be in line with the behavior
Kubernetes expects.

If you have followed the steps in this tutorial and checked out the
`compose-workflow` branch with git, then you should have a docker-compo

se.yml  file in your working directory.

If you don't have a docker-compose.yml  then be sure to visit the previous

tutorial in this series, Containerizing a Ruby on Rails Application for
Development with Docker Compose, and paste the contents from the linked
section into a new docker-compose.yml  file.

Open the file with nano  or your favorite editor:

nano docker-compose.yml

The current definition for the app  application service looks like this:

https://docs.docker.com/storage/bind-mounts/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/compose/compose-file/#command
https://github.com/kubernetes/kompose/blob/master/docs/user-guide.md#restart
https://www.digitalocean.com/community/tutorials/containerizing-a-ruby-on-rails-application-for-development-with-docker-compose#step-4-%E2%80%94-defining-services-with-docker-compose


~/rails_project/docker-compose.yml
. . . 

services: 

  app: 

    build: 

      context: . 

      dockerfile: Dockerfile 

    depends_on: 

      - database 

      - redis 

    ports: 

      - "3000:3000" 

    volumes: 

      - .:/app 

      - gem_cache:/usr/local/bundle/gems 

      - node_modules:/app/node_modules 

    env_file: .env 

    environment: 

      RAILS_ENV: development 

. . .

Make the following edits to your service definition:

Replace the build:  line with image: your_dockerhub_user/rails-kub

ernetes



Remove the following context: . , and dockerfile: Dockerfile

lines.
Remove the volumes  list.

The finished service definition will now look like this:

~/rails_project/docker-compose.yml
. . . 

services: 

  app: 

    image: your_dockerhub_user/rails-kubernetes 

    depends_on: 

      - database 

      - redis 

    ports: 

      - "3000:3000" 

    env_file: .env 

    environment: 

      RAILS_ENV: development 

. . .

Next, scroll down to the database  service definition and make the

following edits:

Remove the - ./init.sql:/docker-entrypoint-initdb.d/init.sql

volume line. Instead of using values from the local SQL file, we will



pass the values for our POSTGRES_USER  and POSTGRES_PASSWORD  to the

database container using the Secret we will create in Step 4.
Add a ports:  section that will make PostgreSQL available inside your

Kubernetes cluster on port 5432.
Add an environment:  section with a PGDATA  variable that points to a

directory inside /var/lib/postgresql/data . This setting is required

when PostgreSQL is configured to use block storage, since the
database engine expects to find its data files in a sub-directory.

The database  service definition should look like this when you are finished

editing it:

~/rails_project/docker-compose.yml
. . . 

  database: 

    image: postgres:12.1 

    volumes: 

      - db_data:/var/lib/postgresql/data 

    ports: 

      - "5432:5432" 

    environment: 

      PGDATA: /var/lib/postgresql/data/pgdata 

. . .

Next, edit the redis  service definition to expose its default TCP port by

adding a ports:  section with the default 6379 port. Adding the ports:



section will make Redis available inside your Kubernetes cluster. Your
edited redis  service should resemble the following:

~/rails_project/docker-compose.yml
. . . 

  redis: 

    image: redis:5.0.7 

    ports: 

      - "6379:6379"

After editing the redis  section of the file, continue to the sidekiq  service

definition. Just as with the app  service, you'll need to switch from building

a local docker image to pulling from Docker Hub. Make the following edits
to your sidekiq  service definition:

Replace the build:  line with image: your_dockerhub_user/rails-kub

ernetes

Remove the following context: . , and dockerfile: Dockerfile

lines.
Remove the volumes  list.

Your edited sidekiq  definition should look like this:



~/rails_project/docker-compose.yml
. . . 

  sidekiq: 

    image: your_dockerhub_user/rails-kubernetes 

    depends_on: 

      - app 

      - database 

      - redis 

    env_file: .env 

    environment: 

      RAILS_ENV: development 

    entrypoint: ./entrypoints/sidekiq-entrypoint.sh 

. . .

Finally, at the bottom of the file, remove the gem_cache  and node_modules

volumes from the top-level volumes  key. The key will now look like this:

~/rails_project/docker-compose.yml
... 

volumes: 

  db_data:

Save and close the file when you are finished editing.

For reference, your completed docker-compose.yml  file should contain the

following:



~/rails_project/docker-compose.yml
 

version: '3' 

 

services: 

  app: 

    image: your_dockerhub_user/rails-kubernetes 

    depends_on: 

      - database 

      - redis 

    ports: 

      - "3000:3000" 

    env_file: .env 

    environment: 

      RAILS_ENV: development 

 

  database: 

    image: postgres:12.1 

    volumes: 

      - db_data:/var/lib/postgresql/data 

    ports: 

      - "5432:5432" 

    environment: 

      PGDATA: /var/lib/postgresql/data/pgdata 

 

  redis: 



    image: redis:5.0.7 

    ports: 

      - "6379:6379" 

 

  sidekiq: 

    image: your_dockerhub_user/rails-kubernetes 

    depends_on: 

      - app 

      - database 

      - redis 

    env_file: .env 

    environment: 

      RAILS_ENV: development 

    entrypoint: ./entrypoints/sidekiq-entrypoint.sh 

 

volumes: 

  db_data:

Before translating our service definitions, we will need to write the .env

file that kompose  will use to create the ConfigMap with our non-sensitive

information. Please see Step 2 of Containerizing a Ruby on Rails
Application for Development with Docker Compose for a longer
explanation of this file.

In that tutorial, we added .env  to our .gitignore  file to ensure that it

would not copy to version control. This means that it did not copy over

https://www.digitalocean.com/community/tutorials/containerizing-a-ruby-on-rails-application-for-development-with-docker-compose#step-2-%E2%80%94-configuring-the-application-to-work-with-postgresql-and-redis
https://www.digitalocean.com/community/tutorials/containerizing-a-ruby-on-rails-application-for-development-with-docker-compose#step-2-%E2%80%94-configuring-the-application-to-work-with-postgresql-and-redis


when we cloned the rails-sidekiq repository in Step 2 of this tutorial. We
will therefore need to recreate it now.

Create the file:

nano .env

kompose  will use this file to create a ConfigMap for our application.

However, instead of assigning all of the variables from the app  service

definition in our Compose file, we will only add settings for the
PostgreSQL and Redis. We will assign the database name, username, and
password separately when we manually create a Secret object in Step 4.

Add the following port and database name information to the .env  file.

Feel free to rename your database if you would like:

~/rails_project/.env
DATABASE_HOST=database 

DATABASE_PORT=5432 

REDIS_HOST=redis 

REDIS_PORT=6379

Save and close the file when you are finished editing.

You are now ready to create the files with your object specs. kompose  offers

multiple options for translating your resources. You can: - Create yaml  files

based on the service definitions in your docker-compose.yml  file with komp

https://github.com/do-community/rails-sidekiq.git
https://github.com/kubernetes/kompose/blob/master/docs/user-guide.md


ose convert . - Create Kubernetes objects directly with kompose up . -

Create a Helm chart with kompose convert -c .

For now, we will convert our service definitions to yaml  files and then add

to and revise the files that kompose  creates.

Convert your service definitions to yaml  files with the following command:

kompose convert

After you run this command, kompose  will output information about the

files it has created:

Output
INFO Kubernetes file "app-service.yaml" created    

INFO Kubernetes file "database-service.yaml" created 

INFO Kubernetes file "redis-service.yaml" created 

INFO Kubernetes file "app-deployment.yaml" created 

INFO Kubernetes file "env-configmap.yaml" created 

INFO Kubernetes file "database-deployment.yaml" created 

INFO Kubernetes file "db-data-persistentvolumeclaim.yaml" crea

ted 

INFO Kubernetes file "redis-deployment.yaml" created 

INFO Kubernetes file "sidekiq-deployment.yaml" created

These include yaml  files with specs for the Rails application Service,

Deployment, and ConfigMap, as well as for the db-data

https://helm.sh/


PersistentVolumeClaim and PostgreSQL database Deployment. Also
included are files for Redis and Sidekiq respectively.

To keep these manifests out of the main directory for your Rails project,
create a new directory called k8s-manifests  and then use the mv  command

to move the generated files into it:

mkdir k8s-manifests 

mv *.yaml k8s-manifests

Finally, cd  into the k8s-manifests  directory. We'll work from inside this

directory from now on to keep things tidy:

cd k8s-manifests

These files are a good starting point, but in order for our application's
functionality to match the setup described in Containerizing a Ruby on
Rails Application for Development with Docker Compose we will need to
make a few additions and changes to the files that kompose  has generated.

Step 4 — Creating Kubernetes Secrets

In order for our application to function in the way we expect, we will need
to make a few modifications to the files that kompose  has created. The first

of these changes will be generating a Secret for our database user and
password and adding it to our application and database Deployments.
Kubernetes offers two ways of working with environment variables:
ConfigMaps and Secrets. kompose  has already created a ConfigMap with

https://www.digitalocean.com/community/tutorials/containerizing-a-ruby-on-rails-application-for-development-with-docker-compose


the non-confidential information we included in our .env  file, so we will

now create a Secret with our confidential information: our database name,
username and password.

The first step in manually creating a Secret will be to convert the data to
base64, an encoding scheme that allows you to uniformly transmit data,
including binary data.

First convert the database name to base64 encoded data:

echo -n 'your_database_name' | base64

Note down the encoded value.

Next convert your database username:

echo -n 'your_database_username' | base64

Again record the value you see in the output.

Finally, convert your password:

echo -n 'your_database_password' | base64

Take note of the value in the output here as well.

Open a file for the Secret:

nano secret.yaml

https://en.wikipedia.org/wiki/Base64


Note: Kubernetes objects are typically defined using YAML, which strictly
forbids tabs and requires two spaces for indentation. If you would like to
check the formatting of any of your yaml  files, you can use a linter or test

the validity of your syntax using kubectl create  with the --dry-run  and -

-validate  flags:

kubectl create -f your_yaml_file.yaml --dry-run --validate=tru

e

In general, it is a good idea to validate your syntax before creating
resources with kubectl .

Add the following code to the file to create a Secret that will define your DA

TABASE_NAME , DATABASE_USER  and DATABASE_PASSWORD  using the encoded

values you just created. Be sure to replace the highlighted placeholder
values here with your encoded database name, username and password:

~/rails_project/k8s-manifests/secret.yaml
apiVersion: v1 

kind: Secret 

metadata: 

  name: database-secret 

data: 

  DATABASE_NAME: your_database_name 

  DATABASE_PASSWORD: your_encoded_password 

  DATABASE_USER: your_encoded_username

https://kubernetes.io/docs/concepts/overview/object-management-kubectl/imperative-config/
https://yaml.org/
http://www.yamllint.com/


We have named the Secret object database-secret , but you are free to

name it anything you would like.

These secrets are used with the Rails application so that it can connect to
PostgreSQL. However, the database itself needs to be initialized with these
same values. So next, copy the three lines and paste them at the end of the
file. Edit the last three lines and change the DATABASE  prefix for each

variable to POSTGRES . Finally change the POSTGRES_NAME  variable to read PO

STGRES_DB .

Your final secret.yaml  file should contain the following:

~/rails_project/k8s-manifests/secret.yaml
apiVersion: v1 

kind: Secret 

metadata: 

  name: database-secret 

data: 

  DATABASE_NAME: your_database_name 

  DATABASE_PASSWORD: your_encoded_password 

  DATABASE_USER: your_encoded_username 

  POSTGRES_DB: your_database_name 

  POSTGRES_PASSWORD: your_encoded_password 

  POSTGRES_USER: your_encoded_username



Save and close this file when you are finished editing. As you did with your
.env  file, be sure to add secret.yaml  to your .gitignore  file to keep it

out of version control.

With secret.yaml  written, our next step will be to ensure that our

application and database Deployments both use the values that we added to
the file. Let's start by adding references to the Secret to our application
Deployment.

Open the file called app-deployment.yaml :

nano app-deployment.yaml

The file's container specifications include the following environment
variables defined under the env  key:



~/rails_project/k8s-manifests/app-
deployment.yaml
apiVersion: apps/v1 

kind: Deployment 

. . . 

    spec: 

      containers: 

      - env: 

        - name: DATABASE_HOST 

          valueFrom: 

            configMapKeyRef: 

              key: DATABASE_HOST 

              name: env 

        - name: DATABASE_PORT 

          valueFrom: 

            configMapKeyRef: 

              key: DATABASE_PORT 

              name: env 

        - name: RAILS_ENV 

              value: development 

        - name: REDIS_HOST 

            valueFrom: 

             configMapKeyRef: 

              key: REDIS_HOST 

              name: env 

         - name: REDIS_PORT 



            valueFrom: 

            configMapKeyRef: 

              key: REDIS_PORT 

              name: env 

. . .

We will need to add references to our Secret so that our application will
have access to those values. Instead of including a configMapKeyRef  key to

point to our env  ConfigMap, as is the case with the existing values, we'll

include a secretKeyRef  key to point to the values in our database-secret

secret.

Add the following Secret references after the - name: REDIS_PORT  variable

section:



~/rails_project/k8s-manifests/app-
deployment.yaml
. . . 

    spec: 

      containers: 

      - env: 

      . . . 

        - name: REDIS_PORT 

            valueFrom: 

            configMapKeyRef: 

              key: REDIS_PORT 

              name: env 

        - name: DATABASE_NAME 

          valueFrom: 

            secretKeyRef: 

              name: database-secret 

              key: DATABASE_NAME 

        - name: DATABASE_PASSWORD 

          valueFrom: 

            secretKeyRef: 

              name: database-secret 

              key: DATABASE_PASSWORD 

        - name: DATABASE_USER 

          valueFrom: 

            secretKeyRef: 



              name: database-secret 

              key: DATABASE_USER

Save and close the file when you are finished editing. As with your secret

s.yaml  file, be sure to validate your edits using kubectl  to ensure there are

no issues with spaces, tabs, and indentation:

kubectl create -f app-deployment.yaml --dry-run --validate=tru

e

Output
deployment.apps/app created (dry run)

Next, we'll add the same values to the database-deployment.yaml  file.

Open the file for editing:

nano database-deployment.yaml

In this file, we will add references to our Secret for following variable keys:
POSTGRES_DB , POSTGRES_USER  and POSTGRES_PASSWORD . The postgres

image makes these variables available so that you can modify the
initialization of your database instance. The POSTGRES_DB  creates a default

database that is available when the container starts. The POSTGRES_USER  and

POSTGRES_PASSWORD  together create a privileged user that can access the

created database.



Using the these values means that the user we create has access to all of the
administrative and operational privileges of that role in PostgreSQL. When
working in production, you will want to create a dedicated application user
with appropriately scoped privileges.

Under the POSTGRES_DB , POSTGRES_USER  and POSTGRES_PASSWORD  variables,

add references to the Secret values:



~/rails_project/k8s-manifests/database-
deployment.yaml
apiVersion: apps/v1 

kind: Deployment 

. . . 

    spec: 

      containers: 

        - env: 

            - name: PGDATA 

              value: /var/lib/postgresql/data/pgdata 

            - name: POSTGRES_DB 

              valueFrom: 

                secretKeyRef: 

                  name: database-secret 

                  key: POSTGRES_DB 

            - name: POSTGRES_PASSWORD 

              valueFrom: 

                secretKeyRef: 

                  name: database-secret 

                  key: POSTGRES_PASSWORD         

            - name: POSTGRES_USER 

              valueFrom: 

                secretKeyRef: 

                  name: database-secret 

                  key: POSTGRES_USER 



            image: postgres:12.1 

. . .

Save and close the file when you are finished editing. Again be sure to lint
your edited file using kubectl  with the --dry-run --validate=true

arguments.

With your Secret in place, you can move on to creating the database Service
and ensuring that your application container only attempts to connect to the
database once it is fully set up and initialized.

Step 5 — Modifying the PersistentVolumeClaim and
Exposing the Application Frontend

Before running our application, we will make two final changes to ensure
that our database storage will be provisioned properly and that we can
expose our application frontend using a LoadBalancer.

First, let's modify the storage  resource defined in the

PersistentVolumeClaim that kompose created for us. This Claim allows us
to dynamically provision storage to manage our application's state.

To work with PersistentVolumeClaims, you must have a StorageClass
created and configured to provision storage resources. In our case, because
we are working with DigitalOcean Kubernetes, our default StorageClass pr

ovisioner  is set to dobs.csi.digitalocean.com  — DigitalOcean Block

Storage.

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#resources
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#resources
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://www.digitalocean.com/products/kubernetes/
https://www.digitalocean.com/products/block-storage/


We can check this by typing:

kubectl get storageclass

If you are working with a DigitalOcean cluster, you will see the following
output:

Output
NAME                         PROVISIONER                 RECLA

IMPOLICY   VOLUMEBINDINGMODE   ALLOWVOLUMEEXPANSION   AGE 

do-block-storage (default)   dobs.csi.digitalocean.com   Delet

e          Immediate           true                   76m

If you are not working with a DigitalOcean cluster, you will need to create a
StorageClass and configure a provisioner  of your choice. For details about

how to do this, please see the official documentation.

When kompose  created db-data-persistentvolumeclaim.yaml , it set the st

orage  resource  to a size that does not meet the minimum size

requirements of our provisioner . We will therefore need to modify our

PersistentVolumeClaim to use the minimum viable DigitalOcean Block
Storage unit: 1GB. Please feel free to modify this to meet your storage
requirements.

Open db-data-persistentvolumeclaim.yaml :

nano db-data-persistentvolumeclaim.yaml

https://kubernetes.io/docs/concepts/storage/storage-classes/
https://www.digitalocean.com/docs/volumes/overview/


Replace the storage  value with 1Gi :

~/rails_project/k8s-manifests/db-data-
persistentvolumeclaim.yaml
apiVersion: v1 

kind: PersistentVolumeClaim 

metadata: 

  creationTimestamp: null 

  labels: 

    io.kompose.service: db-data 

  name: db-data 

spec: 

  accessModes: 

  - ReadWriteOnce 

  resources: 

    requests: 

      storage: 1Gi 

status: {} 

Also note the accessMode: ReadWriteOnce  means that the volume

provisioned as a result of this Claim will be read-write only by a single
node. Please see the documentation for more information about different
access modes.

Save and close the file when you are finished.

Next, open app-service.yaml :

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#access-modes


nano app-service.yaml

We are going to expose this Service externally using a DigitalOcean Load
Balancer. If you are not using a DigitalOcean cluster, please consult the
relevant documentation from your cloud provider for information about
their load balancers. Alternatively, you can follow the official Kubernetes
documentation on setting up a highly available cluster with kubeadm, but in

this case you will not be able to use PersistentVolumeClaims to provision
storage.

Within the Service spec, specify LoadBalancer  as the Service type :

~/rails_project/k8s-manifests/app-service.yaml
apiVersion: v1 

kind: Service 

. . . 

spec:  

  type: LoadBalancer 

  ports: 

  . . .

When we create the app Service, a load balancer will be automatically

created, providing us with an external IP where we can access our
application. Save and close the file when you are finished editing. With all
of our files in place, we are ready to start and test the application. ## Step 6
— Starting and Accessing the Application It's time to create our Kubernetes

https://www.digitalocean.com/products/load-balancer/
https://kubernetes.io/docs/setup/independent/high-availability/
https://kubernetes.io/docs/reference/setup-tools/kubeadm/kubeadm/


objects and test that our application is working as expected. To create the
objects we've defined, we'll use kubectl create with the -f flag, which will

allow us to specify the files that kompose created for us, along with the files

we wrote. Run the following command to create the Rails application and
PostgreSQL database, Redis cache, and Sidekiq Services and Deployments,
along with your Secret, ConfigMap, and PersistentVolumeClaim:

kubectl create -f app-deployment.yaml,app-service.yaml,databas

e-deployment.yaml,database-service.yaml,db-data-persistentvolu

meclaim.yaml,env-configmap.yaml,redis-deployment.yaml,redis-se

rvice.yaml,secret.yaml,sidekiq-deployment.yaml

You will receive the following output, indicating that the objects have been
created:

Output
deployment.apps/app created 

service/app created 

deployment.apps/database created 

service/database created 

persistentvolumeclaim/db-data created 

configmap/env created 

deployment.apps/redis created 

service/redis created 

secret/database-secret created 

deployment.apps/sidekiq created

https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#create


To check that your Pods are running, type:

kubectl get pods

You don't need to specify a Namespace here, since we have created our
objects in the default  Namespace. If you are working with multiple

Namespaces, be sure to include the -n  flag when running this kubectl cre

ate  command, along with the name of your Namespace.

You will see output similar to the following while your database  container

is starting (the status will be either Pending  or ContainerCreating ):

Output
NAME                       READY   STATUS    RESTARTS   AGE 

app-854d645fb9-9hv7w       1/1     Running   0          23s 

database-c77d55fbb-bmfm8   0/1     Pending   0          23s 

redis-7d65467b4d-9hcxk     1/1     Running   0          23s 

sidekiq-867f6c9c57-mcwks   1/1     Running   0          23s

Once the database container is started, you will have output like this:

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/


Output
NAME                       READY   STATUS    RESTARTS   AGE 

app-854d645fb9-9hv7w       1/1     Running   0          30s 

database-c77d55fbb-bmfm8   1/1     Running   0          30s 

redis-7d65467b4d-9hcxk     1/1     Running   0          30s 

sidekiq-867f6c9c57-mcwks   1/1     Running   0          30s

The Running  STATUS  indicates that your Pods are bound to nodes and that

the containers associated with those Pods are running. READY  indicates how

many containers in a Pod are running. For more information, please consult
the documentation on Pod lifecycles.

Note: If you see unexpected phases in the STATUS  column, remember that

you can troubleshoot your Pods with the following commands:

kubectl describe pods your_pod 

kubectl logs your_pod

Now that your application is up and running, the last step that is required is
to run Rails' database migrations. This step will load a schema into the
PostgreSQL database for the demo application.

To run pending migrations you'll exec  into the running application pod and

then call the rake db:migrate  command.

First, find the name of the application pod with the following command:

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/


kubectl get pods

Find the pod that corresponds to your application like the highlighted pod
name in the following output:

Output
NAME                       READY   STATUS    RESTARTS   AGE 

app-854d645fb9-9hv7w       1/1     Running   0          30s 

database-c77d55fbb-bmfm8   1/1     Running   0          30s 

redis-7d65467b4d-9hcxk     1/1     Running   0          30s 

sidekiq-867f6c9c57-mcwks   1/1     Running   0          30s

With that pod name noted down, you can now run the kubectl exec

command to complete the database migration step.

Run the migrations with this command:

kubectl exec your_app_pod_name rake db:migrate

You should receive output similar to the following, which indicates that the
database schema has been loaded:



Output
== 20190927142853 CreateSharks: migrating ====================

================= 

-- create_table(:sharks) 

   -> 0.0190s 

== 20190927142853 CreateSharks: migrated (0.0208s) ===========

================= 

 

== 20190927143639 CreatePosts: migrating =====================

================= 

-- create_table(:posts) 

   -> 0.0398s 

== 20190927143639 CreatePosts: migrated (0.0421s) ============

================= 

 

== 20191120132043 CreateEndangereds: migrating ===============

================= 

-- create_table(:endangereds) 

   -> 0.8359s 

== 20191120132043 CreateEndangereds: migrated (0.8367s) ======

=================

With your containers running and data loaded, you can now access the
application. To get the IP for the app  LoadBalancer, type:

kubectl get svc



You will receive output like the following:

Output
NAME         TYPE           CLUSTER-IP      EXTERNAL-IP      P

ORT(S)          AGE 

app          LoadBalancer   10.245.73.142   your_lb_ip   3000:

31186/TCP   21m 

database     ClusterIP      10.245.155.87   <none>           5

432/TCP         21m 

kubernetes   ClusterIP      10.245.0.1      <none>           4

43/TCP          21m 

redis        ClusterIP      10.245.119.67   <none>           6

379/TCP         21m

The EXTERNAL_IP  associated with the app  service is the IP address where

you can access the application. If you see a <pending>  status in the EXTERNA

L_IP  column, this means that your load balancer is still being created.

Once you see an IP in that column, navigate to it in your browser: http://y

our_lb_ip:3000 .

You should see the following landing page:



Application Landing Page

Click on the Get Shark Info button. You will have a page with a button to
create a new shark:



Shark Info Form

Click it and when prompted, enter the username and password from earlier
in the tutorial series. If you did not change these values then the defaults are
sammy  and shark  respectively.

In the form, add a shark of your choosing. To demonstrate, we will add Meg

alodon Shark  to the Shark Name field, and Ancient  to the Shark

Character field:



Filled Shark Form

Click on the Submit button. You will see a page with this shark information
displayed back to you:



Shark Output

You now have a single instance setup of a Rails application with a
PostgreSQL database running on a Kubernetes cluster. You also have a
Redis cache and a Sidekiq worker to process data that users submit.

Conclusion

The files you have created in this tutorial are a good starting point to build
from as you move toward production. As you develop your application, you
can work on implementing the following: - Centralized logging and
monitoring. Please see the relevant discussion in Modernizing Applications
for Kubernetes for a general overview. You can also look at How To Set Up
an Elasticsearch, Fluentd and Kibana (EFK) Logging Stack on Kubernetes

https://www.digitalocean.com/community/tutorials/modernizing-applications-for-kubernetes#deploying-on-kubernetes
https://www.digitalocean.com/community/tutorials/modernizing-applications-for-kubernetes
https://www.digitalocean.com/community/tutorials/how-to-set-up-an-elasticsearch-fluentd-and-kibana-efk-logging-stack-on-kubernetes


to learn how to set up a logging stack with Elasticsearch, Fluentd, and
Kibana. Also check out An Introduction to Service Meshes for information
about how service meshes like Istio implement this functionality. - Ingress
Resources to route traffic to your cluster. This is a good alternative to a
LoadBalancer in cases where you are running multiple Services, which each
require their own LoadBalancer, or where you would like to implement
application-level routing strategies (A/B & canary tests, for example). For
more information, check out How to Set Up an Nginx Ingress with Cert-
Manager on DigitalOcean Kubernetes and the related discussion of routing
in the service mesh context in An Introduction to Service Meshes. - Backup
strategies for your Kubernetes objects. For guidance on implementing
backups with Velero with DigitalOcean's Kubernetes product, please see
How To Back Up and Restore a Kubernetes Cluster on DigitalOcean Using
Velero.

https://www.elastic.co/
https://www.fluentd.org/
https://www.elastic.co/products/kibana
https://www.digitalocean.com/community/tutorials/an-introduction-to-service-meshes
https://istio.io/
https://www.digitalocean.com/community/tutorials/how-to-set-up-an-nginx-ingress-with-cert-manager-on-digitalocean-kubernetes
https://www.digitalocean.com/community/tutorials/an-introduction-to-service-meshes#routing-and-traffic-configuration
https://www.digitalocean.com/community/tutorials/an-introduction-to-service-meshes
https://github.com/vmware-tanzu/velero
https://www.digitalocean.com/community/tutorials/how-to-back-up-and-restore-a-kubernetes-cluster-on-digitalocean-using-velero

	About DigitalOcean
	Preface - Getting Started with this Book
	Introduction
	How To Build a Ruby on Rails Application
	How To Create Nested Resources for a Ruby on Rails Application
	How To Add Stimulus to a Ruby on Rails Application
	How To Add Bootstrap to a Ruby on Rails Application
	How To Add Sidekiq and Redis to a Ruby on Rails Application
	Containerizing a Ruby on Rails Application for Development with Docker Compose
	How To Migrate a Docker Compose Workflow for Rails Development to Kubernetes

