How to code in

React.)s

©@O®SO®

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0

International License.

ISBN 978-1-7358317-4-9

How To Code in React.|s

Joe Morgan

DigitalOcean, New York City, New York, USA

2021-07

How To Code in React.|s

e e e
g A W N R O

16.
17.
18.
19.
20.

21.

© © N o g bk~ wNE

About DigitalOcean

Introduction

How To Set Up a React Project with Create React App
How To Create React Elements with JSX

How To Create Custom Components in React

How To Customize React Components with Props

How To Create Wrapper Components in React with Props
How To Style React Components

How To Manage State on React Class Components

How To Manage State with Hooks on React Components

. How To Share State Across React Components with Context

. How To Debug React Components Using React Developer Tools
. How To Handle DOM and Window Events with React

. How To Build Forms in React

. How To Handle Async Data Loading, Lazy Loading, and Code

Splitting with React

How To Call Web APIs with the useEffect Hook in React

How To Manage State in React with Redux

How To Handle Routing in React Apps with React Router

How To Add Login Authentication to React Applications

How To Avoid Performance Pitfalls in React with memo,
useMemo, and useCallback

How To Deploy a React Application with Nginx on Ubuntu 20.04

22. How To Deploy a React Application to DigitalOcean App
Platform

About DigitalOcean

DigitalOcean is a cloud services platform delivering the simplicity
developers love and businesses trust to run production applications at scale.
It provides highly available, secure and scalable compute, storage and
networking solutions that help developers build great software faster.
Founded in 2012 with offices in New York and Cambridge, MA,
DigitalOcean offers transparent and affordable pricing, an elegant user
interface, and one of the largest libraries of open source resources available.
For more information, please visit https://www.digitalocean.com or follow

@digitalocean on Twitter.

https://www.digitalocean.com/
https://twitter.com/digitalocean

Introduction

About this Book

React seems to be everywhere. Companies and projects large and small are
using it to build their applications. The popularity comes from the fact that
React builds on core web development skills. That’s not to say you will
learn it in a day or that every feature is easy to understand on the first try.
Instead, React excels precisely because it minimizes the amount of React-
specific knowledge you need. You don’t need to learn about templates or
controllers or complex patterns. Instead, most of the code you write will be
JavaScript combined with standard HTML. It can get complicated from
there. The HTML, for example, is really a markup language called JSX that
is parsed by React before going into the DOM. But as you take each step in
your learning you will be building on solid foundations of web
development. That means you gain a double benefit as your learn React.
Not only will you be building world class applications, you will be
strengthening your own knowledge of JavaScript and web standards. You
will develop transferable skills that you can use in any future web-based

application whether it’s built with React or not.

This book is an introduction to React that works from the foundations
upward. Each chapter takes you a little deeper into the React ecosystem,
building on your previous knowledge. Along the way, you’ll maintain
internal state, pass information between parts of an application, and explore
different options for styling your application. Whether you are completely

new to React or if you’ve worked with it before, this series will be

accessible to you. Every chapter is self contained, so you can jump between
chapters or skip whole sections. The book is designed for you to take a
concept and explore it by building a small project that mirrors what you will

see in everyday development.

Learning Goals and Outcomes

By the end of the book, you’ll have a strong understanding of the different
parts of a React application and you’ll be able to combine the parts together
to build individual components and whole applications. You’ll be able to
build small applications that use external data and respond to user actions.
You’ll also learn how to debug and optimize your application to make the

best user experience.

How to Use This Book

You can read the book in any order, but if you are new to React, start with
the first chapter that shows you how to create a new project using a tool
called Create React App. Every subsequent chapter will start with a new
project, so it will be useful to learn how to bootstrap a new application.
After that, continue straight through or skip to the chapters that interest you.
If something is unfamiliar, back up and you’ll find a whole tutorial

dedicated to the concept.

https://reactjs.org/docs/create-a-new-react-app.html

How To Set Up a React Project with Create
React App

Written by Joe Morgan

The author selected Creative Commons to receive a donation as part of the Write for

DOnations program.

React is a popular JavaScript framework for creating front-end applications. Originally
created by Facebook, it has gained popularity by allowing developers to create fast
applications using an intuitive programming paradigm that ties JavaScript with an HTML-

like syntax known as JSX.

Starting a new React project used to be a complicated multi-step process that involved
setting up a build system, a code transpiler to convert modern syntax to code that is
readable by all browsers, and a base directory structure. But now, Create React App
includes all the JavaScript packages you need to run a React project, including code
transpiling, basic linting, testing, and build systems. It also includes a server with hot
reloading that will refresh your page as you make code changes. Finally, it will create a
structure for your directories and components so you can jump in and start coding in just a

few minutes.

In other words, you don’t have to worry about configuring a build system like Webpack.
You don’t need to set up Babel to transpile you code to be cross-browser usable. You don’t
have to worry about most of the complicated systems of modern front-end development.

You can start writing React code with minimal preparation.

By the end of this tutorial, you’ll have a running React application that you can use as a
foundation for any future applications. You’ll make your first changes to React code,
update styles, and run a build to create a fully minified version of your application. You’ll
also use a server with hot reloading to give you instant feedback and will explore the parts
of a React project in depth. Finally, you will begin writing custom components and

creating a structure that can grow and adapt with your project.

https://www.digitalocean.com/community/tutorials/how-to-set-up-a-react-project-with-create-react-app
https://creativecommons.org/
https://do.co/w4do-cta
https://reactjs.org/
https://reactjs.org/docs/introducing-jsx.html
https://github.com/facebook/create-react-app
https://www.digitalocean.com/community/tutorials/whats-new-in-webpack-4
https://babeljs.io/

Prerequisites
To follow this tutorial, you’ll need the following:

e Node.js version 10.16.0 installed on your computer. To install this on macOS or
Ubuntu 18.04, follow the steps in How to Install Node.js and Create a Local
Development Environment on macOS or the Installing Using a PPA section of How
To Install Node.js on Ubuntu 18.04.

e [t will also help to have a basic understanding of JavaScript, which you can find in
the How To Code in JavaScript series, along with a basic knowledge of HTML and
CSS.

Step 1 — Creating a New Project with Create React App

In this step, you’ll create a new application using the npm package manager to run a
remote script. The script will copy the necessary files into a new directory and install all

dependencies.

When you installed Node, you also installed a package managing application called npm. n
pm will install JavaScript packages in your project and also keep track of details about the
project. If you’d like to learn more about npm, take a look at our How To Use Node.js

Modules with npm and package.json tutorial.

npm also includes a tool called npx, which will run executable packages. What that means

is you will run the Create React App code without first downloading the project.

The executable package will run the installation of create-react-app into the directory
that you specify. It will start by making a new project in a directory, which in this tutorial
will be called digital-ocean-tutorial. Again, this directory does not need to exist
beforehand; the executable package will create it for you. The script will also run npm ins

tall inside the project directory, which will download any additional dependencies.

To install the base project, run the following command:

https://nodejs.org/
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-and-create-a-local-development-environment-on-macos
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-on-ubuntu-18-04
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-javascript
https://www.npmjs.com/
https://www.npmjs.com/
https://www.digitalocean.com/community/tutorials/how-to-use-node-js-modules-with-npm-and-package-json
https://www.npmjs.com/package/npx

npx create-react-app digital-ocean-tutorial

This command will kick off a build process that will download the base code along with a

number of dependencies.

When the script finishes you will see a success message that says:

Output

Success! Created digital-ocean-tutorial at your_file_path/digital-ocean-tut
orial

Inside that directory, you can run several commands:

npm start

Starts the development server.

npm run build

Bundles the app into static files for production.

npm test

Starts the test runner.

npm run eject
Removes this tool and copies build dependencies, configuration files
and scripts into the app directory. If you do this, you can’t go back!

We suggest that you begin by typing:

cd digital-ocean-tutorial

npm start

Happy hacking!

your_file_path will be your current path. If you are a macOS user, it will be something
like /Users/your_username; if you are on an Ubuntu server, it will say something like /ho

me/your_username.

You will also see a list of npm commands that will allow you to run, build, start, and test

your application. You’ll explore these more in the next section.

Note: There is another package manager for JavaScript called yarn. It’s supported by
Facebook and does many of the same things as npm. Originally, yarn provided new
functionality such as lock files, but now these are implemented in npm as well. yarn
also includes a few other features such as offline caching. Further differences can be

found on the yarn documentation.

If you have previously installed yarn on your system, you will see a list of yarn
commands such as yarn start that work the same as npm commands. You can run n
pm commands even if you have yarn installed. If you prefer yarn, just replace npm

with yarn in any future commands. The results will be the same.

Now your project is set up in a new directory. Change into the new directory:

cd digital-ocean-tutorial

You are now inside the root of your project. At this point, you’ve created a new project
and added all of the dependencies. But you haven’t take any actions to run the project. In

the next section, you’ll run custom scripts to build and test the project.
Step 2 — Using react-scripts

In this step, you will learn about the different react-scripts that are installed with the
repo. You will first run the test script to execute the test code. Then you will run the but
1d script to create a minified version. Finally, you’ll look at how the eject script can give

you complete control over customization.

Now that you are inside the project directory, take a look around. You can either open the

whole directory in your text editor, or if you are on the terminal you can list the files out

https://yarnpkg.com/
https://yarnpkg.com/features/pnp

with the following command:

1ls -a

The -a flag ensures that the output also includes hidden files.

Either way, you will see a structure like this:

Output
node_modules/
public/

src/

.gitignore
README . md
package-lock. json

package. json

Let’s explain these one by one:

e node_modules/ contains all of the external JavaScript libraries used by the

application. You will rarely need to open it.

e The public/ directory contains some base HTML, JSON, and image files. These are

the roots of your project. You’ll have an opportunity to explore them more in Step 4.

e The src/ directory contains the React JavaScript code for your project. Most of the

work you do will be in that directory. You’ll explore this directory in detail in Step 5.

e The .gitignore file contains some default directories and files that git—your source
control—will ignore, such as the node_modules directory. The ignored items tend to

be larger directories or log files that you would not need in source control. It also will

include some directories that you’ll create with some of the React scripts.

https://www.digitalocean.com/community/tutorials/an-introduction-to-json
https://www.digitalocean.com/community/tutorial_series/introduction-to-git-installation-usage-and-branches

e README.md is a markdown file that contains a lot of useful information about Create
React App, such as a summary of commands and links to advanced configuration.
For now, it’s best to leave the README.md file as you see it. As your project
progresses, you will replace the default information with more detailed information

about your project.

The last two files are used by your package manager. When you ran the initial npx
command, you created the base project, but you also installed the additional dependencies.
When you installed the dependencies, you created a package-lock. json file. This file is
used by npm to ensure that the packages match exact versions. This way if someone else
installs your project, you can ensure they have identical dependencies. Since this file is

created automatically, you will rarely edit this file directly.

The last file is a package. json. This contains metadata about your project, such as the title,
version number, and dependencies. It also contains scripts that you can use to run your

project.
Open the package. json file in your favorite text editor:

nano package.json

When you open the file, you will see a JSON object containing all the metadata. If you
look at the scripts object, you’ll find four different scripts: start, build, test, and ej

ect.

These scripts are listed in order of importance. The first script starts the local development
environment; you’ll get to that in the next step. The second script will build your project.

You’ll explore this in detail in Step 4, but it’s worth running now to see what happens.
The build Script

To run any npm script, you just need to type npm run script_name in your terminal. There

are a few special scripts where you can omit the run part of the command, but it’s always

https://www.digitalocean.com/community/tutorials/how-to-use-node-js-modules-with-npm-and-package-json#step-1-%E2%80%94-creating-a-packagejson-file

fine to run the full command. To run the build script, type the following in your terminal:

npm run build

You will immediately see the following message:

Output
> digital-ocean-tutorial@®.1.0 build your_file_path/digital-ocean-tutorial

> react-scripts build

Creating an optimized production build...

This tells you that Create React App is compiling your code into a usable bundle.

When it’s finished, you’ll see the following output:

Output

Compiled successfully.

File sizes after gzip:

39.85 KB build/static/js/9999.chunk.js

780 B build/static/js/runtime-main.99999. js
616 B build/static/js/main.9999.chunk.js
556 B build/static/css/main.9999.chunk.css

The project was built assuming it is hosted at the server root.
You can control this with the homepage field in your package.json.
For example, add this to build it for GitHub Pages:

"homepage" : "http://myname.github.io/myapp",

The build folder is ready to be deployed.

You may serve it with a static server:

serve -s build

Find out more about deployment here:

bit.ly/CRA-deploy

List out the project contents and you will see some new directories:

1ls -a

Output

build/
node_modules/
public/

src/

.gitignore
README . md
package-lock. json

package. json

You now have a build directory. If you opened the .gitignore file, you may have
noticed that the build directory is ignored by git. That’s because the build directory is

just a minified and optimized version of the other files. There’s no need to use version
control since you can always run the build command. You’ll explore the output more

later; for now, it’s time to move on to the test script.
The test Script

The test script is one of those special scripts that doesn’t require the run keyword, but
works even if you include it. This script will start up a test runner called Jest. The test
runner looks through your project for any files with a .spec.js or .test.js extension,

then runs those files.
To run the test script, type the following command:

npm test

After running this script your terminal will have the output of the test suite and the

terminal prompt will disappear. It will look something like this:

https://jestjs.io/

Output

PASS

src/App.test.js

v renders learn react link (67ms)

Test Suites: 1 passed, 1 total

Tests:

1 passed, 1 total

Snapshots: 0 total

Time:

4.204s

Ran all test suites.

Watch Usage

>

>

>

There are a few things to notice here. First, as noted before, it automatically detects any
files with test extensions including .test.js and .spec.js. In this case, there is only one
test suite—that is, only one file with a .test.js extension—and that test suite contains

only one test. Jest can detect tests in your code hierarchy, so you can nest tests in a

Press
Press
Press
Press
Press

Press

f to run only failed tests.

o to only run tests related to changed files.
g to quit watch mode.

p to filter by a filename regex pattern.

t to filter by a test name regex pattern.

Enter to trigger a test run.

directory and Jest will find them.

Second, Jest doesn’t run your test suite once and then exit. Rather, it continues running in

the terminal. If you make any changes in the source code, it will rerun the tests again.

You can also limit which tests you run by using one of the keyboard options. If you type

o, for example, you will only run the tests on files that have changed. This can save you

lots of time as your test suites grow.

Finally, you can exit the test runner by typing q. Do this now to regain your command

prompt.
The eject Script

The final script is npm eject. This script copies your dependencies and configuration files
into your project, giving you full control over your code but ejecting the project from the
Create React App integrated toolchain. You will not run this now because, once you run
this script, you can’t undo this action and you will lose any future Create React App

updates.

The value in Create React App is that you don’t have to worry about a significant amount
of configuration. Building modern JavaScript applications requires a lot of tooling from
build systems, such as Webpack, to compilation tools, such as Babel. Create React App
handles all the configuration for you, so ejecting means dealing with this complexity

yourself.

The downside of Create React App is that you won’t be able to fully customize the project.
For most projects that’s not a problem, but if you ever want to take control of all aspects of
the build process, you’ll need to eject the code. However, as mentioned before, once you
eject the code you will not be able to update to new versions of Create React App, and

you’ll have to manually add any enhancements on your own.

At this point, you’ve executed scripts to build and test your code. In the next step, you’ll

start the project on a live server.

Step 3 — Starting the Server
In this step, you will initialize a local server and run the project in your browser.

You start your project with another npm script. Like npm test, this script does not need
the run command. When you run the script you will start a local server, execute the
project code, start a watcher that listens for code changes, and open the project in a web

browser.

https://www.digitalocean.com/community/tutorials/whats-new-in-webpack-4
https://babeljs.io/

Start the project by typing the following command in the root of your project. For this

tutorial, the root of your project is the digital-ocean-tutorial directory. Be sure to open

this in a separate terminal or tab, because this script will continue running as long as you

allow it:

npm start

You’ll see some placeholder text for a brief moment before the server starts up, giving this

output:

Output

Compiled successfully!

You can now view digital-ocean-tutorial in the browser.

http://localhost:3000

Note that the development build is not optimized.

To create a production build, use npm run build.

If you are running the script locally, it will open the project in your browser window and

shift the focus from the terminal to the browser.

If that doesn’t happen, you can visit http://localhost:3000/ to see the site in action. If
you already happen to have another server running on port 3000, that’s fine. Create React
App will detect the next available port and run the server with that. In other words, if you

already have one project running on port 3000, this new project will start on port 3001.

If you are running this from a remote server you can still see your site without any

additional configuration. The address will be http://your_server_ip:3000. If you have a

firewall configured, you’ll need to open up the port on your remote server.

http://localhost:3000/
https://www.digitalocean.com/community/tutorials/ufw-essentials-common-firewall-rules-and-commands

In the browser, you will see the following React template project:

Edit src/App. js and save to reload.

Learn React

React template project

As long as the script is running, you will have an active local server. To stop the script,

either close the terminal window or tab or type CTRL+C or $-+c in the terminal window or

tab that is running your script.

At this point, you have started the server and are running your first React code. But before
you make any changes to the React JavaScript code, you will see how React renders to the

page in the first place.
Step 4 — Modifying the Homepage

In this step, you will modify code in the public/ directory. The public directory contains

your base HTML page. This is the page that will serve as the root to your project. You will
rarely edit this directory in the future, but it is the base from which the project starts and a

crucial part of a React project.

If you cancelled your server, go ahead and restart it with npm start, then open public/ in

your favorite text editor in a new terminal window:

nano public/

Alternatively, you can list the files with the 1s command:

1s public/

You will see a list of files such as this:

Output
favicon. ico
10g0192.png
manifest.json
index.html
logo512.png

robots.txt

favicon.1ico, 10go192.png, and logo512.png are icons that a user would see either in the
tab of their browser or on their phone. The browser will select the proper-sized icons.
Eventually, you’ll want to replace these with icons that are more suited to your project.

For now, you can leave them alone.

The manifest.json is a structured set of metadata that describes your project. Among

other things, it lists which icon will be used for different size options.

The robots.txt file is information for web crawlers. It tells crawlers which pages they
are or are not allowed to index. You will not need to change either file unless there is a
compelling reason to do so. For instance, if you wanted to give some users a URL to

special content that you do not want easily accessible, you can add it to robots.txt and it

will still be publicly available, but not indexed by search engines.

The index.html file is the root of your application. This is the file the server reads, and it

is the file that your browser will display. Open it up in your text editor and take a look.

https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/manifest.json
https://developer.mozilla.org/en-US/docs/Glossary/Robots.txt

If you are working from the command line, you can open it with the following command:

nano public/index.html

Here’s what you will see:

digital-ocean-tutorial/public/index.html
<!DOCTYPE html>

<html lang="en">
<head>
<meta charset="utf-8" />
<link rel="icon" href="%PUBLIC_URL%/favicon.ico" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="theme-color" content="#000000" />
<meta
name="description"
content="Web site created using create-react-app"
/>
<link rel="apple-touch-icon" href="%PUBLIC_URL%/l0go192.png" />
<l-—-

manifest. json provides metadata used when your web app is installed on a
user's mobile device or desktop.

See https://developers.google.com/web/fundamentals/web-app-manifest/
-—>
<link rel="manifest" href="%PUBLIC_URL%/manifest.json" />
</--
Notice the use of %PUBLIC_URL% in the tags above.
It will be replaced with the URL of the ‘public’ folder during the build.

Only files inside the ‘public’ folder can be referenced from the HTML.

Unlike "/favicon.ico" or "favicon.ico", "%PUBLIC URL%/favicon.ico" will
work correctly both with client-side routing and a non-root public URL.
Learn how to configure a non-root public URL by running “npm run build.
-—>
<title>React App</title>
</head>
<body>

<noscript>You need to enable JavaScript to run this app.</noscript>
<div id="root"></div>
<!--

This HTML file is a template.

If you open it directly in the browser, you will see an empty page.

You can add webfonts, meta tags, or analytics to this file.

The build step will place the bundled scripts into the <body> tag.

To begin the development, run ‘npm start’ or ‘yarn start’.

To create a production bundle, use ‘npm run build’ or ‘yarn build’.

-—>
</body>
</html>

The file is pretty short. There are no images or words in the <body>. That’s because React

builds the entire HTML structure itself and injects it with JavaScript. But React needs to

know where to inject the code, and that’s the role of index.html.

In your text editor, change the <title> tag from React App to Sandbox:

digital-ocean-tutorial/public/index.html

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<link rel="icon" href="%PUBLIC_URL%/favicon.ico" />
<meta name="viewport" content="width=device-width, initial-scale=1" />

<meta name="theme-color" content="#000000" />

<title>Sandbox</title>
</head>
<body>
<noscript>You need to enable JavaScript to run this app.</noscript>
<div i1d="root"></div>
==
This HTML file is a template.

If you open it directly in the browser, you will see an empty page.

You can add webfonts, meta tags, or analytics to this file.

The build step will place the bundled scripts into the <body> tag.

To begin the development, run ‘npm start’ or ‘yarn start’.
To create a production bundle, use “npm run build" or ‘yarn build’.
-->
</body>
</html>

Save and exit your text editor. Check your browser. The title is the name located on the

browser tab. It will update automatically. If not, refresh the page and notice the change.

Now go back to your text editor. Every React project starts from a root element. There can
be multiple root elements on a page, but there needs to be at least one. This is how React
knows where to put the generated HTML code. Find the element <div id="root">. This is

the div that React will use for all future updates. Change the id from root to base:

digital-ocean-tutorial/public/index.html

<!DOCTYPE html>
<html lang="en">
<head>

<meta charset="utf-8" />

<body>
<noscript>You need to enable JavaScript to run this app.</noscript>
<div id="base"></div>
<!--
This HTML file is a template.

If you open it directly in the browser, you will see an empty page.

You can add webfonts, meta tags, or analytics to this file.

The build step will place the bundled scripts into the <body> tag.

To begin the development, run “npm start’ or ‘yarn start'.

To create a production bundle, use “npm run build’ or ‘yarn build’.

-—>
</body>
</html>

Save the changes.

You will see an error in your browser:

Error: Target container is not a DOM element. x
render

Module. ./src/index. js
src/index.]

import App from './App';
import as serviceWorker from './serviceWorker';

// If you want your app to work offline and load faster, you can change

4
51
6|
> 7 | ReactDOM.render(<App />, document.getElementById('root'));
8|
9|
0 | // unregister() to register() below. Note this comes with some pitfalls

bt

ew compiled

Error message saying “Target container is not a DOM elem
ent”

React was looking for an element with an id of root. Now that it is gone, React can’t

start the project.

Change the name back from base to root:

digital-ocean-tutorial/public/index.html

<!DOCTYPE html>
<html lang="en">
<head>

<meta charset="utf-8" />

<body>
<noscript>You need to enable JavaScript to run this app.</noscript>
<div id="root"></div>
<l]-—-
This HTML file is a template.

If you open it directly in the browser, you will see an empty page.

You can add webfonts, meta tags, or analytics to this file.

The build step will place the bundled scripts into the <body> tag.

To begin the development, run ‘npm start’ or ‘yarn start’.
To create a production bundle, use ‘npm run build’ or ‘yarn build’.
-—>
</body>
</html>

Save and exit index.html.

At this point, you’ve started the server and made a small change to the root HTML page.
You haven’t yet changed any JavaScript code. In the next section, you will update the

React JavaScript code.

Step 5 — Modifying the Heading Tag and Styling

In this step, you will make your first change to a React component in the src/ directory.
You’ll make a small change to the CSS and the JavaScript code that will automatically

update in your browser using the built-in hot reloading.

If you stopped the server, be sure to restart it with npm start. Now, take some time to see
the parts of the src/ directory. You can either open the full directory in your favorite text

editor, or you can list out the project in a terminal with the following command:

1s src/

You will see the following files in your terminal or text editor.

Output
App.css

App.js
App.test.js
index.css
index.js
logo.svg
serviceWorker.js

setupTests.js

Let’s go through these files one at a time.

You will not spend much time with the serviceWorker.js file at first, but it can be
important as you start to make progressive web applications. The service worker can do
many things including push notifications and offline caching, but for now it’s best to leave

it alone.

The next files to look at are setupTests.js and App.test.js. These are used for test files.

In fact, when you ran npm test in Step 2, the script ran these files. The setupTests.js

https://developers.google.com/web/progressive-web-apps

file is short; all it includes is a few custom expect methods. You’ll learn more about these

in future tutorials in this series.
Open App.test.js:

nano src/App.test.js

When you open it, you’ll see a basic test:

digital-ocean-tutorial/src/App.test.js

import React from 'react’;
import { render } from '@testing-library/react';

import App from './App';

test('renders learn react link', () => {
const { getByText } = render(<App />);
const linkElement = getByText(/learn react/i);
expect(linkElement).toBeInTheDocument();

});

The test is looking for the phrase learn react to be in the document. If you go back to
the browser running your project, you’ll see the phrase on the page. React testing is
different from most unit tests. Since components can include visual information, such as
markup, along with logic for manipulating data, traditional unit tests do not work as easily.

React testing is closer to a form of functional or integration testing.

Next, you’ll see some styling files: App.css, index.css, and logo.svg. There are
multiple ways of working with styling in React, but the easiest is to write plain CSS since

that requires no additional configuration.

https://en.wikipedia.org/wiki/Unit_testing
https://en.wikipedia.org/wiki/Integration_testing

There are multiple CSS files because you can import the styles into a component just like
they were another JavaScript file. Since you have the power to import CSS directly into a
component, you might as well split the CSS to only apply to an individual component.
What you are doing is separating concerns. You are not keeping all the CSS separate from
the JavaScript. Instead you are keeping all the related CSS, JavaScript, markup, and

images grouped together.

Open App.css in your text editor. If you are working from the command line, you can

open it with the following command:

nano src/App.css

This is the code you’ll see:

digital-ocean-tutorial/src/App.css

.App {

text-align: center;

.App-logo {
height: 40vmin;

pointer-events: none;

@media (prefers-reduced-motion: no-preference) {
.App-logo {

animation: App-logo-spin infinite 20s linear;

.App-header {
background-color: #282c34;
min-height: 100vh;
display: flex;
flex-direction: column;
align-items: center;
justify-content: center;
font-size: calc(10px + 2vmin);

color: white;

.App-link {
color: #6l1ldafb;

@keyframes App-logo-spin {
from {
transform: rotate(0deg);

}
to {

transform: rotate(360deg);

This is a standard CSS file with no special CSS preprocessors. You can add them later if
you want, but at first, you only have plain CSS. Create React App tries to be

unopinionated while still giving an out-of-the-box environment.

Back to App.css, one of the benefits of using Create React App is that it watches all files,

so if you make a change, you’ll see it in your browser without reloading.

To see this in action make a small change to the background-color in App.css. Change it

from #282c34 to blue then save the file. The final style will look like this:

digital-ocean-tutorial/src/App.css

.App {

text-align: center;

.App-header {
background-color: blue
min-height: 100vh;
display: flex;
flex-direction: column;
align-items: center;
justify-content: center;
font-size: calc(10px + 2vmin);

color: white;

@keyframes App-logo-spin {
from {
transform: rotate(0deg);
}
to {

transform: rotate(360deqg);

Check out your browser. Here’s how it looked before:

Edit src/App. j s and save to reload.

Learn React

React app with dark background

Here’s how it will look after the change:

Edit src/App. j s and save to reload.

Learn React

React app with blue background

Go ahead and change background-color back to #282c34.

digital-ocean-tutorial/src/App.css

.App {

text-align: center;

.App-header {
background-color: #282c34
min-height: 100vh;
display: flex;
flex-direction: column;
align-items: center;
justify-content: center;
font-size: calc(10px + 2vmin);

color: white;

@keyframes App-logo-spin {
from {
transform: rotate(0deg);
}
to {

transform: rotate(360deg);

Save and exit the file.

You’ve made a small CSS change. Now it’s time to make changes to the React JavaScript

code. Start by opening index.js.

nano src/index.js

Here’s what you’ll see:

digital-ocean-tutorial/src/index. js

import React from 'react’;

import ReactDOM from 'react-dom';
import './index.css';

import App from './App';

import * as serviceWorker from './serviceWorker';

ReactDOM. render(<App />, document.getElementById('root'));

serviceWorker.unregister();

At the top, you are importing React, ReactDOM, index.css, App, and serviceWorker. By
importing React, you are actually pulling in code to convert JSX to JavaScript. JSX are
the HTML-like elements. For example, notice how when you use App, you treat it like an

HTML element <App />. You’ll explore this more in future tutorials in this series.

ReactDOM is the code that connects your React code to the base elements, like the index.h

tml page you saw in public/. Look at the following highlighted line:

digital-ocean-tutorial/src/index. js

import * as serviceWorker from './serviceWorker';

ReactDOM. render(<App />,document.getElementById('root'));

serviceWorker.unregister();

This code instructs React to find an element with an id of root and inject the React code
there. <App/> is your root element, and everything will branch from there. This is the

beginning point for all future React code.

At the top of the file, you’ll see a few imports. You import index.css, but don’t actually

do anything with it. By importing it, you are telling Webpack via the React scripts to

include that CSS code in the final compiled bundle. If you don’t import it, it won’t show

up.

Exit from src/index.js.

At this point, you still haven’t seen anything that you are viewing in your browser. To see

this, open up App.js:

nano src/App.js

The code in this file will look like a series of regular HTML elements. Here’s what you’ll

see:

digital-ocean-tutorial/src/App.js

import React from 'react’;
import logo from './logo.svg';

import './App.css';

function App() {
return (
<div className="App">
<header className="App-header">

<p>
Edit <code>src/App.js</code> and save to reload.
</p>
<a
className="App-Llink"
href="https://reactjs.org"
target="_blank"

rel="noopener noreferrer"

Learn React

</header>
</div>

)s

export default App;

Change the contents of the <p> tag from Edit <code>src/App.js</code> and save to re

load. to Hello, world and save your changes.

digital-ocean-tutorial/src/App.js

function App() {
return (
<div className="App">
<header className="App-header">

<p>
Hello, world
</p>
<a
className="App-link"
href="https://reactjs.org"
target="_blank"

rel="noopener noreferrer"

Learn React

</header>
</div>

);

Head over to your browser and you’ll see the change:

Hello, world

Learn React

React app with “Hello, world” in paragraph tag

You’ve now made your first update to a React component.

Before you go, notice a few more things. In this component, you import the logo.svg file

and assign it to a variable. Then in the element, you add that code as the src.

There are a few things going on here. Look at the img element:

digital-ocean-tutorial/src/App.js

function App() {
return (
<div className="App">
<header className="App-header">

<p>
Hello, world

</p>

Notice how you pass the logo into curly braces. Anytime you are passing attributes that
are not strings or numbers, you need to use the curly braces. React will treat those as
JavaScript instead of strings. In this case, you are not actually importing the image; instead
you are referencing the image. When Webpack builds the project it will handle the image

and set the source to the appropriate place.
Exit the text editor.

If you look at the DOM elements in your browser, you’ll see it adds a path. If you are
using Chrome, you can inspect the element by right-clicking the element and selecting

Inspect.

Here’s how it would look in the browser:

https://developers.google.com/web/tools/chrome-devtools

Hello, world

Learn React

[x ﬂ Elements Console Sources Network Performance Memory Application Security Audits Redux Components & Profiler

<html lang="en
» <head>..</head:
v <body:
noscript>You need to enable JavaScript to run this#app.</noscript
v<div id="root
v<div class="App">
v<header class="App-header
img src static/media/logo.5d5d9eef.svg” class="App-logo" alt="logo
p>Hello, world</p
a class="App-link" href="https://reactjs.org" target="_blank" rel="noopener noreferrer'>Learn React

Inspecting element with chrome dev tools

The DOM has this line:

Your code will be slightly different since the logo will have a different name. Webpack
wants to make sure the image path is unique. So even if you import images with the same

name, they will be saved with different paths.

At this point, you’ve made a small change to the React JavaScript code. In the next step,
you’ll use the build command to minify the code into a small file that can be deployed to

a server.
Step 6 — Building the Project
In this step, you will build the code into a bundle that can be deployed to external servers.

Head back to your terminal and build the project. You ran this command before, but as a

reminder, this command will execute the build script. It will create a new directory with

the combined and minified files. To execute the build, run the following command from

the root of your project:

npm run build

There will be a delay as the code compiles and when it’s finished, you’ll have a new

directory called build/.
Open up build/index.html in a text editor.

nano build/index.html

You will see something like this:

digital-ocean-tutorial/build/index.html

<!doctype html><html lang="en"><head><meta charset="utf-8"/><link rel="1ico

n" href="/favicon.ico"/><meta name="viewport" content="width=device-width,i
nitial-scale=1"/><meta name="theme-color" content="#000000"/><meta name="de
scription" content="Web site created using create-react-app"/><link rel="ap
ple-touch-icon" href="/10g0192.png"/><link rel="manifest" href="/manifest.j
son"/><title>React App</title><link href="/static/css/main.d1b05096.chunk.c
ss" rel="stylesheet"></head><body><noscript>You need to enable JavaScript t
o run this app.</noscript><div id="root"></div><script>!function(e){functio
n r(r){for(var n,a,p=r[0],1=r[1],c=r[2],1=0,s=[];i<p.length;i++)a=p[i1],0bje
ct.prototype.hasOwnProperty.call(o,a)&&o[a]&&s.push(o[al[0]),0[a]=0;for(n i
n 1)Object.prototype.hasOwnProperty.call(l,n)&&(e[n]=1[n]);for(f&&f(r);s.le
ngth;)s.shift()();return u.push.apply(u,c||[]),t()}function t(){for(var e,r
=0;r<u.length;r++){for(var t=u[r],n=!0,p=1;p<t.length;p++){var 1=t[p]l;0!==0
[1]&&(n="'1)}In&&(u.splice(r--,1),e=a(a.s=t[0]))}return e}var n={},0={1:0},u=
[1;function a(r){if(n[r])return n[r].exports;var t=n[r]={i:r,1:!1,exports:

{}};return e[r].call(t.exports,t,t.exports,a),t.1=10,t.exports}a.m=e,a.c=n,
a.d=function(e,r,t){a.o(e,r)||Object.defineProperty(e,r,{enumerable:!0,get:
t})},a.r=function(e){"undefined"!=typeof Symbol&&Symbol.toStringTag&&0bjec

t.defineProperty(e,Symbol.toStringTag,{value:"Module"}),0bject.defineProper

ty(e,"__esModule",{value:!0})},a.t=function(e,r){if(1&r&&(e=a(e)),8&r)retur

n e;if(4&r&&"object"==typeof el&&e&&e.__esModule)return e;var t=0bject.creat
e(null);if(a.r(t),0Object.defineProperty(t,"default",{enumerable:!0,value:
e}),2&r&&"string" !=typeof e)for(var n in e)a.d(t,n,function(r){return e
[r1}.bind(null,n));return t},a.n=function(e){var r=e&&e.__esModule?function
(){return e.default}:function(){return e};return a.d(r,"a",r),r},a.o=functi
on(e,r){return Object.prototype.hasOwnProperty.call(e,r)},a.p="/";var p=thti
s["webpackJsonpdo-create-react-app"]J=this["webpackJsonpdo-create-react-ap
p"1]|L],l=p.push.bind(p);p.push=r,p=p.slice();for(var c=0;c<p.length;c++)r
(pLcl);var f=1;t()}([]1)</script><script src="/static/js/2.c0be6967.chunk. j

s"></script><script src="/static/js/main.bac2dbd2.chunk.js"></script></body

></html>

The build directory takes all of your code and compiles and minifies it into the smallest
usable state. It doesn’t matter if a human can read it, since this is not a public-facing piece
of code. Minifying like this will make the code take up less space while still allowing it to
work. Unlike some languages like Python, the whitespace doesn’t change how the

computer interprets the code.

Conclusion

In this tutorial, you have created your first React application, configuring your project
using JavaScript build tools without needing to go into the technical details. That’s the
value in Create React App: you don’t need to know everything to get started. It allows you

to ignore the complicated build steps so you can focus exclusively on the React code.

You’ve learned the commands to start, test, and build a project. You’ll use these
commands regularly, so take note for future tutorials. Most importantly, you updated your

first React component.

If you would like to see React in action, try our How To Display Data from the
DigitalOcean API with React tutorial.

https://www.digitalocean.com/community/tutorials/how-to-display-data-from-the-digitalocean-api-with-react

How To Create React Elements with JSX

Written by Joe Morgan

The author selected Creative Commons to receive a donation as part of the

Write for DOnations program.

In this tutorial, you’ll learn how to describe elements with JSX. JSX is an
abstraction that allows you to write HTML-like syntax in your JavaScript
code and will enable you to build React components that look like standard
HTML markup. JSX is the templating language of React elements, and is
therefore the foundation for any markup that React will render into your

application.

Since JSX enables you to also write JavaScript in your markup, you’ll be
able to take advantage of JavaScript functions and methods, including array

mapping and short-circuit evaluation for conditionals.

As part of the tutorial, you’ll capture click events on buttons directly in the
markup and catch instances when the syntax does not match exactly to
standard HTML, such as with CSS classes. At the end of this tutorial, you’ll
have a working application that uses a variety of JSX features to display a
list of elements that have a built-in click listener. This is a common pattern
in React applications that you will use often in the course of learning the
framework. You’ll also be able to mix standard HTML elements along with
JavaScript to see how React gives you the ability to create small, reusable

pieces of code.

https://www.digitalocean.com/community/tutorials/how-to-create-react-elements-with-jsx
https://creativecommons.org/
https://do.co/w4do-cta
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-javascript
https://reactjs.org/
https://www.digitalocean.com/community/tutorials/understanding-arrays-in-javascript
https://www.digitalocean.com/community/tutorials/how-to-write-conditional-statements-in-javascript

Prerequisites

e You will need a development environment running Node.js; this
tutorial was tested on Node.js version 10.19.0 and npm version 6.13.4.
To install this on macOS or Ubuntu 18.04, follow the steps in How to
Install Node.js and Create a Local Development Environment on
macOS or the Installing Using a PPA section of How To Install
Node.js on Ubuntu 18.04.

¢ You will need to be able to create apps with Create React App. You can
find instructions for installing an application with Create React App at

How To Set Up a React Project with Create React App.

e You will also need a basic knowledge of JavaScript, which you can
find in How To Code in JavaScript, along with a basic knowledge of
HTML and CSS. A good resource for HTML and CSS is the Mozilla

Developer Network.

Step 1 — Adding Markup to a React Element

As mentioned earlier, React has a special markup language called JSX. It is

a mix of HTML and JavaScript syntax that looks something like this:

<div>
{inventory.filter(item => item.available).map(item => (
<Card>
<div className="title"}>{item.name}</div>
<div className="price">{item.price}</div>

</Card>

https://nodejs.org/en/about/
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-and-create-a-local-development-environment-on-macos
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-on-ubuntu-18-04
https://github.com/facebook/create-react-app
https://www.digitalocean.com/community/tutorials/how-to-set-up-a-react-project-with-create-react-app
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-javascript
https://developer.mozilla.org/en-US/docs/Learn/HTML/Introduction_to_HTML

))
}

</div>

You will recognize some JavaScript functionality such as .filter and .map,
as well as some standard HTML like <div>. But there are other parts that

look like both HTML and JavaScript, such as <Card> and className.

This is JSX, the special markup language that gives React components the

feel of HTML with the power of JavaScript.

In this step, you’ll learn to add basic HTML-like syntax to an existing React
element. To start, you’ll add standard HTML elements into a JavaScript
function, then see the compiled code in a browser. You’ll also group
elements so that React can compile them with minimal markup leaving

clean HTML output.

To start, make a new project. On your command line run the following

script to install a fresh project using create-react-app:

npx create-react-app jsx-tutorial

After the project is finished, change into the directory:

cd jsx-tutorial

In a new terminal tab or window, start the project using the Create React

App start script. The browser will autorefresh on changes, so leave this

https://www.digitalocean.com/community/tutorials/how-to-use-array-methods-in-javascript-iteration-methods#filter()
https://www.digitalocean.com/community/tutorials/how-to-use-array-methods-in-javascript-iteration-methods#map()
https://www.digitalocean.com/community/tutorials/how-to-set-up-a-react-project-with-create-react-app#step-3-%E2%80%94-starting-the-server

script running the whole time that you work:

npm start

You will get a running local server. If the project did not open in a browser
window, you can find it at http://localhost:3000/. If you are running this

from a remote server, the address will be http://your_IP_address:3000.

Your browser will load with a React application included as part of Create

React App.

Hello, world

Learn React

React template project

You will be building a completely new set of custom components, so you’ll
need to start by clearing out some boilerplate code so that you can have an

empty project. To start open App.js in a text editor. This is the root

http://localhost:3000/
https://www.digitalocean.com/community/tutorials/how-to-set-up-a-react-project-with-create-react-app#step-5-%E2%80%94-modifying-the-heading-tag-and-styling

component that is injected into the page. All components will start from

here.

In a new terminal, move into the project folder and open src/App.js with

the following command:

nano src/App.js

You will see a file like this:

jsx-tutorial/src/App.js

import React from 'react’;
import logo from './logo.svg';

import './App.css';

function App() {
return (
<div className="App">
<header className="App-header">

<p>
Edit <code>src/App.js</code> and save to reload.
</p>
<a
className="App-Link"
href="https://reactjs.org"
target="_blank"

rel="noopener noreferrer"

Learn React

</header=>
</div>

);

export default App;

Now, delete the line import logo from './logo.svg and everything after
the return statement in the function. Change it to return null. The final

code will look like this:

jsx-tutorial/src/App.js

import React from 'react’;

import './App.css';

function App() {

return null;

export default App;

Save and exit the text editor.

Finally, delete the logo. In the terminal window type the following

command:

rm src/logo.svg

You won’t be using this SVG file in your application, and you should
remove unused files as you work. It will better organize your code in the

long run.

Now that these parts of your project are removed, you can move on to
exploring the facets of JSX. This markup language is compiled by React
and eventually becomes the HTML you see on a web page. Without going
too deeply into the internals, React takes the JSX and creates a model of
what your page will look like, then creates the necessary elements and adds

them to the page.

What that means is that you can write what looks like HTML and expect

that the rendered HTML will be similar. However, there are a few catches.

First, if you look at the tab or window running your server, you’ll see this:

Output

./src/App.js

Line 1:8: 'React' is defined but never used no-unused-vars

That’s the linter telling you that you aren’t using the imported React code.
When you add the line import React from 'react' to your code, you are
importing JavaScript code that converts the JSX to React code. If there’s no

JSX, there’s no need for the import.

https://reactjs.org/docs/introducing-jsx.html#jsx-represents-objects
https://create-react-app.dev/docs/setting-up-your-editor/#displaying-lint-output-in-the-editor

Let’s change that by adding a small amount of JSX. Start by replacing null

with a Hello, World example:

jsx-tutorial/src/App.js

import React from 'react';

import './App.css';

function App() {

return <hl>Hello, World</hl>;

export default App;

Save the file. If you look at the terminal with the server running, the
warning message will be gone. If you visit your browser, you will see the

message as an hil element.

C (@ localhost:3001

Hello, World

browser screen showing “Hello, World”

Next, below the <h1> tag, add a paragraph tag that contains the string I am

writing JSX. The code will look like this:

jsx-tutorial/src/App.js

import React from 'react’;

import './App.css';

function App() {
return(
<h1>Hello, World</h1l>
<p>I am writing JSX</p=>

export default App;

Since the JSX spans multiple lines, you’ll need to wrap the expression in

parentheses.

Save the file. When you do you’ll see an error in the terminal running your

server:

Output
./src/App.js
Line 7:5: Parsing error: Adjacent JSX elements must be wrap

ped in an enclosing tag. Did you want a JSX fragment <>...</>?

5 | return(
6 | <h1>Hello, World</h1>
> 7 | <p>I am writing JSX</p>
| ~
8)
9|1}
10 |

When you return JSX from a function or statement, you must return a single
element. That element may have nested children, but there must be a single

top-level element. In this case, you are returning two elements.

The fix is a small code change. Surround the code with an empty tag. An
empty tag is an HTML element without any words. It looks like this: <>

</>.

Go back to ./src/App.js in your editor and add the empty tag:

https://reactjs.org/docs/fragments.html#short-syntax

jsx-tutorial/src/App.js

import React from 'react’;

import './App.css';

function App() {
return(
<>
<h1>Hello, World</h1l>
<p>I am writing JSX</p>

</>

export default App;

The empty tag creates a single element, but when the code is compiled, it is
not added to the final markup. This will keep your code clean while still

giving React a single element.

Note: You could have also wrapped the code with a div instead of
empty tags, as long as the code returns one element. In this example,
an empty tag has the advantage of not adding extra markup to the

parsed output.

Save the code and exit the file. Your browser will refresh and show the
updated page with the paragraph element. In addition, when the code is

converted the empty tags are stripped out:

Hello, World

| am writing JSX

S ﬂ Elements Console Sources Network Performance Memory Application Security Audits Redux

html lang="en
» <head>..</head
v <body.
noscript>You need to enable JavaScript to run this app.</noscript
v<div id="root
hl=Hello, World</hl> == $0
p>I am writing JSX</p
/div

Browser showing markup and devtools showing mar
kup without empty tags

You’ve now added some basic JSX to your component and learned how all
JSX needs to be nested in a single component. In the next step, you’ll add

some styling to your component.

Step 2 — Adding Styling to an Element with Attributes

In this step, you’ll style the elements in your component to learn how
HTML attributes work with JSX. There are many styling options in React.
Some of them involve writing CSS in Javascript, others use preprocessors.

In this tutorial you’ll work with imported CSS and CSS classes.

Now that you have your code, it’s time to add some styling. Open App.css

in your text editor:

nano src/App.css

Since you are starting with new JSX, the current CSS refers to elements that

no longer exist. Since you don’t need the CSS, you can delete it.
After deleting the code, you’ll have an empty file.

Next, you will add in some styling to center the text. In src/App.css, add

the following code:

jsx-tutorial/src/App.css

.container {
display: flex;
flex-direction: column;

align-items: center;

https://reactjs.org/docs/faq-styling.html

In this code block, you created a CSS class selector called .container and

used that to center the content using display: flex.

Save the file and exit. The browser will update, but nothing will change.
Before you can see the change, you need to add the CSS class to your React

component. Open the component JavaScript code:

nano src/App.js

The CSS code is already imported with the line import './App.css'. That

means that webpack will pull in the code to make a final style sheet, but to

apply the CSS to your elements, you need to add the classes.

First, in your text editor, change the empty tags, <>, to <div>.

https://developer.mozilla.org/en-US/docs/Web/CSS/Class_selectors
https://developer.mozilla.org/en-US/docs/Web/CSS/flex
https://webpack.js.org/

jsx-tutorial/src/App.js

import React from 'react’;

import './App.css';

function App() {
return(
<div>
<h1>Hello, World</h1l>
<p>I am writing JSX</p>

</div>

export default App;

In this code, you replaced the empty tags— <>—with div tags. Empty tags
are useful for grouping your code without adding any extra tags, but here
you need to use a div because empty tags do not accept any HTML

attributes.

Next, you need to add the class name. This is where JSX will start to
diverge from HTML. If you wanted to add a class to a usual HTML element
you would do it like this:

<div class="container">

https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes

But since JSX is JavaScript, it has a few limitations. One of the limitations
is that JavaScript has reserved keywords. That means you can’t use certain
words in any JavaScript code. For example, you can’t make a variable

called null because that word is already reserved.

One of the reserved words is class. React gets around this reserved word
by changing it slightly. Instead of adding the attribute class, you will add
the attribute className. As a rule, if an attribute is not working as expected,
try adding the camel case version. Another attribute that is slightly different
is the for attribute that you’d use for labels. There are a few other cases,

but fortunately the list is fairly short.

Note: In React, attributes are often called props. Props are pieces of
data that you can pass to other custom components. They look the
same as attributes except that they do not match any HTML specs. In
this tutorial, we’ll call them attributes since they are mainly used like
standard HTML attributes. This will distinguish them from props that
do not behave like HTML attributes, which will be covered later in this

series.

Now that you know how the class attribute is used in React, you can
update your code to include the styles. In your text editor, add className

="container" to your opening div tag:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Lexical_grammar#Keywords
https://reactjs.org/docs/dom-elements.html

jsx-tutorial/src/App.js

import React from 'react’;

import './App.css';

function App() {
return(
<div className="contatiner">
<h1>Hello, World</h1l>
<p>I am writing JSX</p>

</div>

export default App;

Save the file. When you do, the page will reload and the content will be

centered.

Hello, World

I am writing JSX

The className attribute is unique in React. You can add most HTML
attributes to JSX without any change. As an example, go back to your text
editor and add an id of greeting to your <h1> element. It will look like

standard HTML.:

jsx-tutorial/src/App.js

import React from 'react’;

import './App.css';

function App() {
return(
<div className="contatiner">
<hl 1d="greeting">Hello, World</h1>
<p>I am writing JSX</p>

</div>

export default App;

Save the page and reload the browser. It will be the same.

So far, JSX looks like standard markup, but the advantage of JSX is that
even though it looks like HTML, it has the power of JavaScript. That means
you can assign variables and reference them in your attributes. To reference

an attribute, wrap it with curly braces— {} —instead of quotes.

In your text editor, add the following highlighted lines to reference an

attribute:

jsx-tutorial/src/App.js

import React from 'react’;

import './App.css';

function App() {
const greeting = "greeting";
return(
<div className="contatiner">
<h1l id={greeting}>Hello, World</h1>
<p>I am writing JSX</p>

</div>

export default App;

In this code, you created a variable above the return statement called gree
ting with the value of "greeting", then referenced the variable in the 1id

attribute of your <h1> tag.

Save and exit the file. The page will be the same, but with an id tag.

Hello, World

[w ﬂ Elements Console Sources Network Performance Memory Application

html lang="en
» <head>..</head
v <body
noscript>You need to enable JavaScript to run this app.</noscript
v<div id="root
v<div class="container"> == $0
hl id="greeting">Hello, World</hl
p>I am writing JSX</p
/div.
/div.

Page with id tag highlighted
ools

nano src/App.js

I am writing JSX

Security Audits Redux Components Profiler

in the developer t

So far you’ve worked with a few elements on their own, but you can also

use JSX to add many HTML elements and nest them to create complex

pages.

To demonstrate this, you’ll make a page with a list of emoji. These emoji
will be wrapped with a <button> element. When you click on the emoji,
you’ll get their CLDR Short Name.

To start, you’ll need to add a few more elements to the page. Open src/Ap

p.js in your text editor. Keep it open during this step.

http://cldr.unicode.org/

First, add a list of emojis by adding the following highlighted lines:

jsx-tutorial/src/App.js

import React from 'react’;

import './App.css';

function App() {
const greeting = "greeting";
return(
<div className="contatiner">
<h1l id={greeting}>Hello, World</h1>
<p>I am writing JSX</p>

<button>
<span role="1mg" aria-label="grinning face" id="g
</button>

<button>
<span role="1mg" aria-label="party popper" id="pa
</button>

<button>
<span role="1mg" aria-label="woman dancing" id="w
</button>

</1li>

</div>

export default App;

Here you created a tag to hold a list of emojis. Each emoji is in a
separate element and is surrounded with a <button> element. In the

next step you’ll add an event to this button.

You also surrounded the emoji with a tag that has a few more
attributes. Each span has the role attribute set to the img role. This will
signal to accessibility software that the element is acting like an image. In
addition, each also has an aria-label and an id attribute with the
name of the emoji. The aria-label will tell visitors with screen readers

what is displayed. You will use the id when writing events in the next step.

When you write code this way, you are using semantic elements, which will

help keep the page accessible and easy to parse for screen readers.

Save and exit the file. Your browser will refresh and you will see this:

https://www.digitalocean.com/community/tutorials/understanding-events-in-javascript
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/Roles/Role_Img
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/Roles/Role_Img
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Techniques/Using_the_aria-label_attribute
https://developer.mozilla.org/en-US/docs/Glossary/Semantics

Hello, World

| am writing JSX

browser with emoji as a list

Now add a little styling. Open the CSS code in your text editor:

nano src/App.css

Add the following highlighted code to remove the default background and

border for the buttons while increasing the font size:

jsx-tutorial/src/App.css

.container {
display: flex;
flex-direction: column;

align-items: center;

}

button {
font-size: Zem
border: 0;
padding: 0;
background: none;
cursor: pointer;

}

ul { display: flex;
padding: 0;

i {
margin: 0 20px;
list-style: none;

padding: 0;

In this code, you used font-size, border, and other parameters to adjust
the look of your buttons and change the font. You also removed the list

styles and added display: flex to the element to make it horizontal.

Save and close the CSS file. Your browser will refresh and you will see this:

Hello, World

| am writing JSX

list with default styles removed

You’ve now worked with several JSX elements that look like regular
HTML. You’ve added classes, ids, and aria tags, and have worked with data
as strings and variables. But React also uses attributes to define how your
elements should respond to user events. In the next step, you’ll start to

make the page interactive by adding events to the button.

Step 3 — Adding Events to Elements

In this step, you’ll add events to elements using special attributes and
capture a click event on a button element. You’ll learn how to capture
information from the event to dispatch another action or use other

information in the scope of the file.

Now that you have a basic page with information, it’s time to add a few
events to it. There are many event handlers that you can add to HTML
elements. React gives you access to all of these. Since your JavaScript code
is coupled with your markup, you can quickly add the events while keeping

your code well-organized.

To start, add the onclick event handler. This lets you add some JavaScript

code directly to your element rather than attaching an event listener:

https://www.digitalocean.com/community/tutorials/understanding-events-in-javascript#event-handlers-and-event-listeners
https://developer.mozilla.org/en-US/docs/Web/API/GlobalEventHandlers/onclick

jsx-tutorial/src/App.js

import React from 'react’;

import './App.css';

function App() {
const greeting = "greeting";
return(
<div className="contatiner">
<h1l id={greeting}>Hello, World</h1>
<p>I am writing JSX</p>

<button

onClick={event => alert(event.target.id)}

<span role="img" aria-label="grinning face" 1id="gri
</button>
</1i>

<button

onClick={event => alert(event.target.id)}

<span role="img" aria-label="party popper" id="pa
</button>
</1i1>

<button

onClick={event => alert(event.target.id)}

<span role="img" aria-label="woman dancing" id="w

</button>
</1i>

</div>

export default App;

Since this is JSX, you camelCased onclick, which means you added it as o
nClick. This onClick attribute uses an anonymous function to retrieve

information about the item that was clicked.

You added an anonymous arrow function that will get the event from the

clicked button, and the event will have a target that is the element.
The information you need is in the id attribute, which you can access with

event.target.id. You can trigger the alert with the alert() function.

Save the file. In your browser, click on one of the emoji and you will get an

alert with the name.

https://www.digitalocean.com/community/tutorials/how-to-define-functions-in-javascript#function-expressions
https://www.digitalocean.com/community/tutorials/how-to-define-functions-in-javascript#arrow-functions
https://developer.mozilla.org/en-US/docs/Web/API/Window/alert

localhost:3001 says

party popper

Alert for party popper

You can reduce a duplication by declaring the function once and passing it
to each onClick action. Since the function does not rely on anything other
than inputs and outputs, you can declare it outside the main component
function. In other words, the function does not need to access the scope of
the component. The advantage to keeping them separate is that your
component function is slightly shorter and you could move the function out

to a separate file later if you wanted to.

In your text editor, create a function called displayEmojiName that takes the
event and calls the alert() function with an id. Then pass the function to

each onClick attribute:

jsx-tutorial/src/App.js

import React from 'react’;

import './App.css';

const displayEmojiName = event => alert(event.target.id);

function App() {
const greeting = "greeting";
return(
<div className="contatiner">
<h1l id={greeting}>Hello, World</h1>
<p>I am writing JSX</p>

<button

onClick={displayEmojiName}

<span role="img" aria-label="grinning face" 1id="gri
</button>
</1i>

<button

onClick={displayEmojiName}

<span role="img" aria-label="party popper" id="pa

</button>

</1i>

<button

onClick={displayEmojiName}

<span role="img" aria-label="woman dancing" id="w
</button>
</1i>

</div>

export default App;

Save the file. In your browser, click on an emoji and you will see the same

alert.

In this step, you added events to each element. You also saw how JSX uses
slightly different names for element events, and you started writing reusable
code by taking the function and reusing it on several elements. In the next
step, you will write a reusable function that returns JSX elements rather

than writing each element by hand. This will further reduce duplication.

Step 4 — Mapping Over Data to Create Elements

In this step, you’ll move beyond using JSX as simple markup. You’ll learn
to combine it with JavaScript to create dynamic markup that reduces code
and improves readability. You’ll refactor your code into an array that you

will loop over to create HTML elements.

JSX doesn’t limit you to an HTML-like syntax. It also gives you the ability
to use JavaScript directly in your markup. You tried this a little already by
passing functions to attributes. You also used variables to reuse data. Now

it’s time to create JSX directly from data using standard JavaScript code.

In your text editor, you will need to create an array of the emoji data in the

src/App.Js file. Reopen the file if you have closed it:

nano src/App.js

Add an array that will contain objects that have the emoji and the emoji
name. Note that emojis need to be surrounded by quote marks. Create this

array above the App function:

https://www.digitalocean.com/community/tutorials/understanding-objects-in-javascript

jsx-tutorial/src/App.js

import React from 'react’;

import './App.css';

const displayEmojiName = event => alert(event.target.id);

const emojis = [

{

emoji: "@",

name: "grinning face"
s
{

emoji: """,

name: "party popper"
s
{

emoji: "§",

name: "woman dancing"
}

1;

function App() {

export default App;

Now that you have the data you can loop over it. To use JavaScript inside of

JSX, you need to surround it with curly braces: {}. This is the same as

when you added functions to attributes.

To create React components, you’ll need to convert the data to JSX
elements. To do this, you’ll map over the data and return a JSX element.

There are a few things you’ll need to keep in mind as you write the code.

First, a group of items needs to be surrounded by a container <divs>.
Second, every item needs a special property called key. The key needs to
be a unique piece of data that React can use to keep track of the elements so
it can know when to update the component. The key will be stripped out of
the compiled HTML, since it is for internal purposes only. Whenever you

are working with loops you will need to add a simple string as a key.

Here’s a simplified example that maps a list of names into a containing <di

V>

https://reactjs.org/docs/lists-and-keys.html#keys

const names = [
"Atul Gawande",
"Stan Sakatil",
"Barry Lopez"

1;

return(
<div>

{names.map(name => <div key={name}>{name}</div>)}

</div>

The resulting HTML would look like this:

<div>
<div>Atul Gawande</div>
<div>Stan Sakai</div>
<div>Barry Lopez</div>

</div>

Converting the emoji list will be similar. The will be the container.
You’ll map over data and return a <l1i> with a key of the emoji short name.
You will replace the hard-coded data in the <button> and tags with

information from the loop.

In your text editor, add the following:

jsx-tutorial/src/App.js

import React from 'react’;

import './App.css';

const displayEmojiName = event => alert(event.target.id);
const emojis = [
{
emoji: '@,
name: "test grinning face"
}s
{
emoji: '/&',
name: "party popper"
}s
{
emoji: '%',
name: "woman dancing"
}
1;

function App() {
const greeting = "greeting";
return(
<div className="contatiner">
<h1l id={greeting}>Hello, World</h1>
<p>I am writing JSX</p>

{
emojis.map(emoji => (
<li key={emoji.name}>
<button
onClick={displayEmojiName}
>
<span role="img" aria-label={emoji.name}
id={emoji.name}>{emoji.emoji}
</button>
</1i1>
))
)

</div>

export default App;

In the code, you mapped over the emojis array in the tag and returned
a . In each <1i> you used the emoji name as the key prop. The button
will have the same function as normal. In the element, replace the a
ria-label and id with the name. The content of the tag should be

the emoji.

https://www.digitalocean.com/community/tutorials/how-to-use-array-methods-in-javascript-iteration-methods#map()

Save the file. Your window will refresh and you’ll see the data. Notice that

the key is not present in the generated HTML.

Hello, World

I am writing JSX

&

N

-/

& d Elements Console Sources Network Performance ~ Memory Application Security y Audits Redux @ Components & Profiler D4
v <body:
noscript>You need to enable JavaScript to run this app.</noscript Gyl Gempuicd Eeiliszes 2
div id="root Filter thov .cls +
v<div class="container 2
h1 id="greeting">Hello, World</hL
p>I am writing JSX</p
v<ul
v<li
v <button

element.style {

Inherited from button

button { <style>
span role="ing" aria-label="grinning face" id="grinning face'>@ == $0 font-size: 2em;
/button

/i
> <lis.</1i
> <Uis</1i cursor: pointer;
n

Browser with developer tools showing updated HT
ML without key props

Combining JSX with standard JavaScript gives you a lot of tools to create
content dynamically, and you can use any standard JavaScript you want. In
this step, you replaced hard-coded JSX with an array and a loop to create

HTML dynamically. In the next step, you’ll conditionally show information

using short circuiting.

Step 5 — Conditionally Showing Elements with Short
Circuiting

In this step, you’ll use short circuiting to conditionally show certain HTML

elements. This will let you create components that can hide or show HTML

based on additional information giving your components flexibility to

handle multiple situations.

There are times when you will need a component to show information in
some cases and not others. For example, you may only want to show an
alert message for the user if certain cases are true, or you may want to
display some account information for an admin that you wouldn’t want a

normal user to see.

To do this you will use short circuting. This means that you will use a
conditional, and if the first part is truthy, it will return the information in the

second part.

Here’s an example. If you wanted to show a button only if the user was
logged in, you would surround the element with curly braces and add the

condition before.

{isLoggedIn && <button>Log Out</button>}

In this example, you are using the && operator, which returns the last value
if everything is truthy. Otherwise, it returns false, which will tell React to
return no additional markup. If isLoggedIn is truthy, React will display the

button. If isLoggedIn is falsy, it will not show the button.

To try this out, add the following highlighted lines:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Logical_Operators#Short-circuit_evaluation

jsx-tutorial/src/App.js

import React from 'react’;

import './App.css';

function App() {
const greeting = "greeting";
const displayAction = false;
return(
<div className="contatiner">
<h1l id={greeting}>Hello, World</h1>
{displayAction && <p>I am writing JSX</p>}

</div>

export default App;

In your text editor, you created a variable called displayAction with a

value of false. You then surrounded the <p> tag with curly braces. At the

start of the curly braces, you added displayAction && to create the

conditional.

Save the file and you will see the element disappear in your browser.
Crucially, it will also not appear in the generated HTML. This is not the
same as hiding an element with CSS. It won’t exist at all in the final

markup.

Hello, World

© & P

x ﬂ Elements Console Sources Network Performance Memory Application Security Audits Redux Components Profiler

html lang="en
» <head>..</head
v <body:
noscript>You need to enable JavaScript to run this app.</noscript:
v<div id="root
v<div class="container
hl id="greeting“>Hello, World</hl> == $0
> .</ul
/div:
/div.
—

Browser with developer tools showing no paragra
ph element

Right now the value of displayAction is hard-coded, but you can also store

that value as a state or pass it as a prop from a parent component.

https://reactjs.org/docs/state-and-lifecycle.html
https://reactjs.org/docs/components-and-props.html

In this step, you learned how to conditionally show elements. This gives
you the ability to create components that are customizable based on other

information.

Conclusion

At this point, you’ve created a custom application with JSX. You’ve learned
how to add HTML-like elements to your component, add styling to those
elements, pass attributes to create semantic and accessible markup, and add
events to the components. You then mixed JavaScript into your JSX to

reduce duplicate code and to conditionally show and hide elements.

This is the basis you need to make future components. Using a combination
of JavaScript and HTML, you can build dynamic components that are

flexible and allow your application to grow and change.

If you’d like to learn more about React, check out our React topic page.

https://www.digitalocean.com/community/tags/react

How To Create Custom Components in
React

Written by Joe Morgan

The author selected Creative Commons to receive a donation as part of the

Write for DOnations program.

In this tutorial, you’ll learn to create custom components in React.
Components are independent pieces of functionality that you can reuse in
your application, and are the building blocks of all React applications.
Often, they can be simple JavaScript functions and classes, but you use
them as if they were customized HTML elements. Buttons, menus, and any
other front-end page content can all be created as components. Components

can also contain state information and display markdown.

After learning how to create components in React, you’ll be able to split

complex applications into small pieces that are easier to build and maintain.

In this tutorial, you’ll create a list of emojis that will display their names on
click. The emojis will be built using a custom component and will be called
from inside another custom component. By the end of this tutorial, you’ll
have made custom components using both JavaScript classes and JavaScript
functions, and you’ll understand how to separate existing code into reusable

pieces and how to store the components in a readable file structure.

Prerequisites

https://www.digitalocean.com/community/tutorials/how-to-create-custom-components-in-react
https://creativecommons.org/
https://do.co/w4do-cta
https://reactjs.org/
https://www.digitalocean.com/community/tutorials/how-to-define-functions-in-javascript
https://www.digitalocean.com/community/tutorials/understanding-classes-in-javascript

e You will need a development environment running Node.js; this
tutorial was tested on Node.js version 10.20.1 and npm version 6.14.4.
To install this on macOS or Ubuntu 18.04, follow the steps in How to
Install Node.js and Create a Local Development Environment on
macOS or the Installing Using a PPA section of How To Install
Node.js on Ubuntu 18.04.

e You will need to be able to create apps with Create React App. You can
find instructions for installing an application with Create React App at

How To Set Up a React Project with Create React App.

e You will be using JSX syntax, which you can learn about in our How
To Create Elements with JSX tutorial.

e You will also need a basic knowledge of JavaScript, which you can
find in How To Code in JavaScript, along with a basic knowledge of
HTML and CSS. A good resource for HTML and CSS is the Mozilla

Developer Network.

Step 1 — Setting Up the React Project

In this step, you’ll create a base for your project using Create React App.
You will also modify the default project to create your base project by

mapping over a list of emojis and adding a small amount of styling.

First, create a new project. Open a terminal, then run the following

command:

npx create-react-app tutorial-03-component

https://nodejs.org/en/about/
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-and-create-a-local-development-environment-on-macos
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-on-ubuntu-18-04
https://github.com/facebook/create-react-app
https://www.digitalocean.com/community/tutorials/how-to-set-up-a-react-project-with-create-react-app
https://www.digitalocean.com/community/tutorials/how-to-create-react-elements-with-jsx
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-javascript
https://developer.mozilla.org/en-US/docs/Learn/HTML/Introduction_to_HTML

Once this is finished, change into the project directory:

cd tutorial-03-component

Open the App.js code in a text editor:

nano src/App.js

Next, take out the template code created by Create React App, then replace

the contents with new React code that displays a list of emojis:

tutorial-03-component/src/App.js

import React from 'react’;

import './App.css';

const displayEmojiName = event => alert(event.target.id);

const emojis = [

{

emoji: '@",

name: "test grinning face"
},
{

emoji: '/&',

name: "party popper"
},
{

emoji: '§',

name: "woman dancing"
Iy

1;

function App() {
const greeting = "greeting";
const displayAction = false;
return(
<div className="contatiner">

<h1l id={greeting}>Hello, World</h1>

{displayAction && <p>I am writing JSX</p>}

{
emojis.map(emoji => (
<11 key={emoji.name}>
<button

onClick={displayEmojiName}

<span role="img" aria-label={emoji.name}
id={emoji.name}>{emoji.emoji}

</button>
</1li>

))

</div>

export default App;

This code uses JSX syntax to map() over the emojis array and list them as
 list items. It also attaches onClick events to display emoji data in the

browser. To explore the code in more detail, check out How to Create React

Elements with JSX, which contains a detailed explanation of the JSX.

https://www.digitalocean.com/community/tutorials/how-to-use-array-methods-in-javascript-iteration-methods#map()
https://www.digitalocean.com/community/tutorials/understanding-arrays-in-javascript
https://www.digitalocean.com/community/tutorials/understanding-events-in-javascript
https://www.digitalocean.com/community/tutorials/how-to-create-react-elements-with-jsx

Save and close the file. You can now delete the 1logo.svg file, since it was

part of the template and you are not referencing it anymore:

rm src/logo.svg

Now, update the styling. Open src/App.css:

nano src/App.css

Replace the contents with the following CSS to center the elements and

adjust the font:

tutorial-03-component/src/App.css

.container {
display: flex;
flex-direction: column;

align-items: center;

¥

button {
font-size: 2em;
border: 0;
padding: 0;
background: none;
cursor: pointer;

¥

ul {
display: flex;
padding: 0;

¥

i {

margin: 0 20px;
list-style: none;

padding: 0;

This uses flex to center the main <h1> and list elements. It also removes
default button styles and <l1i> styles so the emojis line up in a row. More

details can be found at How to Create React Elements with JSX.
Save and exit the file.

Open another terminal window in the root of your project. Start the project

with the following command:

npm start

After the command runs, you’ll see the project running in your web browser

at http://localhost:3000.

Leave this running the entire time you work on your project. Every time
you save the project, the browser will auto-refresh and show the most up-to-

date code.

You will see your project page with Hello, World and the three emojis that
you listed in your App.js file:

https://www.digitalocean.com/community/tutorials/how-to-create-react-elements-with-jsx
http://localhost:3000/

@® localhost:3000) ¢

Hello, World

Browser with emoji

Now that you’ve set up your code, you can now start putting together

components in React.

Step 2 — Creating an Independent Component with
React Classes

Now that you have your project running, you can start making your custom
component. In this step, you’ll create an independent React component by

extending the base React Component class. You’ll create a new class, add

methods, and use the render function to show data.

React components are self-contained elements that you can reuse
throughout a page. By making small, focused pieces of code, you can move
and reuse pieces as your application grows. The key here is that they are
self-contained and focused, allowing you to separate out code into logical

pieces. In fact, you have already been working with logically separated

https://www.digitalocean.com/community/tutorials/understanding-classes-in-javascript

components: The App.js file is a functional component, one that you will

see more of in Step 3.

There are two types of custom component: class-based and functional. The
first component you are going to make is a class-based component. You will

make a new component called Instructions that explains the instructions

for the emoji viewer.

Note: Class-based components used to be the most popular way of
creating React components. But with the introduction of React Hooks,
many developers and libraries are shifting to using functional

components.

Though functional components are now the norm, you will often find
class components in legacy code. You don’t need to use them, but you
do need to know how to recognize them. They also give a clear
introduction to many future concepts, such as state management. In
this tutorial, you’ll learn to make both class and functional

components.

To start, create a new file. By convention, component files are capitalized:

touch src/Instructions.js

Then open the file in your text editor:

nano src/Instructions.js

https://reactjs.org/docs/hooks-intro.html

First, import React and the Component class and export Instructions with

the following lines:

tutorial-03-component/src/Instructions.js

import React, { Component } from 'react';

export default class Instructions extends Component {}

Importing React will convert the JSX. Component is a base class that you’ll

extend to create your component. To extend that, you created a class that

has the name of your component (Instructions) and extended the base Com
ponent with the export line. You’re also exporting this class as the default

with export default keywords at the start of the class declaration.

The class name should be capitalized and should match the name of the file.
This is important when using debugging tools, which will display the name
of the component. If the name matches the file structure, it will be easier to

locate the relevant component.

The base Component class has several methods you can use in your custom
class. The most important method, and the only one you’ll use in this

tutorial, is the render() method. The render() method returns the JSX

code that you want to display in the browser.

https://reactjs.org/docs/react-component.html#the-component-lifecycle

To start, add a little explanation of the app in a <p> tag:

tutorial-03-component/src/Instructions.js

import React, { Component } from 'react';

export class Instructions extends Component {

render() A
return(

<p>Click on an emoji to view the emoji short name.</p>

Save and close the file. At this point, there’s still no change to your browser.
That’s because you haven’t used the new component yet. To use the
component, you’ll have to add it into another component that connects to
the root component. In this project, <App> is the root component in index.
js. To make it appear in your application, you’ll need to add to the <App>

component.
Open src/App.js in a text editor:

nano src/App.js

First, you’ll need to import the component:

tutorial-03-component/src/App.js

import React from 'react’;

import Instructions from './Instructions';

import './App.css';

export default App;

Since it’s the default import, you could import to any name you wanted. It’s
best to keep the names consistent for readability—the import should match
the component name, which should match the file name—but the only firm
rule is that the component must start with a capital letter. That’s how React

knows it’s a React component.

Now that you’ve imported the component, add it to the rest of your code as

if it were a custom HTML element:

https://reactjs.org/docs/jsx-in-depth.html#specifying-the-react-element-type

tutorial-03-component/src/App.js

import React from 'react’;

import Instructions from './Instructions.js'

function App() {
const greeting = "greeting";
const displayAction = false;
return(
<div className="contatiner">
<h1l id={greeting}>Hello, World</h1>
{displayAction && <p>I am writing JSX</p>}
<Instructions />

{
emojis.map(emoji => (
<11 key={emoji.name}>
<button

onClick={displayEmojiName}

<span role="img" aria-label={emoji.name}
id={emoji.name}>{emoji.emoji}

</button>
</1i>

))

</div>

export default App;

In this code, you wrapped the component with angle brackets. Since this
component doesn’t have any children, it can be self closing by ending with

/>.

Save the file. When you do, the page will refresh and you’ll see the new

component.

Hello, World

Click on an emoji to view the emoji short name.

Browser with instruction text

Now that you have some text, you can add an image. Download an emoji

image from wikimedia and save it in the src directory as emoji.svg with

the following command:

curl -o src/emoji.svg https://upload.wikimedia.org/wikipedia/c

ommons/3/33/Twemoji_1f602.svg

curl makes the request to the URL, and the -o flag allows you to save the

file as src/emoji.svg.

Next, open your component file:

nano src/Instructions.js

Import the emoji and add it to your custom component with a dynamic link:

https://commons.wikimedia.org/wiki/File:Twemoji_1f602.svg
https://curl.haxx.se/

tutorial-03-component/src/Instructions.js

import React, { Component } from 'react';

import emoji from './emoji.svg'

export default class Instructions extends Component {

render() {
return(
<>

<p>Click on an emoji to view the emoji short name.</p>

</>

Notice that you need to include the file extension .svg when importing.

When you import, you are importing a dynamic path that is created by
webpack when the code compiles. For more information, refer to How To

Set Up a React Project with Create React App.

You also need to wrap the and <p> tags with empty tags to ensure

that you are returning a single element.

https://webpack.js.org/
https://www.digitalocean.com/community/tutorials/how-to-set-up-a-react-project-with-create-react-app

Save the file. When you reload, the image will be very large compared to

the rest of the content:

Hello, World

A A

Browser window with large emoji image

To make the image smaller, you’ll need to add some CSS and a className

to your custom component.

First, in Instructions.js, change the empty tags to a div and give it a clas

sName of instructions:

tutorial-03-component/src/Instructions.js

import React, { Component } from 'react';

import emoji from './emoji.svg'
export default class Instructions extends Component {

render() {
return(
<div className="1instructions">

<p>Click on an emoji to view the emoji short name.</p>

</div>

Save and close the file. Next open App.css:

nano src/App.css

Create rules for the .instructions class selector:

https://developer.mozilla.org/en-US/docs/Web/CSS/Class_selectors

tutorial-03-component/src/App.css

.container {
display: flex;
flex-direction: column;

align-items: center;

.instructions {
display: flex;
flex-direction: column;

align-items: center;

When you add a display of flex styling, you make the img and the p

centered with flexbox. You changed the direction so that everything lines up
vertically with flex-direction: column;. The line align-items: center;

will center the elements on the screen.

Now that your elements are lined up, you need to change the image size.

Give the img inside the div a width and height of 100px.

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Flexible_Box_Layout/Basic_Concepts_of_Flexbox

tutorial-03-component/src/App.css

.container {
display: flex;
flex-direction: column;

align-items: center;

.instructions {
display: flex;
flex-direction: column;

align-items: center;

.instructions img {
width: 100px;
height: 100px;

Save and close the file. The browser will reload and you’ll see the image is

much smaller:

Hello, World

‘a2

-

Click on an emoji to view the emoji short name.

» LA

Browser window with smaller image

At this point, you’ve created an independent and reusable custom
component. To see how it’s reusable, add a second instance to App.js.

Open App.js:

nano src/App.js

In App.js, add a second instance of the component:

tutorial-03-component/src/App.js

import React from 'react’;

import Instructions from './Instructions.js'

function App() {
const greeting = "greeting";
const displayAction = false;
return(
<div className="contatiner">
<h1l id={greeting}>Hello, World</h1>
{displayAction && <p>I am writing JSX</p>}
<Instructions />
<Instructions />

{
emojis.map(emoji => (
<11 key={emoji.name}>
<button

onClick={displayEmojiName}

<span role="img" aria-label={emoji.name}
id={emoji.name}>{emoji.emoji}

</button>

</1i>
))

}

</div>

export default App;

Save the file. When the browser reloads, you’ll see the component twice.

Hello, World

a

g

Click on an emoji to view the emoji short name.

‘a2

-

Click on an emoji to view the emaji short name.

@ & 3

S N

e

P

Browser with two instances of the Instructions
component

In this case, you wouldn’t want two instances of Instructions, but you can
see that the component can be efficiently reused. When you create custom
buttons or tables, you will likely use them multiple times on one page,

making them perfect for custom components.

For now, you can delete the extra image tag. In your text editor, delete the

second <Instructions /> and save the file:

tutorial-03-component/src/App.js

import React from 'react’;

import Instructions from './Instructions.js'

function App() {
const greeting = "greeting";
const displayAction = false;
return(
<div className="contatiner">
<h1l id={greeting}>Hello, World</h1>
{displayAction && <p>I am writing JSX</p>}
<Instructions />

{
emojis.map(emoji => (
<11 key={emoji.name}>
<button

onClick={displayEmojiName}

<span role="img" aria-label={emoji.name}
id={emoji.name}>{emoji.emoji}

</button>

</1i>

</div>

export default App;

Now you have a reusable, independent component that you can add to a
parent component multiple times. The structure you have now works for a
small number of components, but there is a slight problem. All of the files
are mixed together. The image for <Instructions> is in the same directory
as the assets for <App>. You also are mixing the CSS code for <App> with

the CSS for <Instructions>.

In the next step, you’ll create a file structure that will give each component
independence by grouping their functionality, styles, and dependencies

together, giving you the ability to move them around as you need.

Step 3 — Creating a Readable File Structure

In this step, you’ll create a file structure to organize your components and
their assets, such as images, CSS, and other JavaScript files. You’ll be
grouping code by component, not by asset type. In other words, you won’t

have a separate directory for CSS, images, and JavaScript. Instead you’ll

have a separate directory for each component that will contain the relevant

CSS, JavaScript, and images. In both cases, you are separating concerns.

Since you have an independent component, you need a file structure that
groups the relevant code. Currently, everything is in the same directory. List

out the items in your src directory:

ls src/

The output will show that things are getting pretty cluttered:

Output

App.css Instructions.js index. js
App.js emoji.svg serviceWorker.
js

App.test.js index.css setupTests.js

You have code for the <App> component (App.css, App.js, and App.test.
js) sitting alongside your root component (index.css and index.js) and

your custom component Instructions.js.

React is intentionally agnostic about file structure. It does not recommend a
particular structure, and the project can work with a variety of different file
hierarchies. But we recommend to add some order to avoid overloading
your root directory with components, CSS files, and images that will be

difficult to navigate. Also, explicit naming can make it easier to see which

https://github.com/alexnm/react-training/blob/master/03-introduction-to-react.md
https://reactjs.org/docs/faq-structure.html

pieces of your project are related. For example, an image file named Logo.

svg may not clearly be part of a component called Header. js.

One of the simplest structures is to create a components directory with a

separate directory for each component. This will allow you to group your

components separately from your configuration code, such as serviceWork

er, while grouping the assets with the components.
Creating a Components Directory
To start, create a directory called components:

mkdir src/components

Next, move the following components and code into the directory:

App.css, App.js, App.test.js, Instructions.js, and emoji.svg:

mv src/App.* src/components/
mv src/Instructions.js src/components/

mv src/emoji.svg src/components/

Here, you are using a wildcard (*) to select all files that start with App. .

After you move the code, you’ll see an error in your terminal running npm s

tart.

https://tldp.org/LDP/GNU-Linux-Tools-Summary/html/x11655.htm

Output

Failed to compile.

./src/App.js
Error: ENOENT: no such file or directory, open 'your_file_path

/tutorial-03-component/src/App.js'

Remember, all of the code is importing using relative paths. If you change

the path for some files, you’ll need to update the code.
To do that, open index. js.

nano src/index.js

Then change the path of the App import to import from the components/

directory.

tutorial-03-component/src/index.js

import React from 'react’;

import ReactDOM from 'react-dom';
import './index.css';

import App from './components/App';

import * as serviceWorker from './serviceWorker';

serviceWorker.unregister();

Save and close the file. Your script will detect the changes and the error will

disappear.

Now you have components in a separate directory. As your applications
become more complex, you may have directories for API services, data
stores, and utility functions. Separating component code is the first step, but

you still have CSS code for Instructions mixed in the App.css file. To

create this logical separation, you will first move the components into

separate directories.
Moving Components to Individual Directories
First, make a directory specifically for the <App> component:

mkdir src/components/App

Then move the related files into the new directory:

mv src/components/App.* src/components/App

When you do you’ll get a similar error to the last section:

Output

Failed to compile.

./src/components/App.js
Error: ENOENT: no such file or directory, open 'your_file_path

/tutorial-03-component/src/components/App.js'
In this case, you’ll need to update two things. First, you’ll need to update
the path in index.js.
Open the index.js file:

nano src/index.js

Then update the import path for App to point to the App component in the

App directory.

tutorial-03-component/src/index.js

import React from 'react’;

import ReactDOM from 'react-dom';
import './index.css';

import App from './components/App/App';

import * as serviceWorker from './serviceWorker';

serviceWorker.unregister();

Save and close the file. The application still won’t run. You’ll see an error
like this:

Output

Failed to compile.

./src/components/App/App.js

Module not found: Can't resolve './Instructions.js' in 'your_f

ile_path/tutorial-03-component/src/components/App'

Since <Instructions> is not on the same directory level as the <App>

component, you’ll need to change the import path. Before that, create a

directory for Instructions. Make a directory called Instructions in the s

rc/components directory:

mkdir src/components/Instructions

Then move Instructions.js and emoji.svg into that directory:

mv src/components/Instructions.js src/components/Instructions

mv src/components/emoji.svg src/components/Instructions

Now that the Instructions component directory has been created, you can

finish updating the file paths to connect your component to your app.
Updating import Paths

Now that components are in individual directories, you can adjust the

import path in App. js.
Open App.js:
nano src/components/App/App.js
Since the path is relative, you’ll need to move up one directory— src/compo

nents—then into the Instructions directory for Instructions.js, but

since this is a JavaScript file, you don’t need the final import.

tutorial-03-component/src/components/App/App.js

import React from 'react’;

import Instructions from '../Instructions/Instructions.js’;

import './App.css';

export default App;

Save and close the file. Now that your imports are all using the correct path,

you’re browser will update and show the application.

Hello, World

o 2D

=

Click on an emoji to view the emoji short name.

o

L SN

Browser window with smaller image

Note: You can also call the root file in each directory index.js. For
example, instead of src/components/App/App.js you could create sr
c/components/App/index.js. The advantage to this is that your
imports are slightly smaller. If the path points to a directory, the import

will look for an index.js file. The import for src/components/App/in
dex.js in the src/index.js file would be import ./components/App.

The disadvantage of this approach is that you have a lot of files with
the same name, which can make it difficult to read in some text
editors. Ultimately, it’s a personal and team decision, but it’s best to be
consistent.

Separating Code in Shared Files

Now each component has its own directory, but not everything is fully

independent. The last step is to extract the CSS for Instructions to a

separate file.
First, create a CSS file in src/components/Instructions:

touch src/components/Instructions/Instructions.css

Next, open the CSS file in your text editor:

nano src/components/Instructions/Instructions.css

Add in the instructions CSS that you created in an earlier section:

tutorial-03-component/src/components/Instructio
ns/Instructions.css

.instructions {
display: flex;
flex-direction: column;

align-items: center;

.instructions img {
width: 100px;
height: 100px;

Save and close the file. Next, remove the instructions CSS from src/compon

ents/App/App.css.

nano src/components/App/App.css

Remove the lines about .1instructions. The final file will look like this:

tutorial-03-component/src/components/App/App.cs
S

.container {
display: flex;
flex-direction: column;

align-items: center;

}

button {
font-size: 2em;
border: 0;
padding: 0;
background: none;
cursor: pointer;

}

ul {
display: flex;
padding: 0;

}

i {

margin: 0 20px;
list-style: none;

padding: 0;

Save and close the file. Finally, import the CSS in Instructions.js:

nano src/components/Instructions/Instructions.js

Import the CSS using the relative path:

tutorial-03-component/src/components/Instructio
ns/Instructions.js

import React, { Component } from 'react';
import './Instructions.css';

import emoji from './emoji.svg'

export default class Instructions extends Component {

render() {
return(
<div className="1instructions">

<p>Click on an emoji to view the emoji short name.</p>

</div>

Save and close the file. Your browser window will look as it did before,

except now all the file assets are grouped in the same directory.

Hello, World

‘a2

-

Click on an emoji to view the emoji short name.

© & P

[LA

Browser window with smaller image

Now, take a final look at the structure. First, the src/ directory:

1s src

You have the root component index.js and the related CSS 1index.css
next to the components/ directory and utility files such as serviceWorker. j

s and setupTests.js:

Output

components serviceWorker.js
index.css setupTests. js
index.js

Next, look inside components:

ls src/components

You’ll see a directory for each component:

Output

App Instructions

If you look inside each component, you’ll see the component code, CSS,

test, and image files if they exist.

ls src/components/App

Output
App.css App.js App.test.js

ls src/components/Instructions

Output

Instructions.css Instructions.js emoji.svg

At this point, you’ve created a solid structure for your project. You moved a

lot of code around, but now that you have a structure, it will scale easier.

This is not the only way to compose your structure. Some file structures can
take advantage of code splitting by specifying a directory that will be split
into different packages. Other file structures split by route and use a

common diTECtOTy for components that are used across routes.

For now, stick with a less complex approach. As a need for another
structure emerges, it’s always easier to move from simple to complex.

Starting with a complex structure before you need it will make refactoring
difficult.

Now that you have created and organized a class-based component, in the

next step you’ll create a functional component.

Step 4 — Building a Functional Component

In this step, you’ll create a functional component. Functional components
are the most common component in contemporary React code. These
components tend to be shorter, and unlike class-based components, they can

use React hooks, a new form of state and event management.

A functional component is a JavaScript function that returns some JSX. It

doesn’t need to extend anything and there are no special methods to

https://reactjs.org/docs/code-splitting.html
https://survivejs.com/react/advanced-techniques/structuring-react-projects/#directory-per-view
https://reactjs.org/docs/hooks-intro.html

memorize.

To refactor <Instructions> as a functional component, you need to change
the class to a function and remove the render method so that you are left

with only the return statement.
To do that, first open Instructions.js in a text editor.

nano src/components/Instructions/Instructions.js

Change the class declaration to a function declaration:

tutorial-03-component/src/components/Instructio
ns/Instructions.js

import React, { Component } from 'react';
import './Instructions.css';

import emoji from './emoji.svg'

export default function Instructions() {
render() {
return(
<div className="instructions">

<p>Click on an emoji to view the emoji short name.</p>

</div>

Next, remove the import of { Component }:

tutorial-03-component/src/components/Instructio
ns/Instructions.js

import React from 'react’;
import './Instructions.css';

import emoji from './emoji.svg'

export default function Instructions() {

render() {
return(
<div className="1instructions">

<p>Click on an emoji to view the emoji short name.</p>

</div>

Finally, remove the render() method. At that point, you are only returning
JSX.

tutorial-03-component/src/components/Instructio
ns/Instructions.js

import React from 'react’;
import './Instructions.css';

import emoji from './emoji.svg'

export default function Instructions() {
return(
<div className="1instructions">

<p>Click on an emoji to view the emoji short name.</p>

</div>

Save the file. The browser will refresh and you’ll see your page as it was

before.

Hello, World

‘a2

-

Click on an emoji to view the emoji short name.

@ & 2

[LA

Browser with emoji

You could also rewrite the function as an arrow function using the implicit
return. The main difference is that you lose the function body. You will also

need to first assign the function to a variable and then export the variable:

https://www.digitalocean.com/community/tutorials/how-to-define-functions-in-javascript#arrow-functions

tutorial-03-component/src/components/Instructio
ns/Instructions.js

import React from 'react’;
import './Instructions.css';

import emoji from './emoji.svg'

const Instructions = () => (
<div className="1instructions">

<p>Click on an emoji to view the emoji short name.</p>

</div>

export default Instructions;

Simple functional components and class-based components are very similar.
When you have a simple component that doesn’t store state, it’s best to use
a functional component. The real difference between the two is how you
store a component’s state and use properties. Class-based components use
methods and properties to set state and tend to be a little longer. Functional
components use hooks to store state or manage changes and tend to be a

little shorter.

Conclusion

Now you have a small application with independent pieces. You created two
major types of components: functional and class. You separated out parts of
the components into directories so that you could keep similar pieces of

code grouped together. You also imported and reused the components.

With an understanding of components, you can start to look at your
applications as pieces that you can take apart and put back together. Projects
become modular and interchangable. The ability to see whole applications
as a series of components is an important step in thinking in React. If you
would like to look at more React tutorials, take a look at our React Topic

page, or return to the How To Code in React.js series page.

https://www.digitalocean.com/community/tags/react
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-react-js

How To Customize React Components
with Props

Written by Joe Morgan

The author selected Creative Commons to receive a donation as part of the

Write for DOnations program.

In this tutorial, you’ll create custom components by passing props to your
component. Props are arguments that you provide to a JSX element. They
look like standard HTML props, but they aren’t predefined and can have
many different JavaScript data types including numbers, strings, functions,
arrays, and even other React components. Your custom components can use
props to display data or use the data to make the components interactive.
Props are a key part of creating components that are adaptable to different
situations, and learning about them will give you the tools to develop

custom components that can handle unique situations.

After adding props to your component, you will use PropTypes to define
the type of data you expect a component to receive. PropTypes are a simple
type system to check that data matches the expected types during runtime.
They serve as both documentation and an error checker that will help keep

your application predictable as it scales.

By the end of the tutorial, you’ll use a variety of props to build a small
application that will take an array of animal data and display the
information, including the name, scientific name, size, diet, and additional

information.

https://www.digitalocean.com/community/tutorials/how-to-customize-react-components-with-props
https://creativecommons.org/
https://do.co/w4do-cta
https://www.digitalocean.com/community/tutorials/how-to-create-react-elements-with-jsx
https://www.digitalocean.com/community/tutorials/understanding-data-types-in-javascript
https://www.digitalocean.com/community/tutorials/how-to-define-functions-in-javascript
https://www.digitalocean.com/community/tutorials/understanding-arrays-in-javascript
https://www.digitalocean.com/community/tutorials/how-to-create-custom-components-in-react

Note: The first step sets up a blank project on which you will build the
tutorial exercise. If you already have a working project and want to go

directly to working with props, start with Step 2.

Prerequisites

e You will need a development environment running Node.js; this
tutorial was tested on Node.js version 10.20.1 and npm version 6.14.4.
To install this on macOS or Ubuntu 18.04, follow the steps in How to
Install Node.js and Create a Local Development Environment on
macOS or the Installing Using a PPA section of How To Install
Node.js on Ubuntu 18.04.

 In following this tutorial, you will use Create React App. You can find
instructions for installing an application with Create React App at How
To Set Up a React Project with Create React App. This tutorial also
assumes a knowledge of React components, which you can learn about

in our How To Create Custom Components in React tutorial.

e You will also need to know the basics of JavaScript, which you can
find in How To Code in JavaScript, along with a basic knowledge of
HTML and CSS. A good resource for HTML and CSS is the Mozilla

Developer Network.

Step 1 — Creating an Empty Project

https://www.digitalocean.com/community/tutorials/how-to-customize-react-components-with-props#step-2-%E2%80%94-building-dynamic-components-with-props
https://nodejs.org/en/about/
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-and-create-a-local-development-environment-on-macos
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-on-ubuntu-18-04
https://github.com/facebook/create-react-app
https://www.digitalocean.com/community/tutorials/how-to-set-up-a-react-project-with-create-react-app
https://www.digitalocean.com/community/tutorials/how-to-create-custom-com
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-javascript
https://developer.mozilla.org/en-US/docs/Learn/HTML/Introduction_to_HTML

In this step, you’ll create a new project using Create React App. Then you
will delete the sample project and related files that are installed when you
bootstrap the project. Finally, you will create a simple file structure to

organize your components.

To start, make a new project. In your command line, run the following

script to install a fresh project using create-react-app:

npx create-react-app prop-tutorial

After the project is finished, change into the directory:

cd prop-tutorial

In a new terminal tab or window, start the project using the Create React
App start script. The browser will autorefresh on changes, so leave this

script running the whole time that you work:

npm start

You will get a running local server. If the project did not open in a browser
window, you can open it by navigating to http://localhost:3000/. If you
are running this from a remote server, the address will be http://your_doma

1n:3000.

Your browser will load with a simple React application included as part of

Create React App:

https://github.com/facebook/create-react-app
https://www.digitalocean.com/community/tutorials/how-to-set-up-a-react-project-with-create-react-app#step-3-%E2%80%94-starting-the-server
http://localhost:3000/

Hello, world

Learn React

React template project

You will be building a completely new set of custom components. You’ll
start by clearing out some boilerplate code so that you can have an empty

project.

To start, open src/App.js in a text editor. This is the root component that is
injected into the page. All components will start from here. You can find
more information about App.js at How To Set Up a React Project with

Create React App.
Open src/App.js with the following command:

nano src/App.js

You will see a file like this:

https://www.digitalocean.com/community/tutorials/how-to-set-up-a-react-project-with-create-react-app#step-5-%E2%80%94-modifying-the-heading-tag-and-styling

prop-tutorial/src/App.]Jjs

import React from 'react’;
import logo from './logo.svg';

import './App.css';

function App() {
return (
<div className="App">
<header className="App-header">

<p>
Edit <code>src/App.js</code> and save to reload.
</p>
<a
className="App-Link"
href="https://reactjs.org"
target="_blank"

rel="noopener noreferrer"

Learn React

</header=>
</div>

);

export default App;

Delete the line import logo from './logo.svg';. Then replace everything
in the return statement to return a set of empty tags: <></>. This will give

you a validate page that returns nothing. The final code will look like this:

prop-tutorial/src/App.js

import React from 'react’;

import './App.css';

function App() {

return <></>;

export default App;

Save and exit the text editor.

Finally, delete the logo. You won’t be using it in your application and you
should remove unused files as you work. It will save you from confusion in

the future.

In the terminal window type the following command:

rm src/logo.svg

If you look at your browser, you will see a blank screen.

C ® localhost:3000

blank screen in chrome

Now that you have cleared out the sample Create React App project, create
a simple file structure. This will help you keep your components isolated

and independent.

Create a directory called components in the src directory. This will hold all

of your custom components.

mkdir src/components

Each component will have its own directory to store the component file

along with the styles, images if there are any, and tests.
Create a directory for App:

mkdir src/components/App

Move all of the App files into that directory. Use the wildcard, *, to select
any files that start with App. regardless of file extension. Then use the mv

command to put them into the new directory.

mv src/App.* src/components/App

Finally, update the relative import path in 1index.js, which is the root

component that bootstraps the whole process.

nano src/index.js

The import statement needs to point to the App.js file in the App directory,

so make the following highlighted change:

prop-tutorial/src/index. js

import React from 'react’;

import ReactDOM from 'react-dom';
import './index.css';

import App from './components/App/App';

import * as serviceWorker from './serviceWorker';

ReactDOM. render(
<React.StrictMode>
<App />
</React.StrictMode>,

document.getElementById('root")
)5

// If you want your app to work offline and load faster, you ca
// unregister() to register() below. Note this comes with some
// Learn more about service workers: https://bit. ly/CRA-PWA

serviceWorker.unregister();

Save and exit the file.

Now that the project is set up, you can create your first component.

Step 2 — Building Dynamic Components with Props

In this step, you will create a component that will change based on the input
information called props. Props are the arguments you pass to a function or
class, but since your components are transformed into HTML-like objects
with JSX, you will pass the props like they are HTML attributes. Unlike
HTML elements, you can pass many different data types, from strings, to

arrays, to objects, and even functions.

Here you will create a component that will display information about
animals. This component will take the name and scientific name of the
animal as strings, the size as an integer, the diet as an array of strings, and
additional information as an object. You’ll pass the information to the new

component as props and consume that information in your component.

By the end of this step, you’ll have a custom component that will consume
different props. You’ll also reuse the component to display an array of data

using a common component.
Adding Data

First, you need some sample data. Create a file in the src/App directory

called data.

touch src/components/App/data.js

Open the new file in your text editor:

nano src/components/App/data.js

Next, add an array of objects you will use as sample data:

https://www.digitalocean.com/community/tutorials/understanding-objects-in-javascript

prop-tutorial/src/components/App/data.js

export default [

{
name: 'Lion',
scientificName: 'Panthero leo',
size: 140,
diet: ['meat'],
}s
{

name: 'Gorilla',

scientificName: 'Gorilla beringeti',
size: 205,

diet: ['plants', 'insects'],

additional: {

notes: 'This i1s the eastern gorilla. There is also a west
that is a different species.'

}
},
{
name: 'Zebra',
scientificName: 'Equus quagga',
size: 322,
diet: ['plants'],
additional: {

notes: 'There are three different species of zebra.',

link: 'https://en.wikipedia.org/wiki/Zebra'

The array of objects contains a variety of data and will give you an
opportunity to try a variety of props. Each object is a separate animal with
the name of the animal, the scientific name, size, diet, and an optional field

called additional, which will contain links or notes. In this code, you also

exported the array as the default.
Save and exit the file.
Creating Components

Next, create a placeholder component called AnimalCard. This component

will eventually take props and display the data.

First, make a directory in src/components called AnimalCard then touch a
file called src/components/AnimalCard/AnimalCard.js and a CSS file

called src/components/AnimalCard/AnimalCard.css.

mkdir src/components/AnimalCard
touch src/components/AnimalCard/AnimalCard.js

touch src/components/AnimalCard/AnimalCard.css

Open AnimalCard.js in your text editor:

nano src/components/AnimalCard/AnimalCard.js

Add a basic component that imports the CSS and returns an <h2> tag.

prop-tutorial/src/components/AnimalCard/AnimalC
ard.js

import React from 'react';

import './AnimalCard.css'

export default function AnimalCard() {

return <h2>Animal</h2>

Save and exit the file. Now you need to import the data and component into

your base App component.
Open src/components/App/App.Js:

nano src/components/App/App.js

Import the data and the component, then loop over the data returning the

component for each item in the array:

prop-tutorial/src/components/App/App.js

import React from 'react’;
import data from './data’;
import AnimalCard from '../AnimalCard/AnimalCard"’;

import './App.css';

function App() {
return (
<div className="wrapper">
<h1>Animals</h1>
{data.map(animal => (
<AnimalCard key={animal.name}/>

))}

</div>

export default App;

Save and exit the file. Here, you use the .map() array method to iterate over
the data. In addition to adding this loop, you also have a wrapping div with

a class that you will use for styling and an <h1> tag to label your project.

When you save, the browser will reload and you’ll see a label for each card.

https://www.digitalocean.com/community/tutorials/how-to-use-array-methods-in-javascript-iteration-methods#map()

Animals

Animal
Animal

Animal

React project in the browser without styling

Next, add some styling to line up the items. Open App.css:

nano src/components/App/App.css

Replace the contents with the following to arrange the elements:

prop-tutorial/src/components/App/App.cCss

.wrapper {
display: flex;
flex-wrap: wrap;
justify-content: space-between;

padding: 20px;

.wrapper h1l {
text-align: center;

width: 100%;

This will use flexbox to rearrange the data so it will line up. The padding
gives some space in the browser window. justify-content will spread out

the extra space between elements, and .wrapper h1 will give the Animal

label the full width.

Save and exit the file. When you do, the browser will refresh and you’ll see

some data spaced out.

https://alligator.io/css/flexbox-primer/#display-flex

Animals

Animal Animal Animal

React project in the browser with data spaced o
ut
Adding Props

Now that you have your components set up, you can add your first prop.

When you looped over your data, you had access to each object in the data

array and the items it contained. You will add each piece of the data to a

separate prop that you will then use in your AnimalCard component.
Open App.js:

nano src/components/App/App.js

Add a prop of name to AnimalCard.

prop-tutorial/src/components/App/App.js

import React from 'react’;

function App() {
return (
<div className="wrapper"=>
<h1>Animals</h1>
{data.map(animal => (
<AnimalCard
key={animal.name}

name={animal.name}

export default App;

Save and exit the file. The name prop looks like a standard HTML attribute,
but instead of a string, you’ll pass the name property from the animal

object in curly braces.

Now that you’ve passed one prop to the new component, you need to use it.

Open AnimalCard.js:

nano src/components/AnimalCard/AnimalCard.js

All props that you pass into the component are collected into an object that
will be the first argument of your function. Destructure the object to pull out

individual props:

prop-tutorial/src/components/AnimalCard/AnimalC
ard. js

import React from 'react’;

import './AnimalCard.css'

export default function AnimalCard(props) {
const { name } = props;

return (

<h2>{name}</h2>
)5

Note that you do not need to destructure a prop to use it, but that this is a

useful method for dealing with the sample data in this tutorial.

After you destructure the object, you can use the individual pieces of data.

In this case, you’ll use the title in an <h2> tag, surrounding the value with

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment

curly braces so that React will know to evaluate it as JavaScript.

You can also use a property on the prop object using dot notation. As an
example, you could create an <h2> element like this: <h2>{props.title}</
h2>. The advantage of destructring is that you can collect unused props and

use the object rest operator.

Save and exit the file. When you do, the browser will reload and you’ll see

the specific name for each animal instead of a placeholder.

Animals

Lion Gorilla Zebra

React projects with animal names rendered

The name property is a string, but props can be any data type that you could

pass to a JavaScript function. To see this at work, add the rest of the data.
Open the App. js file:

nano src/components/App/App.js

Add a prop for each of the following: scientificName, size, diet, and ad

ditional. These include strings, integers, arrays, and objects.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax#Spread_in_object_literals

prop-tutorial/src/components/App/App.js

import React from 'react’;

function App() {
return (
<div className="wrapper">
<h1>Animals</h1>
{albums.map(album => (
<AnimalCard
additional={animal.additional}
diet={animal.diet}
key={animal.name}
name={animal.name}
scientificName={animal.scientificName}
size={animal.size}
/>
))}

</div>

export default App;

Since you are creating an object, you can add them in any order you want.
Alphabetizing makes it easier to skim a list of props especially in a larger
list. You also can add them on the same line, but separating to one per line

keeps things readable.
Save and close the file. Open AnimalCard.js.

nano src/components/AnimalCard/AnimalCard.js

This time, destructure the props in the function parameter list and use the

data in the component:

prop-tutorial/src/components/AnimalCard/AnimalC
ard. js

import React from 'react’;

import './AnimalCard.css'

export default function AnimalCard({
additional,
diet,
name,
scientificName,
size
P A
return (
<div>
<h2>{name}</h2>
<h3>{scientificName}</h3>
<h4>{size}kg</h4>
<div>{diet.join(', ')}.</div>
</div>

);

After pulling out the data, you can add the scientificName and size into

heading tags, but you’ll need to convert the array into a string so that React

can display it on the page. You can do that with join(', '), which will

create a comma separated list.

Save and close the file. When you do, the browser will refresh and you’ll

see the structured data.

Animals
Lion Gorilla Zebra
Panthero leo Gorilla beringei Equus quagga
140kg 205kg 322kg

meat. plants, insects. plants.

React project with animals with full data

You could create a similar list with the additional object, but instead add a

function to alert the user with the data. This will give you the chance to pass
functions as props and then use data inside a component when you call a

function.
Open App.js:

nano src/components/App/App.js

Create a function called showAdditionalData that will convert the object to

a string and display it as an alert.

https://www.digitalocean.com/community/tutorials/how-to-use-array-methods-in-javascript-accessor-methods#join()

prop-tutorial/src/components/App/App.js

import React from 'react’;

function showAdditional(additional) {
const alertInformation = Object.entries(additional)
.map(information => “${information[0]}: ${information[1]})
.join('\n');
alert(alertInformation)

};

function App() {
return (
<div className="wrapper">
<h1>Animals</h1>
{data.map(animal => (
<AnimalCard

additional={animal.additional}
diet={animal.diet}
key={animal.name}
name={animal.name}
scientificName={animal.scientificName}
showAdditional={showAdditional}
size={animal.size}

/>

</div>

export default App;

The function showAdditional converts the object to an array of pairs where
the first item is the key and the second is the value. It then maps over the
data converting the key-pair to a string. Then it joins them with a line break

—\n—before passing the complete string to the alert function.

Since JavaScript can accept functions as arguments, React can also accept
functions as props. You can therefore pass showAdditional to AnimalCard

as a prop called showAdditional.
Save and close the file. Open AnimalCard:

nano src/components/AnimalCard/AnimalCard. js

Pull the showAdditional function from the props object, then create a <but
ton> with an onClick event that calls the function with the additional

object:

https://www.digitalocean.com/community/tutorials/how-to-create-react-elements-with-jsx#step-3-%E2%80%94-adding-events-to-elements

prop-tutorial/src/components/AnimalCard/AnimalC
ard. js

import React from 'react’;

import './AnimalCard.css'

export default function AnimalCard({
additional,
diet,
name,
scientificName,
showAdditional,
size
P A
return (
<div>
<h2>{name}</h2>
<h3>{scientificName}</h3>
<h4>{size}kg</h4>
<div>{diet.join(', ')}.</div>
<button onClick={() => showAdditional(additional)}>More I
</div>

);

Save the file. When you do, the browser will refresh and you’ll see a button
after each card. When you click the button, you’ll get an alert with the

additional data.

localhost:3000 says

notes: This is the eastern gorilla. There is also a western gorilla
that is a different species.

(e]
Lion Zebra
Panthero leo Gorilla beringei Equus quagga
140kg 205kg 322kg
meat. plants, insects. plants.
More Info | More Info | More Info

Alert with information

If you try clicking More Info for the Lion, you will get an error. That’s
because there is no additional data for the lion. You’ll see how to fix that in

Step 3.

Finally, add some styling to the music card. Add a className of animal-wr

apper to the divin AnimalCard:

prop-tutorial/src/components/AnimalCard/AnimalC
ard. js

import React from 'react’;

import './AnimalCard.css'

export default function AnimalCard({

return (

<div className="animal-wrapper">

</div>

Save and close the file. Open AnimalCard.css:

nano src/components/AnimalCard/AnimalCard.css

Add CSS to give the cards and the button a small border and padding:

prop-tutorial/src/components/AnimalCard/AnimalC
ard.css

.animal-wrapper {
border: solid black 1px;
margin: 10px;
padding: 10px;
width: 200px;

.animal-wrapper button {
font-size: lem;
border: solid black 1px;
padding: 10;
background: none;
cursor: pointer;

margin: 10px 0;

This CSS will add a slight border to the card and replace the default button

styling with a border and padding. cursor: pointer will change the cursor

when you hover over the button.

Save and close the file. When you do the browser will refresh and you’ll see

the data in individual cards.

Animals

Lion Gorilla Zebra
Panthero leo Gorilla beringei Equus quagga
140kg 205kg 322kg

meat. plants, insects. plants.

React project with styled animal cards

At this point, you’ve created two custom components. You’ve passed data
to the second component from the first component using props. The props
included a variety of data, such as strings, integers, arrays, objects, and
functions. In your second component, you used the props to create a

dynamic component using JSX.

In the next step, you’ll use a type system called prop-types to specify the
structure your component expects to see, which will create predictability in

your app and prevent bugs.

Step 3 — Creating Predictable Props with propTypes and def

aultProps

In this step, you’ll add a light type system to your components with PropTy
pes. PropTypes act like other type systems by explicitly defining the type

of data you expect to receive for a certain prop. They also give you the

chance to define default data in cases where the prop is not always required.
Unlike most type systems, PropTypes is a runtime check, so if the props do
not match the type the code will still compile, but will also display a

console error.

By the end of this step, you’ll add predictability to your custom component
by defining the type for each prop. This will ensure that the next person to
work on the component will have a clear idea of the structure of the data the

component will need.

The prop-types package is included as part of the Create React App

installation, so to use it, all you have to do is import it into your component.
Open up AnimalCard.js:

nano src/components/AnimalCard/AnimalCard. js

Then import PropTypes from prop-types:

prop-tutorial/src/components/AnimalCard/AnimalC
ard. js

import React from 'react’;
import PropTypes from 'prop-types';

import './AnimalCard.css'

export default function AnimalCard({

Add PropTypes directly to the component function. In JavaScript, functions

are objects, which means you can add properties using dot syntax. Add the

following PropTypes to AnimalCard.js:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions

prop-tutorial/src/components/AnimalCard/AnimalC
ard. js

import React from 'react’;
import PropTypes from 'prop-types';

import './AnimalCard.css'

export default function AnimalCard({

AnimalCard.propTypes = {
additional: PropTypes.shape({
link: PropTypes.string,
notes: PropTypes.string
},
diet: PropTypes.arrayOf(PropTypes.string).isRequired,
name: PropTypes.string.isRequired,
scientificName: PropTypes.string.isRequired,
showAdditional: PropTypes.func.isRequired,

size: PropTypes.number.isRequired,

Save and close the file.

As you can see, there are many different PropTypes. This is only a small

sample; see the official React documentation to see the others you can use.

Let’s start with the name prop. Here, you are specifying that name must be a
string. The property scientificName is the same. size is a number,
which can include both floats such as 1.5 and integers such as 6. showAddi

tional is a function (func).

diet, on the other hand, is a little different. In this case, you are specifying
that diet will be an array, but you also need to specify what this array
will contain. In this case, the array will only contain strings. If you want to
mix types, you can use another prop called one0fType, which takes an array
of valid PropTypes. You can use oneOfType anywhere, so if you wanted st

ze to be either a number or a string you could change it to this:
size: PropTypes.oneOfType([PropTypes.number, PropTypes.string])

The prop additional is also a little more complex. In this case, you are

specifying an object, but to be a little more clear, you are stating what you

want the object to contain. To do that, you use PropTypes.shape, which
takes an object with additional fields that will need their own PropTypes. In

this case, link and notes are both PropTypes.string.

Currently, all of the data is well-formed and matches the props. To see what

happens if the PropTypes don’t match, open up your data:

nano src/components/App/data.js

https://reactjs.org/docs/typechecking-with-proptypes.html#proptypes

Change the size to a string on the first item:

prop-tutorial/src/components/App/data.js

export default [

{
name: 'Lion',
scientificName: 'Panthero leo',
size: '140°',
diet: ['meat'],
},
]

Save the file. When you do the browser will refresh and you’ll see an error

in the console.

Error
index.js:1 Warning: Failed prop type: Invalid prop "size of t
ype "string’ supplied to "AnimalCard’, expected " number’.

in AnimalCard (at App.js:18)

in App (at src/index.js:9)

in StrictMode (at src/index.js:8)

Animals

Lion Gorilla Zebra
Panthero leo Gorilla beringei Equus quagga
140kg 205kg 322kg

meat. plants, insects. plants.

[Vore inf | [Wore info | [Vore inf |

Y ﬂ Elements Console Sources Network Performance Memory Application Security Audits Redux € Components Profiler o1 i X

@ O | top v | @ | Fiter

» i= 3 messages © »Warning: Failed prop type: Invalid prop ‘size' of type ‘string’ supplied to ‘AnimalCard’, expected ‘number’. index.js:1
in AnimalCard (at App.js:18)

» @ 2usermes... in App (at src/index.js:9)
in StrictMode (at src/index.js:8)

o B

> 1 warning

> @ 1info

#H No verbose

Browser with type error

Unlike other type systems such as TypeScript, PropTypes will not give you

a warning at build time, and as long as there are no code errors, it will still
compile. This means that you could accidentally publish code with prop

erTrors.

Change the data back to the correct type:

https://www.typescriptlang.org/

prop-tutorial/src/components/App/data.js

export default [

{
name: 'Lion',
scientificName: 'Panthero leo',
size: 140,
diet: ['meat'],
},
]

Save and close the file.
Open up AnimalCard.js:

nano src/components/AnimalCard/AnimalCard.js

Every prop except for additional has the isRequired property. That
means, that they are required. If you don’t include a required prop, the code

will still compile, but you’ll see a runtime error in the console.

If a prop isn’t required, you can add a default value. It’s good practice to
always add a default value to prevent runtime errors if a prop is not

required. For example, in the AnimalCard component, you are calling a

function with the additional data. If it’s not there, the function will try and

modify an object that doesn’t exist and the application will crash.

To prevent this problem, add a defaultProp for additional:

prop-tutorial/src/components/AnimalCard/AnimalC
ard. js

import React from 'react’;
import PropTypes from 'prop-types';

import './AnimalCard.css'

export default function AnimalCard({

AnimalCard.propTypes = {
additional: PropTypes.shape({
link: PropTypes.string,

notes: PropTypes.string

H,

AnimalCard.defaultProps = {
additional: {

notes: 'No Additional Information'

You add the defaultProps to the function using dot syntax just as you did
with propTypes, then you add a default value that the component should
use if the prop is undefined. In this case, you are matching the shape of ad

ditional, including a message that the there is no additional information.

Save and close the file. When you do, the browser will refresh. After it

refreshes, click on the More Info button for Lion. It has no additional

field in the data so the prop is undefined. But AnimalCard will substitute in

the default prop.
localhost:3000 says
notes: No Additional Information
Lion Gorilla Zebra
Panthero leo Gorilla beringei Equus quagga
140kg 205kg 322kg
meat. plants, insects. plants.
[Vore info [Wore info [Vore Info

Browser with default message in the alert

Now your props are well-documented and are either required or have a
default to ensure predictable code. This will help future developers

(including yourself) understand what props a component needs. It will make

it easier to swap and reuse your components by giving you full information

about how the component will use the data it is receiving.

Conclusion

In this tutorial, you have created several components that use props to
display information from a parent. Props give you the flexibility to begin to
break larger components into smaller, more focused pieces. Now that you
no longer have your data tightly coupled with your display information, you

have the ability to make choices about how to segment your application.

Props are a crucial tool in building complex applications, giving the
opportunity to create components that can adapt to the data they receive.
With PropTypes, you are creating predictable and readable components that
will give a team the ability to reuse each other’s work to create a flexible
and stable code base. If you would like to look at more React tutorials, take
a look at our React Topic page, or return to the How To Code in React.js

series page.

https://www.digitalocean.com/community/tags/react
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-react-js

How To Create Wrapper Components Iin
React with Props

Written by Joe Morgan

The author selected Creative Commons to receive a donation as part of the

Write for DOnations program.

In this tutorial, you’ll create wrapper components with props using the
React JavaScript library. Wrapper components are components that
surround unknown components and provide a default structure to display
the child components. This pattern is useful for creating user interface (UI)
elements that are used repeatedly throughout a design, like modals,

template pages, and information tiles.

To create wrapper components, you’ll first learn to use the rest and spread
operators to collect unused props to pass down to nested components. Then
you’ll create a component that uses the built-in children component to
wrap nested components in JSX as if they were HTML elements. Finally,
you’ll pass components as props to create flexible wrappers that can embed

custom JSX in multiple locations in a component.

During the tutorial, you’ll build components to display a list of animal data
in the form of cards. You’ll learn to split data and refactor components as
you create flexible wrapping components. By the end of this tutorial, you’ll
have a working application that will use advanced prop techniques to create
reusable components that will scale and adapt as you application grows and

changes.

https://www.digitalocean.com/community/tutorials/how-to-create-wrapper-components-in-react-with-props
https://creativecommons.org/
https://do.co/w4do-cta
https://reactjs.org/
https://www.digitalocean.com/community/tutorials/understanding-destructuring-rest-parameters-and-spread-syntax-in-javascript#spread
https://www.digitalocean.com/community/tutorials/how-to-create-react-elements-with-jsx
https://developer.mozilla.org/en-US/docs/Web/HTML

Note: The first step sets up a blank project on which you will build the
tutorial exercise. If you already have a working project and want to go

directly to working with props, start with Step 2.

Prerequisites

e You will need a development environment running Node.js; this
tutorial was tested on Node.js version 10.20.1 and npm version 6.14.4.
To install this on macOS or Ubuntu 18.04, follow the steps in How to
Install Node.js and Create a Local Development Environment on
macOS or the Installing Using a PPA section of How To Install
Node.js on Ubuntu 18.04.

e In this tutorial, you will create an app with Create React App. You can
find instructions for installing an application with Create React App
and general information about how it works at How To Set Up a React

Project with Create React App.

¢ You will be using React components, which you can learn about in our
How To Create Custom Components in React tutorial. It will also help
to have a basic understanding of React props, which you can learn

about in How to Customize React Components with Props.

e You will also need a basic knowledge of JavaScript, which you can

find in our How To Code in JavaScript series, along with a basic

https://www.digitalocean.com/community/tutorials/how-to-create-wrapper-components-in-react-with-props#step-2-%E2%80%94-collecting-unused-props-with-props
https://nodejs.org/en/about/
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-and-create-a-local-development-environment-on-macos
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-on-ubuntu-18-04#installing-using-a-ppa
https://github.com/facebook/create-react-app
https://www.digitalocean.com/community/tutorials/how-to-set-up-a-react-project-with-create-react-app
https://www.digitalocean.com/community/tutorials/how-to-create-custom-components-in-react
https://www.digitalocean.com/community/tutorials/how-to-customize-react-components-with-props
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-javascript

knowledge of HTML and CSS. A good resource for HTML and CSS is
the Mozilla Developer Network.

Step 1 — Creating an Empty Project

In this step, you’ll create a new project using Create React App. Then you
will delete the sample project and related files that are installed when you
bootstrap the project. Finally, you will create a simple file structure to
organize your components. This will give you a solid basis on which to

build this tutorial’s wrapper application in the next step.

To start, make a new project. In your command line, run the following

script to install a fresh project using create-react-app:

npx create-react-app wrapper-tutorial

After the project is finished, change into the directory:

cd wrapper-tutorial

In a new terminal tab or window, start the project using the Create React
App start script. The browser will auto-refresh on changes, so leave this

script running while you work:

npm start

You will get a running local server. If the project did not open in a browser

window, you can open it with http://localhost:3000/. If you are running

https://developer.mozilla.org/en-US/docs/Learn/HTML/Introduction_to_HTML
https://github.com/facebook/create-react-app
https://www.digitalocean.com/community/tutorials/how-to-set-up-a-react-project-with-create-react-app#step-3-%E2%80%94-starting-the-server
http://localhost:3000/

this from a remote server, the address will be http://your_domain:3000.

Your browser will load with a simple React application included as part of

Create React App:

Hello, world

Learn React

React template project

You will be building a completely new set of custom components, so you’ll
need to start by clearing out some boilerplate code so that you can have an

empty project.

To start, open src/App.js in a text editor. This is the root component that is

injected into the page. All components will start from here. You can find
more information about App.js at How To Set Up a React Project with

Create React App.

Open src/App.js with the following command:

https://www.digitalocean.com/community/tutorials/how-to-set-up-a-react-project-with-create-react-app#step-5-%E2%80%94-modifying-the-heading-tag-and-styling

nano src/App.js

You will see a file like this:

wrapper-tutorial/src/App.js

import React from 'react’;
import logo from './logo.svg';

import './App.css';

function App() {
return (
<div className="App">
<header className="App-header">

<p>
Edit <code>src/App.js</code> and save to reload.
</p>
<a
className="App-Link"
href="https://reactjs.org"
target="_blank"

rel="noopener noreferrer"

Learn React

</header=>
</div>

);

export default App;

Delete the line import logo from './logo.svg';. Then replace everything
in the return statement to return a set of empty tags: <></>. This will give

you a valid page that returns nothing. The final code will look like this:

wrapper-tutorial/src/App.js

import React from 'react’;

import './App.css';

function App() {

return <></>;

export default App;

Save and exit the text editor.

Finally, delete the logo. You won’t be using it in your application and you
should remove unused files as you work. It will save you from confusion in

the long run.

In the terminal window type the following command:

rm src/logo.svg

If you look at your browser, you will see a blank screen.

C ® localhost:3000

blank screen in chrome

Now that you have cleared out the sample Create React App project, create
a simple file structure. This will help you keep your components isolated

and independent.

Create a directory called components in the src directory. This will hold all

of you custom components.

mkdir src/components

Each component will have its own directory to store the component file

along with the styles, images if there are any, and tests.
Create a directory for App:

mkdir src/components/App

Move all of the App files into that directory. Use the wildcard, *, to select
any files that start with App. regardless of file extension. Then use the mv

command to put them into the new directory:

mv src/App.* src/components/App

Next, update the relative import path in 1index.js, which is the root

component that bootstraps the whole process:

nano src/index.js

The import statement needs to point to the App.js file in the App directory,

so make the following highlighted change:

wrapper-tutorial/src/index. js

import React from 'react’;

import ReactDOM from 'react-dom';
import './index.css';

import App from './components/App/App';

import * as serviceWorker from './serviceWorker';

ReactDOM. render(
<React.StrictMode>
<App />
</React.StrictMode>,

document.getElementById('root")
)5

// If you want your app to work offline and load faster, you ca
// unregister() to register() below. Note this comes with some
// Learn more about service workers: https://bit. ly/CRA-PWA

serviceWorker.unregister();

Save and exit the file.

Now that the project is set up, you can create your first component.

Step 2 — Collecting Unused Props with .. .props

In this step, you’ll create a component to display a set of data about a group
of animals. Your component will contain a second nested component to
display some information visually. To connect the parent and nested
component, you’ll use the rest and spread operators to pass unused props
from the parent to the child without the parent needing to be aware of the

names or types of the props.

By the end of this step, you’ll have a parent component that can provide
props to nested components without having to know what the props are.
This will keep the parent component flexible, allowing you to update the

child component without having to change the parent.
Creating an AnimalCard Component

To start, create a set of data for your animals. First, open a file containing

the data set in the components/App directory:

nano src/components/App/data.js

Add the following data:

https://www.digitalocean.com/community/tutorials/understanding-destructuring-rest-parameters-and-spread-syntax-in-javascript#spread

src/components/App/data. js

export default [

{
name: 'Lion',
scientificName: 'Panthero leo',
size: 140,
diet: ['meat']

}s

{
name: 'Gorilla',
scientificName: 'Gorilla beringeil',
size: 205,
diet: ['plants', 'insects']

}s

{
name: 'Zebra',
scientificName: 'Equus quagga',
size: 322,

diet: ['plants'],

This list of animals is an array of objects that includes the animal’s name,

scientific name, weight, and diet.

https://www.digitalocean.com/community/tutorials/understanding-arrays-in-javascript
https://www.digitalocean.com/community/tutorials/understanding-objects-in-javascript

Save and close the file.
Next, create a directory for the AnimalCard component:

mkdir src/components/AnimalCard

Open a new file in the directo:

nano src/components/AnimalCard/AnimalCard. js

Now add a component that will take the name, diet, and size as a prop

and display it:

wrapper-tutorial/src/components/AnimalCard/Anim
alCard.js

import React from 'react’;

import PropTypes from 'prop-types';

export default function AnimalCard({ diet, name, size }) {

return(
<div>
<h3>{name}</h3>
<div>{size}kg</div>
<div>{diet.join(', ')}.</div>

</div>

AnimalCard.propTypes = {

diet: PropTypes.arrayOf(PropTypes.string).isRequired,
name: PropTypes.string.isRequired,

size: PropTypes.number.isRequired,

Here you are destructuring the props in the parameter list for the AnimalCar

d function, then displaying the data in a div. The diet data is listed as a

https://www.digitalocean.com/community/tutorials/understanding-destructuring-rest-parameters-and-spread-syntax-in-javascript

single string using the join() method. Each piece of data includes a

corresponding PropType to make sure the data type is correct.

Save and close the file.

Now that you have your component and your data, you need to combine
them together. To do that, import the component and the data into the root

component of your project: App.js.
First, open the component:

nano src/components/App/App.js

From there, you can loop over the data and return a new AnimalCard with

the relevant props. Add the highlighted lines to App.js:

https://www.digitalocean.com/community/tutorials/how-to-use-array-methods-in-javascript-accessor-methods#join()
https://www.digitalocean.com/community/tutorials/how-to-customize-react-components-with-props#step-3-%E2%80%94-creating-predictable-props-with-proptypes-and-defaultprops

wrapper-tutorial/src/components/App/App.js

import React from 'react’;

import './App.css';

import animals from './data';

import AnimalCard from '../AnimalCard/AnimalCard’;

function App() {
return (
<div className="wrapper">
{animals.map(animal =>
<AnimalCard
diet={animal.diet}
key={animal.name}
name={animal.name}
size={animal.size}
/>
)}
</div>

)5

export default App;

Save and close the file.

As you work on more complex projects, your data will come from more

varied places, such as APIs, localStorage, or static files. But the process

for using each of these will be similar: assign the data to a variable and loop
over the data. In this case, the data is from a static file, so you are importing

directly to a variable.

In this code, you use the .map() method to iterate over animals and display
the props. Notice that you do not have to use every piece of data. You are
not explicitly passing the scientificName property, for example. You are
also adding a separate key prop that React will use to keep track of the
mapped data. Finally, you are wrapping the code with a div with a classNa

me of wrapper that you’ll use to add some styling.
To add this styling, open App.css:

nano src/components/App/App.cCsSs

Remove the boilerplate styling and add flex properties to a class called wra

pper:

https://developer.mozilla.org/en-US/docs/Glossary/API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API/Local_storage
https://www.digitalocean.com/community/tutorials/how-to-use-array-methods-in-javascript-iteration-methods#map()
https://www.digitalocean.com/community/tutorials/how-to-create-react-elements-with-jsx#step-4-%E2%80%94-mapping-over-data-to-create-elements
https://developer.mozilla.org/en-US/docs/Glossary/Flexbox

prop-tutorial/src/components/App/App.cCss

.wrapper {
display: flex;
flex-wrap: wrap;
justify-content: space-between;

padding: 20px;

This will use flexbox layout to organize the data so it will line up. padding
gives some space in the browser window, and justify-content spreads out

the extra space between elements.

Save and exit the file. When you do, the browser will refresh and you’ll see

some data spaced out.

Lion Gorilla Zebra

140kg 205kg 322kg
meat. plants, insects. plants.

Browser with data spaced out

Creating a Details Component

You now have a simple component that displays the data. But let’s say you

wanted to give the diet data a little flair by converting the text to an emoji.

You can do this by converting the data in your component.

React is designed to be flexible, so when you are thinking about how to

convert data, you have a few different options:

e You can create a function inside the component that converts the text
to an emoji.

* You can create a function and store it in a file outside the component
so that you can reuse the logic across different components.

* You can create a separate component that converts the text to an emoji.

Each approach is fine when applied to the right use case, and you’ll find
yourself switching between them as you build an application. To avoid
premature abstraction and complexity, you should use the first option to
start. If you find yourself wanting to reuse logic, you can pull the function
out separately from the component. The third option is best if you want to
have a reusable piece that includes the logic and the markup, or that you

want to isolate to use across the application.

In this case, we’ll make a new component, since we will want to add more

data later and we are combining markup with conversion logic.

The new component will be called AnimalDetails. To make it, create a new

directory:

mkdir src/components/AnimalDetails

Next, open AnimalDetails.js in your text editor:

nano src/components/AnimalDetails/AnimalDetatils. js

Inside the file, make a small component that displays the diet as an emoji:

wrapper-tutorial/src/components/AnimalDetails/A
nimalDetails. js

import React from 'react’;
import PropTypes from 'prop-types';

import './AnimalDetails.css';

function convertFood(food) {
switch(food) {
case 'insects':
return '%';
case 'meat’:
return '§';
case 'plants':
default:

return ‘o'

export default function AnimalDetails({ diet }) {
return(
<div className="details">
<h4>Details:</h4>
<div>
Diet: {diet.map(food => convertFood(food)).join(' ')}
</div>

</div>

AnimalDetails.propTypes = {
diet: PropTypes.arrayOf(PropTypes.string).isRequired,

The AnimalDetails.propTypes object sets up the function to take a prop of
diet that is an array of strings. Then inside the component, the code loops
over the diet and converts the string to an emoji using the switch

statement.

Save and close the file.

You are also importing some CSS, so let’s add that now.
Open AnimalDetatils.css:

nano src/components/AnimalDetails/AnimalDetails.css

Add some CSS to give the element a border and margin to separate the

details from the rest of the component:

https://www.digitalocean.com/community/tutorials/how-to-use-the-switch-statement-in-javascript

wrapper-tutorial/src/components/AnimalDetails/A
nimalDetails.css

.details {
border-top: gray solid 1px;

margin: 20px 0;

We use .details to match the rule to elements with a className of detai

1s.
Save and close the file.

Now that you have a new custom component, you can add it to your Animal

Card component. Open AnimalCard.js:

nano src/components/AnimalCard/AnimalCard.js

Replace the diet.join statement with the new AnimalDetails component

and pass diet as a prop by adding the highlighted lines:

wrapper-tutorial/src/components/AnimalCard/Anim
alCard.js

import React from 'react’;
import PropTypes from 'prop-types';

import AnimalDetails from '../AnimalDetails/AnimalDetails’;

export default function AnimalCard({ diet, name, size }) {

return(
<div>
<h3>{name}</h3>
<div>{size}kg</div>
<AnimalDetatils
diet={diet}
/>

</div>

AnimalCard.propTypes = {

diet: PropTypes.arrayOf(PropTypes.string).isRequired,
name: PropTypes.string.isRequired,

size: PropTypes.number.isRequired,

Save the file and you’ll see the new details in the browser.

Lion Gorilla Zebra

140kg 205kg 322kg

Details: Details: Details:

Diet: & Diet: =/ %o Diet: ~f

Browser with details

Passing Details Through a Component with .. .props

The components are working well together, but there’s a slight inefficiency

in AnimalCard. You are explicitly pulling diet out from the props

argument, but you aren’t using the data. Instead, you are passing it through
to the component. There’s nothing inherently wrong about this—in fact, it’s
often better to err on the side of too much communication. But in doing
this, you make your code more difficult to maintain. Whenever you want to

pass new data to AnimalDetails, you need to update three places: App,
where you pass the props, AnimalDetails, which consumes the prop, and A

nimalCard, which is the go-between.

A better way is to gather any unused props inside AnimalCard and then pass
those directly to AnimalDetails. This gives you the chance to make
changes to AnimalDetails without changing AnimalCard. In effect, Animal
Card doesn’t need to know anything about the props or the PropTypes that

are going into AnimalDetatils.

To do that, you’ll use the object rest operator. This operator collects any
items that are not pulled out during destructuring and saves them into a new

object.

Here’s a simple example:

const dog = {
name: 'dog’,

diet: ['meat']

const { name, ...props } = dog;

In this case, the variable name will be 'dog' and the variable props will be

{ diet: ['meat']}.

Up till now, you’ve passed all props as if they were HTML attributes, but
you can also use objects to send props. To use an object as a prop, you need

to use the spread operator— . . .props —surrounded with curly braces. This

will change each key-value pair into a prop.
Open AnimalCard.js:

nano src/components/AnimalCard/AnimalCard. js

https://www.digitalocean.com/community/tutorials/understanding-destructuring-rest-parameters-and-spread-syntax-in-javascript#rest-parameters

Inside, remove diet from the destructured object and instead collect the
rest of the props into a variable called props. Then pass those props directly

to AnimalDetatils:

wrapper-tutorial/src/components/AnimalCard/Anim
alCard.js

import React from 'react’;
import PropTypes from 'prop-types';

import AnimalDetails from '../AnimalDetails/AnimalDetails’;

export default function AnimalCard({ name, size, ...props }) {

return(
<div>
<h3>{name}</h3>
<div>{size}kg</div>
<AnimalDetatils
{...props}
/>

</div>

AnimalCard.propTypes = {
name: PropTypes.string.isRequired,

size: PropTypes.number.isRequired,

Notice that you can remove the diet PropType since you are not using the

prop in this component.

In this case, you are only passing one prop to AnimalDetails. In cases
where you have multiple props, the order will matter. A later prop will
overwrite earlier props, so if you have a prop you want to take priority,

make sure it is last. This can cause some confusion if your props object has

a property that is also a named value.

Save and close the file. The browser will refresh and everything will look

the same:
Lion Gorilla Zebra
140kg 205kg 322kg
Details: Details: Details:
Diet: & Diet: «7 %o Diet: ~f

Browser with details

To see how the ...props object adds flexibility, let’s pass the scientificN
ame to AnimalDetails via the AnimalCard component.

First, open App.js:

nano src/components/App/App.js

Then pass the scientificName as a prop:

wrapper-tutorial/src/components/App/App.js

import React from 'react’;

import './App.css';

import animals from './data';

import AnimalCard from '../AnimalCard/AnimalCard"’;

function App() {
return (
<div className="wrapper">
{animals.map(animal =>
<AnimalCard

diet={animal.diet}
key={animal.name}
name={animal.name}
size={animal.size}

scientificName={animal.scientificName}

export default App;

Save and close the file.

Skip over AnimalCard; you won’t need to make any changes there. Then

open AnimalDetails so you can consume the new prop:

nano src/components/AnimalDetails/AnimalDetatils.js

The new prop will be a string, which you’ll add to the details list along

with a line declaring the PropType:

wrapper-tutorial/src/components/AnimalDetails/A
nimalDetatils. js

import React from 'react’;

export default function AnimalDetails({ diet, scientificName })

return(
<div className="details">
<h4>Details:</h4>
<div>
Scientific Name: {scientificName}.
</div>
<div>
Diet: {diet.map(food => convertFood(food)).join(' ')}
</div>

</div>

AnimalDetails.propTypes = {

diet: PropTypes.arrayOf(PropTypes.string).isRequired,

scientificName: PropTypes.string.isRequired,

Save and close the file. When you do, the browser will refresh and you’ll

see the new details without any changes to the AnimalCard component:

Lion Gorilla Zebra

140kg 205kg 322kg

Details: Details: Details:

Scientific Name: Panthero leo. Scientific Name: Gorilla beringei. Scientific Name: Equus quagga.
Diet: & Diet: «" %o Diet: ~

Browser with scientific name

In this step, you learned how to create flexible parent props that can take
unknown props and pass them into nested components with the spread
operator. This is a common pattern that will give you the flexibility you
need to create components with focused responsibilities. In the next step,
you’ll create components that can take unknown components as a prop

using the built in children prop.

Step 3 — Creating Wrapper Components with chitdren

In this step, you’ll create a wrapper component that can take an unknown
group of components as a prop. This will give you the ability to nest
components like standard HTML, and it will give you a pattern for creating
reusable wrappers that will let you make a variety of components that need

a common design but a flexible interior.

React gives you a built-in prop called children that collects any children
components. Using this makes creating wrapper components intuitivie and

readable.

To start, make a new component called Card. This will be a wrapper

component to create a standard style for any new card components.
Create a new directory:

mkdir src/components/Card

Then open the Card component in your text editor:

nano src/components/Card/Card.js

Create a component that takes children and title as props and wraps

them in a div by adding the following code:

wrapper-tutorial/src/components/Card/Card. js

import React from 'react’;
import PropTypes from 'prop-types';

import './Card.css';

export default function Card({ children, title }) {

return(
<div className="card">
<div className="card-details">
<h2>{title}</h2>
</div>
{children}

</div>

Card.propTypes = {
children: PropTypes.oneOfType([
PropTypes.array0Of(PropTypes.element),
PropTypes.element. isRequired

1),

title: PropTypes.string.isRequired,

The PropTypes for the children are new. The children prop can either be

a JSX element or an array of JSX elements. The title is a string.
Save and close the file.
Next, add some styling. Open Card.css:

nano src/components/Card/Card.css

Your card will have a border and a line under the details.

wrapper-tutorial/src/components/Card/Card.css

.card {
border: black solid 1px;
margin: 10px;
padding: 10px;
width: 200px;

.card-details {
border-bottom: gray solid 1px;

margin-bottom: 20px;

Save and close the file. Now that you have your component you need to use

it. You could wrap each AnimalCard with the Card component in App.js,
but since the name AnimalCard implies it is already a Card, it would be

better to use the Card component inside of AnimalCard.
Open up AnimalCard:

nano src/components/AnimalCard/AnimalCard.js

Unlike other props, you don’t pass children explicitly. Instead, you include
the JSX as if they were HTML child elements. In other words, you just nest

them inside of the element, like the following:

wrapper-tutorial/src/components/AnimalCard/Anim
alCard.js

import React from 'react’;
import PropTypes from 'prop-types';
import Card from '../Card/Card’;

import AnimalDetails from '../AnimalDetails/AnimalDetails’;
export default function AnimalCard({ name, size, ...props }) {
return(

<Card title="Animal">
<h3>{name}</h3>
<div>{size}kg</div>
<AnimalDetatils
{...props}
/>
</Card>

AnimalCard.propTypes = {
name: PropTypes.string.isRequired,

size: PropTypes.number.isRequired,

Unlike a React component, you do not need to have a single root element as
a child. That’s why the PropType for Card specified it could be an array of
elements or a single element. In addition to passing the children as nested

components, you are giving the card a title of Animal.

Save and close the file. When you do, the browser will refresh and you’ll

see the updated card component.

Animal

Lion

140kg

Details:

Animal

Gorilla

205kg

Details:

Animal

Zebra

322kg

Details:

Scientific Name: Panthero Scientific Name: Gorilla Scientific Name: Equus
leo. beringei. quagga.

Diet: & Diet: " %o Diet: ~f

Browser with cards

Now you have a reusable Card component that can take any number of
nested children. The primary advantage of this is that you can reuse the Car
d with any arbitrary component. If you wanted to make a Plant card, you
could do that by wrapping the plant information with the Card component.
It doesn’t even need to relate at all: If you wanted to reuse the Card
component in a completely different applications that lists things like music

or account data, you could do that, too. The Card component doesn’t care

what the children are; you are just reusing the wrapper element, which in

this case is the styled border and title.

The downside to using children is that you can only have one instance of

the child prop. Occasionally, you’ll want a component to have custom JSX
in multiple places. Fortunately, you can do that by passing JSX and React

components as props, which we will cover in the next step.

Step 4 — Passing Components as Props

In this step, you’ll modify your Card component to take other components
as props. This will give your component maximum flexibility to display
unknown components or JSX in multiple locations throughout the page.

Unlike children, which you can only use once, you can have as many

components as props, giving your wrapper component the ability to adapt to

a variety of needs while maintaining a standard look and structure.

By the end of this step, you’ll have a component that can wrap children
components and also display other components in the card. This pattern will
give you flexibility when you need to create components that need

information that is more complex than simple strings and integers.

Let’s modify the Card component to take an arbitrary React element called

details.
First, open the Card component:

nano src/components/Card/Card.js

Next, add a new prop called details and place it below the <h2> element:

wrapper-tutorial/src/components/Card/Card. js

import React from 'react’;
import PropTypes from 'prop-types';

import './Card.css';

export default function Card({ children, details, title }) {

return(
<div className="card">
<div className="card-details">
<h2>{title}</h2>
{details}
</div>
{children}

</div>

Card.propTypes = {
children: PropTypes.oneOfType([

PropTypes.arrayOf(PropTypes.element),

PropTypes.element. isRequired

1),
details: PropTypes.element,

title: PropTypes.string.isRequired,

Card.defaultProps = {
details: null,

This prop will have the same type as children, but it should be optional.
To make it optional, you add a default value of null. In this case, if a user

passes no details, the component will still be valid and will not display

anything extra.

Save and close the file. The page will refresh and you’ll see the same image

as before:
Animal Animal Animal
Lion Gorilla Zebra
140kg 205kg 322kg
Details: Details: Details:
Scientific Name: Panthero Scientific Name: Gorilla Scientific Name: Equus
leo. beringei. quagga.
Diet: & Diet: =7 %e Diet: =7

Browser with cards

Now add some details to the AnimalCard. First, open AnimalCard.

nano src/components/AnimalCard/AnimalCard.js

Since the Card component is already using children, you’ll need to pass

the new JSX component as a prop. Since these are all mammals, add that to

the card, but wrap it in tags to make it italic.

wrapper-tutorial/src/components/AnimalCard/Anim
alCard. js

import React from 'react’;

export default function AnimalCard({ name, size, ...props }) {

return(

<Card title="Animal" details={Mammal}>
<h3>{name}</h3>
<div>{size}kg</div>
<AnimalDetatils

{...props}

/>

</Card>

Save the file. When you do, the browser will refresh and you’ll see the
update, including the phrase Mammal.

Animal Animal Animal

Mammal Mammal Mammal

Lion Gorilla Zebra

140kg 205kg 322kg

Details: Details: Details:

Scientific Name: Panthero Scientific Name: Gorilla Scientific Name: Equus
leo. beringei. quagga.

Diet: & Diet: =/ %o Diet: -

Browser with card and details

This prop is already powerful because it can take JSX of any size. In this
example, you added only a single element, but you could pass as much JSX
as you wanted. It also doesn’t have to be JSX. If you have a complicated
markup for example, you wouldn’t want to pass it directly in the prop; this
would be difficult to read. Instead, you could create a separate component

and then pass the component as a prop.

To see this at work, pass AnimalDetails to the details prop:

wrapper-tutorial/src/components/AnimalCard/Anim
alCard.js

import React from 'react’;

export default function AnimalCard({ name, size, ...props }) {

return(
<Card
title="Animal"
details={
<AnimalDetatils
{...props}
/>

<h3>{name}</h3>
<div>{size}kg</div>

</Card>

AnimalDetails is more complicated and has a number of lines of markup.

If you were to add it directly to details, it would increase the prop

substantially and make it difficult to read.

Save and close the file. When you do, the browser will refresh and the

details will appear at the top of the card.

Animal Animal Animal

Details: Details: Details:

Scientific Name: Panthero Scientific Name: Gorilla Scientific Name: Equus
leo. beringei. quagga.

Diet: & Diet: ~" e Diet: ~f

Lion Gorilla Zebra

140kg 205kg 322kg

Card with details at the top

Now you have a Card component that can take custom JSX and place it in
multiple spots. You are not restricted to a single prop; you can pass
elements to as many props as you want. This gives you the ability to create
flexible wrapping components that can give other developers the
opportunity to customize a component while retaining its overall style and

functionality.

Passing a component as a prop isn’t perfect. It’s a little more difficult to
read and isn’t as clear as passing children, but they are just as flexible and
you can use as many of them as you want in a component. You should use ¢

hildren first, but don’t hesitate to fall back to props if that is not enough.

In this step, you learned how to pass JSX and React components as props to
another component. This will give your component the flexibility to handle
many situations where a wrapper component may need multiple props to

handle JSX or components.

Conclusion

You have created a variety of wrapping components that can display data
flexibly while keeping a predictable look and structure. You created
components that can collect and pass unknown props to nested components.
You also used the built-in children prop to create wrapper components that
can handle an arbitrary number of nested elements. Finally, you created a
component that can take JSX or React components as a prop so that your
wrapper component can handle multiple instances of different

customizations.

Wrapper components give you the ability to adapt to unknown
circumstances while also maximizing code reuse and consistency. This
pattern is useful for creating basic Ul elements that you will reuse
throughout an application including: buttons, alerts, modals, slide shows,

and more. You’ll find yourself returning to it many times.

If you would like to look at more React tutorials, check out our React Topic

page, or return to the How To Code in React.js series page.

https://www.digitalocean.com/community/tags/react
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-react-js

How To Style React Components

Written by Joe Morgan

The author selected Creative Commons to receive a donation as part of the

Write for DOnations program.

In this tutorial, you’ll learn three different ways to style React components:
plain Cascading Style Sheets (CSS), inline styles with JavaScript-style
objects, and JSS, a library for creating CSS with JavaScript. These options
each have advantages and disadvantages, some giving you more protection
against style conflicts or allowing you to directly refer to props or other
dynamic data. But all the options have one thing in common: They let you
keep your component-specific styles close to the component, making
components easier to reuse across a project or even across many unrelated

projects.

Each of these options relies on CSS properties. To use plain CSS without
any runtime data, you can import style sheets. If you want to create styles
that are integrated with the component, you can use inline style objects that
use CSS property names as keys and the style as the value. Finally, if you
want a combination, you can use a third-party library such as JSS to write

your CSS in JavaScript syntax, a software concept known as CSS-in-JS.

To illustrate these methods, you’ll build an example alert component that

will either show a success style or an error style depending on the prop. The

alert component will take any number of children. This means you will

need to be cautious about style conflicts, since you have no way of knowing

https://www.digitalocean.com/community/tutorials/how-to-style-react-components
https://creativecommons.org/
https://do.co/w4do-cta
https://reactjs.org/
https://developer.mozilla.org/en-US/docs/Web/CSS
https://www.digitalocean.com/community/tutorials/understanding-objects-in-javascript
https://cssinjs.org/
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-javascript
https://www.digitalocean.com/community/tutorials/how-to-customize-react-components-with-props

what styles the children components will have. After making the alert
component, you will refactor it using each of the styling options so that you

can see the similarities and differences between the approaches.

Prerequisites

e You will need a development environment running Node.js; this
tutorial was tested on Node.js version 10.20.1 and npm version 6.14.4.
To install this on macOS or Ubuntu 18.04, follow the steps in How to
Install Node.js and Create a Local Development Environment on
macOS or the Installing Using a PPA section of How To Install
Node.js on Ubuntu 18.04.

e You will need to be able to create apps with Create React App. You can
find instructions for installing an application with Create React App at

How To Set Up a React Project with Create React App.

e You will be using React components, which you can learn about in our

How To Create Custom Components in React tutorial.

e You will also need a basic knowledge of JavaScript, which you can
find in the How To Code in JavaScript series, along with a basic
knowledge of HTML and CSS. A good resource for HTML and CSS is
the Mozilla Developer Network.

Step 1 — Creating an Empty Project

In this step, you’ll create a new project using Create React App. Then you

will delete the sample project and related files that are installed when you

https://nodejs.org/en/about/
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-and-create-a-local-development-environment-on-macos
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-on-ubuntu-18-04
https://github.com/facebook/create-react-app
https://www.digitalocean.com/community/tutorials/how-to-set-up-a-react-project-with-create-react-app
https://www.digitalocean.com/community/tutorials/how-to-create-custom-components-in-react
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-javascript
https://developer.mozilla.org/en-US/docs/Learn/HTML/Introduction_to_HTML
https://github.com/facebook/create-react-app

bootstrap the project. Finally, you will create a simple file structure to
organize your components. This will give you a solid basis on which to

build this tutorial’s sample application for styling in the next step.

To start, make a new project. In your terminal, run the following script to

install a fresh project using create-react-app:

npx create-react-app styling-tutorial

After the project is finished, change into the directory:

cd styling-tutorial

In a new terminal tab or window, start the project using the Create React
App start script. The browser will auto-refresh on changes, so leave this

script running while you work:

npm start

You will get a running local server. If the project did not open in a browser
window, you can open it with http://localhost:3000/. If you are running

this from a remote server, the address will be http://your_domain:3000.

Your browser will load with a simple React application included as part of

Create React App:

https://www.digitalocean.com/community/tutorials/how-to-set-up-a-react-project-with-create-react-app#step-3-%E2%80%94-starting-the-server
http://localhost:3000/

Hello, world

Learn React

React template project

You will be building a completely new set of custom components, so you’ll
need to start by clearing out some boilerplate code so that you can have an

empty project.

To start, open src/App.js in a text editor. This is the root component that is
injected into the page. All components will start from here. You can find
more information about App.js at How To Set Up a React Project with

Create React App.
Open src/App.js with the following command:

nano src/App.js

You will see a file like this:

https://www.digitalocean.com/community/tutorials/how-to-set-up-a-react-project-with-create-react-app#step-5-%E2%80%94-modifying-the-heading-tag-and-styling

styling-tutorial/src/App.js

import React from 'react’;
import logo from './logo.svg';

import './App.css';

function App() {
return (
<div className="App">
<header className="App-header">

<p>
Edit <code>src/App.js</code> and save to reload.
</p>
<a
className="App-Link"
href="https://reactjs.org"
target="_blank"

rel="noopener noreferrer"

Learn React

</header=>
</div>

);

export default App;

Delete the line import logo from './logo.svg';. Then replace everything
in the return statement to return a set of empty tags: <></>. This will give

you a valid page that returns nothing. The final code will look like this:

styling-tutorial/src/App.]js

import React from 'react’;

import './App.css';

function App() {

return <></>;

export default App;

Save and exit the text editor.

Finally, delete the logo. You won’t be using it in your application and you
should remove unused files as you work. It will save you from confusion in

the long run.

In the terminal window type the following command:

rm src/logo.svg

If you look at your browser, you will see a blank screen.

C ® localhost:3000

blank screen in chrome

Now that you have cleared out the sample Create React App project, create
a simple file structure. This will help you keep your components isolated

and independent.

Create a directory called components in the src directory. This will hold all

of your custom components.

mkdir src/components

Each component will have its own directory to store the component file

along with the styles, images, and tests.
Create a directory for App:

mkdir src/components/App

Move all of the App files into that directory. Use the wildcard, *, to select
any files that start with App. regardless of file extension. Then use the mv

command to put them into the new directory:

mv src/App.* src/components/App

Next, update the relative import path in 1index.js, which is the root

component that bootstraps the whole process:

nano src/index.js

The import statement needs to point to the App.js file in the App directory,

so make the following highlighted change:

styling-tutorial/src/index. js

import React from 'react’;

import ReactDOM from 'react-dom';
import './index.css';

import App from './components/App/App';

import * as serviceWorker from './serviceWorker';

ReactDOM. render(
<React.StrictMode>
<App />
</React.StrictMode>,

document.getElementById('root")
)5

// If you want your app to work offline and load faster, you ca
// unregister() to register() below. Note this comes with some
// Learn more about service workers: https://bit. ly/CRA-PWA

serviceWorker.unregister();

Save and exit the file.

Now that the project is set up, you can create your first component.

Step 2 — Styling a Component with Plain CSS

In this step, you’ll build a sample Alert component that will display an

alert on a web page. You’ll style this using plain CSS, which you will
import directly into the component. This will ensure that the component’s
styles remain closely coupled with the component’s JavaScript and JSX.

You’ll also create a component that will implement the Alert component to

see how styles can affect children and how you can use props to change

styles dynamically.

By the end of this step, you’ll have created several components that use

plain CSS imported directly into the component.
Building an Alert Component
To start, create a new Alert component. First, make the directory:

mkdir src/components/Alert

Next, open Alert.js:

nano src/components/Alert/Alert.js

Add a basic component that returns the string Alert:

https://www.digitalocean.com/community/tutorials/how-to-create-react-elements-with-jsx

styling-tutorial/src/components/Alert/Alert.js

import React from 'react’;

export default function Alert() {

return <div>Alert</div>

Save and close the file.
Next, open App.js:

nano src/components/App/App.js

Import the Alert component and render it inside a <div> by adding the

highlighted code:

styling-tutorial/src/components/App/App.js

import React from 'react’;

import './App.css';

import Alert from '../Alert/Alert’;

function App() {
return (
<div className="wrapper">
<Alert />

</div>

export default App;

In this code, you gave the <div> a className of wrapper, which will be

used for styling later.

Save and close the file. When you do, the browser will refresh and you’ll

see your component:

Alert

Browser with Alert
Next, you will style the App component to give it some padding so that the
Alert component is not so close to the edge. Open the App.css file:

nano src/components/App/App.cCss

This file uses standard CSS. To add padding to the wrapper, replace the
default code with a rule as you would for CSS in a plain HTML project. In
this case, add a padding of 20px:

styling-tutorial/src/components/App/App.css

.wrapper {

padding: 20px;

Save and close the file. When you do, the page will refresh and you’ll see

the extra padding;:

Alert

Browser with extra padding

When you use Create React App, webpack will take the imported CSS and
add it to a style tag at the top of the file rendered in the browser. If you look

at the <head> element in your page source, you’ll see the styles:

https://webpack.js.org/

Alert

[w ﬂ Elements Console Sources Network Performance Memory Application Security Audits Redux

html lang="en
v <head
meta charset="utf-8
link rel="icon" href="/favicon.ico
meta name="viewport" content="width=device-width, initial-scale=1
meta name="theme-color" content="#000000
meta name="description” content="Web site created using create-react-app
link rel="apple-touch-icon" href="/10g0192.png
<!—
manifest.json provides metadata used when your web app is installed on a
user's mobile device or desktop. See https://developers.google.com/web/fundamentals/web—app-manifest/
—_—
link rel="manifest" href="/manifest.json
<!—
Notice the use of 1in the tags above.
It will be replaced with the URL of the “public® folder during the build.
Only files inside the “public® folder can be referenced from the HTML.

Unlike "/favicon.ico" or "favicon.icoe", "/favicon.ico" will
work correctly both with client-side routing and a non-root public URL.
Learn how to configure a non-root public URL by running “npm run build.
—_—>
title>React App</title
> <style type="text/css">.</style
style type="text/css">.wrapper {
padding: 20@px;

+

/style> == %0

script charset="utf-8" src="/main.cede432...hot-update.js /script
/head

Style tag in page source

This means that you can keep the CSS alongside the component and it will
be collected together during the build phase. It also means that your styles
are global in scope, which can create potential name conflicts. With this

method, each class name will need to be unique across all components.

To explore this problem, you will make some changes to the Alert

component.

https://www.digitalocean.com/community/tutorials/how-to-set-up-a-react-project-with-create-react-app#step-6-%E2%80%94-building-the-project

First, open the file:

nano src/components/Alert/Alert.js

Then add some React code that will take children, type, and title as

props:

styling-tutorial/src/components/Alert/Alert.js

import React from 'react’;

import PropTypes from 'prop-types';

export default function Alert({ children, title, type }) {
return (
<div>
<h2>{title}</h2>
{children}

</div>

Alert.propTypes = {
children: PropTypes.oneOfType([
PropTypes.arrayOf(PropTypes.element),
PropTypes.element. isRequired
1),
title: PropTypes.string.isRequired,

type: PropTypes.string.isRequired,

The title in this code is in a <h2> tag, and children will allow you to

display child components. You will soon use the type prop to set a success

and an error alert based on the PropTypes typing system.

Save and close the file. Next, update the Alert component in App to use

the new props.
First, open App.js:

nano src/components/App/App.]js

Make an alert that notifies a user that an attempt to add items to a shopping

cart has failed:

https://www.digitalocean.com/community/tutorials/how-to-customize-react-components-with-props#step-3-%E2%80%94-creating-predictable-props-with-proptypes-and-defaultprops

styling-tutorial/src/components/App/App.js

import React from 'react’;

import './App.css';

import Alert from '../Alert/Alert’';

function App() {
return (
<div className="wrapper">
<Alert title="Items Not Added" type="error">
<div>Your titems are out of stock.</div=>
</Alert>

</div>

export default App;

In this code, you updated the title and children with a fail message, then

added a type of error.

Save and close the file. When you do, the browser will refresh and you’ll

see your new component:

ltems Not Added

Your items are out of stock.

Alert component

Your alert is rendering, so the next step is to style the component with CSS.

Adding CSS to the Atert Component

Since the Alert component dislays an error, you will add a border and set
the color of the border to a shade of red. You’ll also give the <h2> tag the
same color. But this presents a problem: You can’t use the name wrapper on
the outer <div> in your Alert component, because that name is already

taken by the App component.

Class name conflicts aren’t a new problem in CSS, and there have been a
number of attempts to solve it using naming conventions such as BEM. But
naming conventions can become verbose, and can still occasionally lead to

conflicts in projects with a large number of components.

http://getbem.com/introduction/

Rather than using a specific set of rules separated by naming convention, in
this tutorial you will prefix the wrapper class name with the name of the
component. Your new class name will be alert-wrapper. In addition, you

will add the type of the alert as a class.
Open up the Alert component:

nano src/components/Alert/Alert.js

Next, add the following highlighted code:

styling-tutorial/src/components/Alert/Alert.js

import React from 'react’;
import PropTypes from 'prop-types';

import './Alert.css';

export default function Alert({ children, type, title }) {
return(
<div className={ alert-wrapper ${type} }>
<h2>{title}</h2>
{children}

</div>

In this case, you’re combining alert-wrapper and the type variable into a

single string using a template literal.

Save and close the file. Now you have a unique class name that changes

dynamically based on the prop. The JSX in this code will resolve to a div
with the class names of alert-wrapper and error. The compiled mark up

would be this: <div class="alert-wrapper error"s.
Now add the styles. First, open the CSS for the Alert component:

nano src/components/Alert/Alert.css

Add the following CSS to the alert-wrapper, success, and error classes:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals

styling-tutorial/src/components/Alert/Alert.css

.alert-wrapper {
padding: 15px;

margin-bottom: 15px;

.alert-wrapper h2 {
margin: 0 0 10px 0;

.alert-wrapper.success {

border: #6DA06F solid 1px;

.success h2 {

color: #6DA06F;

.alert-wrapper.error {

border: #F56260 solid 1px;

.error h2 {

color: #F56260;

This code adds some margins and padding to the alert-wrapper. It then
adds a border with a shade of red for the error class using the hexidecimal
color code #F56260, and a shade of green (#6DA06F) for the success class.

It also updates the <h2> color to red or green depending on the parent.

Save and close the file. When you do, the browser will refresh and you’ll

see the new styles:

Your items are out of stock.

Styled error alert

Now that you have a styled Alert component, you can create a new
component that displays a list of items within the Alert component. Since

the children will be more complex, there will be greater possibilities for

style conflicts.
Creating a Success Message Component
First, create a directory for for the new component CartSuccess:

mkdir src/components/CartSuccess

https://developer.mozilla.org/en-US/docs/Learn/CSS/Building_blocks/Values_and_units#Color

Open CartSuccess.js:

nano src/components/CartSuccess/CartSuccess.js

Inside the component, import the Alert component and pass a <div>

containing a series of items that a user has added to the cart:

styling-tutorial/src/components/CartSuccess/Car
tSuccess. js

import React from 'react’;
import Alert from '../Alert/Alert’';

import './CartSuccess.css';

export default function CartSuccess() {
return(
<Alert title="Added to Cart" type="success">
<div className="cart-success-wrapper">
<h2>
You have added 3 items:
</h2>
<div className="1item">
<div>Bananas</div>
<div>Quantity: 2</div>
</div>
<div className="1item">
<div>Lettuce</div>
<div>Quantity: 1</div>
</div>
</div>

</Alert>

Notice how you needed to create a unique class name— cart-success-wrap

per —for the outer <div>. Save and close the file.
Next, add some CSS to the custom message. Open CartSuccess.css:

nano src/components/CartSuccess/CartSuccess.css

Add a display of flex to the wrapper. You’ll want most of the items to

wrap, except for the <h2> element, which should take up the whole width:

styling-tutorial/src/components/CartSuccess/Car
tSuccess.css

.cart-success-wrapper {
border-top: black solid 1px;
display: flex;

flex-wrap: wrap;

.cart-success-wrapper h2 {

width: 100%;

.item {

margin-right: 20px;

https://developer.mozilla.org/en-US/docs/Web/CSS/display
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Flexible_Box_Layout

Here, you gave the <h2> a width of 100%. In addition to flexing the
element, you also added a small border to the top of the message, and added

a margin to the item class to provide some space between items.

Save and close the file.

Now that you have a styled component, add it to your App component.
Open App.js:

nano src/components/App/App.js

Import the component and add it after the current Alert component, as

shown in the highlighted code:

styling-tutorial/src/components/App/App.js

import React from 'react’;

import './App.css';

import Alert from '../Alert/Alert’';

import CartSuccess from '../CartSuccess/CartSuccess';

function App() {
return(
<div className="wrapper">
<Alert title="Items Not Added" type="error">
<div>Your items are out of stock.</div=>
</Alert>
<CartSuccess />

</div>

export default App;

Save and close the file. When you do, the browser will refresh and you’ll

see your new component:

Your items are out of stock.

Bananas Lettuce
Quantity: 2 Quantity: 1

Alerts in App

This shows the new color and the message as intended, but the nested

component received some unexpected styles. The rule for the <h2> in the A

lert component is being applied to the nested <h2> tag in the children

props.

Unexpected styles cascading to children are a common problem with CSS.
However, since React gives you the opportunity to bundle and share
components across projects, you have a greater potential for styles to

inadvertently flow down to children components.

To fix this with pure CSS, make the <h2> rule for the Alert component a

little more specific.
Open the Alert.css file:

nano src/components/Alert/Alert.css

Change the rules so that the <h2> styling only applies to the direct children

of the classes rather than all children using the CSS > child combinator:

https://developer.mozilla.org/en-US/docs/Web/CSS/Child_combinator

styling-tutorial/src/components/Alert/Alert.css

.alert-wrapper {
padding: 15px;

margin-bottom: 15px;

.alert-wrapper > h2 {

margin: 0 0 10px 0;

.alert-wrapper.success {

border: #6da06f solid 1px;

.success > h2 {

color: #6da06f;

.alert-wrapper.error {

border: #f56260 solid 1px;

.error > h2 {

color: #f56260;

Save and close the file. When you do, the page will refresh and you’ll see

the <h2> element in CartSuccess retain the default color:

Your items are out of stock.

You have added 3 items:

Bananas Lettuce
Quantity: 2 Quantity: 1

H2 with dark color

Now the styles for the Alertcomponent will only affect the immediate
children and will not apply to other child nodes or components. This
method works well in this case, but in circumstances where components are
more complex, it can be difficult to write rules that apply to all cases

without leaking outside the component.

In this step, you styled a component using CSS stylesheets imported
directly into a component. Styling React elements with standard CSS is a
quick way to create components with associated styles using standard CSS
files. The ease of use makes it a good first step when you are working on

new or small projects, but as the projects grow it can cause problems.

As you built the components, you encountered two common styling

problems: class name conflicts and unintended style application. You can

work around them with standard CSS, but there are other styling
approaches that give you tools for handling these problems
programmatically instead of with naming conventions. In the next step, you

will explore solving these problems with style objects.
Step 3 — Styling with Style Objects

In this step, you’ll style your components using style objects, which are
JavaScript objects that use CSS properties as keys. As you work on your
components, you’ll update keys to match the JavaScript syntax and learn

how to dynamically set style properties based on component props.

Separate CSS is the most common way to style HTML. This method is fast,
and browsers are efficient at applying styles quickly and consistently. But
this is not the only option for styling HTML. In standard HTML, you can
set inline styles directly on an element using the style attribute with a string

containing the styles you wanted to apply.

One of the best uses of style objects is for calculating styles dynamically.
This is particularly useful if you need to know the element’s current
position, since this is not determined until the elements are rendered and

thus can only be handled dynamically.

Writing style strings manually is difficult to do and can introduce bugs. A
missing color or semicolon will break the entire string. Fortunately, in JSX,
you aren’t limited to just a string. The style attribute can also accept an

object containing the styles. These style names will need to be camelCase

rather than kebab-case.

https://www.digitalocean.com/community/tutorials/understanding-objects-in-javascript
https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes/style
https://en.wikipedia.org/wiki/Camel_case

The biggest advantage to using inline styles like this is that, since you are
building styles with JavaScript, you can dynamically set CSS properties
instead of dynamically setting classes. This means you can write code
without CSS classes at all, avoiding any potential name conflicts and

allowing you to calculate styles at runtime.
To use style objects, start by refactoring App. js. First, open the file:

nano src/components/App/App.]js

Inside the component, remove the imported App.css file, and then create an
object that has a padding of 20 and pass the object to the <div> using the

style attribute:

styling-tutorial/src/components/App/App.js

import React from 'react’;

import Alert from '../Alert/Alert’';

import CartSuccess from '../CartSuccess/CartSuccess';

function App() {

const wrapper = {

padding: 20
};
return(
<div style={wrapper}>
<Alert title="Items Not Added" type="error">
<div>Your items are out of stock.</div=>
</Alert>
<CartSuccess />
</div>
)
}

export default App;

Notice that you do not have to specify pixels as the unit for padding. React

will convert this to a string of pixels by default. If you want a specific unit,

pass it as a string. So if you wanted the padding to be a percentage for

example, it would be padding: '20%"'.

Most numbers will be automatically converted to pixels. There are

exceptions, however. The property line-height can take plain numbers

without a unit. If you wanted to use the pixels unit in that case, you’d need

to specify pixels as a string.

Save and close the file. When you do, the browser will refresh and you’ll

see the page as it was before:

Your items are out of stock.

You have added 3 items:

Bananas Lettuce
Quantity: 2 Quantity: 1

Page with style object

Next, refactor CartSuccess. First, open the file:

nano src/components/CartSuccess/CartSuccess.js

As with App.js, remove the imported CSS (CartSuccess.css) and create a

style object for each item that previously had a class:

https://developer.mozilla.org/en-US/docs/Web/CSS/line-height#Syntax

styling-tutorial/src/components/CartSuccess/Car
tSuccess. js

import React from 'react’;

import Alert from '../Alert/Alert’';

export default function CartSuccess() {
const styles = {

header: {
width: '100%'

b,

item: {
marginRight: 20

b,

wrapper: {
borderTop: 'black solid 1px',
display: 'flex',

flexWrap: 'wrap’

return(
<Alert title="Added to Cart" type="success">
<div style={styles.wrapper}>
<h2 style={styles.header}>
You have added 3 items:

</h2>

<div style={styles.item}>
<div>Bananas</div>
<div>Quantity: 2</div>

</div>

<div style={styles.item}>
<div>Lettuce</div>
<div>Quantity: 1</div>

</div>

</div>

</Alert>

In this case, you didn’t create multiple, separate objects; instead, you
created a single object that contains other objects. Notice also that you

needed to use camel case for the properties of margin-right, border-top,

and flex-wrap.

Save and close the file. When you do, the page will refresh and you’ll see

the page with the same styles:

Your items are out of stock.

You have added 3 items:

Bananas Lettuce
Quantity: 2 Quantity: 1

Page with style object

Since you are not using classes, you don’t have to worry about any name
conflicts. Another advantage of creating styles with JavaScript is that you
can take advantage of any JavaScript syntax such as variables and template
literals. With modern CSS, you can use variables, which is a major
improvement, but may not be fully available depending on your browser
support requirements. In particular, they are not supported in any version of

Internet Explorer, although you can use a polyfill to add support.

Since style objects are created at runtime, they are more predictable and can

use any supported JavaScript.

To see how style objects can help in this situation, refactor Alert.js to use

style objects. First, open Alert.js:

nano src/components/Alert/Alert.js

https://developer.mozilla.org/en-US/docs/Web/CSS/Using_CSS_custom_properties
https://en.wikipedia.org/wiki/Polyfill_(programming)

Inside Alert.js, remove import './Alert.css'; and create an object
called colors that has a property for the error color and a property for the
success color. Then convert the CSS to a JavaScript object using the type

prop to dynamically set the color:

styling-tutorial/src/components/Alert/Alert.js

import React from 'react’;

import PropTypes from 'prop-types';

export default function Alert({ children, type, title }) {
const colors = {
success: '#6da06f',

error: '#f56260',

const style = {

heading: {
color: colors[typel],
margin: 'O 0 10px 0',

}s

wrapper: {
border: "${colors[type]} solid 1px ,
marginBottom: 15,
padding: 15,

position: 'relative’,

return(
<div style={style.wrapper}>
<h2 style={style.heading}>{title}</h2>

{children}

</div>

There are a few changes here. First, you use a single style declaration for wr
apper and then dynamically set the color based on the type. You are not
styling <h2> elements in general, but instead are styling these particular
elements, which happen to be <h2> elements. Since you are not applying

styles to an element type, there is no danger that the styles will flow down

to child elements.

Save and close the file. When you do, the browser will refresh and you’ll

see the applied styles.

Your items are out of stock.

You have added 3 items:

Bananas Lettuce
Quantity: 2 Quantity: 1

Page with style object

Style objects solve many problems, but they do have disadvantages. First,
there is a performance cost for inline styles. Browsers were designed to
handle CSS efficiently, and styles objects that apply inline styles can not
take advantage of these optimizations. The other problem is that it’s more
difficult to apply styles to child elements with style objects. In this case,
you did not want a style to apply to children, but it is often the case that you
do want styles to cascade. For example, setting a custom font family on

every element or applying a custom size to every <h2> element would be

easier if you used a less specific styling strategy.

There is, however, a middle ground between these approaches. Several
third-party libraries are designed to find this middle ground. In the next
step, you’ll create styles using a hybrid approach called CSS-in-JS using a
library called JSS.

Step 4 — Styling with JSS

https://reactjs.org/docs/faq-styling.html#are-inline-styles-bad

In this step, you’ll style objects using the popular library JSS. You’ll install
the new library and convert your style objects to JSS objects. You’ll then
refactor your code to use dynamically generated class names that will
prevent conflicts between class names across modules. You’ll also build
JavaScript style objects that dynamically set styles and use nested

properties to create specific style rules.

JSS is a library for creating CSS-in-JS. This methodology has many
different use cases and options, but the main advantage in this tutorial is
that it will create dynamic class names that avoid conflicts between
components. You also will be able to take advantage of JavaScript syntax,
which means you will be able to use variables and create styles based off of

React props.

To begin, install the React specific version of JSS. This tutorial will use

version 10.1.1:

npm install react-jss

The package will install several dependencies, including a number of JSS

plugins that will give you the ability to write concise style rules.

When the installation is complete, you’ll see a success message:

https://cssinjs.org/
https://cssinjs.org/from-sass-to-cssinjs
https://cssinjs.org/react-jss/?v=v10.1.1
https://cssinjs.org/plugins?v=v10.1.1

Output

+ react-jss@10.1.1

added 281 packages from 178 contributors, removed 142 package
s, updated 1392 packages and audited 1025251 packages in 144.8
72s

Your output will vary slightly depending on your Node version and other

dependencies.

Now that the library is installed, convert App.js to use JSS. First, open Ap

p.js:

nano src/components/App/App.]js

There are two steps to use JSS. First, you have to import a function to create
a custom hook. Hooks are functions that React will run on every component
render. With JSS, you have to create a hook by passing in the style
definitions, outside of the component. This will prevent the code from
running on every re-render; since the style definitions are static, there’s no

reason to run the code more then once.

Create the hook and the style object by making the highlighted changes:

https://reactjs.org/docs/hooks-custom.html

styling-tutorial/src/components/App/App.js

import React from 'react’;

import { createUseStyles } from 'react-jss';

import Alert from '../Alert/Alert’';

import CartSuccess from '../CartSuccess/CartSuccess';

const useStyles = createUseStyles({
wrapper: {
padding: 20,
}
b

function App() {
return(
<div>
<Alert title="Items Not Added" type="error">
<div>Your items are out of stock.</div=>
</Alert>
<CartSuccess />

</div>

export default App;

Notice in this case that your style object contains another object called wra
pper, which contains the styles using the same camel case format. The
name of the object—wrapper —is the basis for creating the dynamic class

name.

After you create the hook, you consume it by executing the function inside
the component. This registers the hook and creates the styles dynamically.

Make the following highlighted change:

styling-tutorial/src/components/App/App.js

import React from 'react’;

import { createUseStyles } from 'react-jss'

import Alert from '../Alert/Alert’';

import CartSuccess from '../CartSuccess/CartSuccess';

const useStyles = createUseStyles({
wrapper: {
padding: 20,
}
b

function App() {
const classes = useStyles()
return(
<div className={classes.wrapper}>
<Alert title="Items Not Added" type="error">
<div>Your items are out of stock.</div=>

</Alert>
<CartSuccess />

</div>

export default App;

In this code, you call the function and assign the results to a variable called
classes. The new variable classes will be an object that contains the
dynamic class names. You then apply the appropriate class name to your

element by using the same name that you defined on the object. Here you

used classes.wrapper.

Save and close the file. When you do the browser will refresh and you’ll see
the same styles as before. But if you look at the console, you’ll see that the

class name does not perfectly match the one you defined in your object:

Iltems Not Added

Your items are out of stock.

Added to Cart

You have added 3 items:

Bananas Lettuce
Quantity: 2 Quantity: 1

x ﬂ Elements Console Sources Network Performance Memory Application Security Audits Redux Components Profiler :X

- Styles Computed Event Listeners »
title>React App</title

»<style type="text/css">.</style: Filter thov .cls +‘
»<style type="text/css">..</style
style data-jss data-meta="Unthemed ;mml'swle {
.wrapper-0-2-1 {
padding: 20px; .wrapper-0-2-1 { <style>
¥ padding: » 20px;
/style: }
. é::ad div { user agent stylesheet
4))) display: block;
noscript>You need to enable JavaScript to run this app.</noscript }
v<div id="root
v<div class="wrapper-0-2-1"> == $0 Inherited from body
»<div style="border: 1px solid rgb(245, 98, 96); margin-bottom: 15px; padding: 15px; position: relative;">.</div: body { <style>
»<div style="border: 1px solid rgb(109, 160, 111); margin-bottom: 15px; padding: 15px; position: relative;">..
/d}v font-family: -apple-system,
/div, BlinkMacSystemFont, 'Segoe UI', 'Roboto’,
/div 'Oxygen', 'Ubuntu', 'Cantarell', 'Fira
html body div#root div.wrapper-0-2-1 Sans', 'Droid Sans', 'Helvetica Neue',

Styles with applied class names

In this case, the class name is wrapper-0-2-1, but your class name may be
different. You’ll also see that the styles are converted from an object to CSS
and placed in a <style> tag. Contrast this to the inline styles, which are not

converted to CSS and do not have any class names.

JSS creates the class names dynamically so they will not conflict with

similar names in other files. To see this at work, refactor CartSuccess.js to

use JSS styling.
Open the file:

nano src/components/CartSuccess/CartSuccess.js

Inside the file, create a custom hook using createUseStyles. Instead of
applying a class to the <h2> element, you’ll create a rule for the <h2>
elements inside of a wrapper. To do that with plain CSS, you add a space

between the class and the element— .wrapper h2. This applies the style to

all <h2> elements that are children of the .wrapper class.

With JSS, you can create a similar rule by creating another object inside of

the containing element. To link them up, start the object name with the &

symbol:

styling-tutorial/src/components/CartSuccess/Car
tSuccess. js

import React from 'react’;
import { createUseStyles } from 'react-jss';

import Alert from '../Alert/Alert’';

const useStyles = createUseStyles({
item: {
marginRight: 20
},
wrapper: {
borderTop: 'black solid 1px',
display: 'flex',
flexWrap: 'wrap',
'& h2': {
width: '100%'

}
})

export default function CartSuccess() {
const classes = useStyles();
return(
<Alert title="Added to Cart" type="success">
<div className={classes.wrapper}>

<h2>

You have added 3 items:

</h2>

<div className={classes.item}>
<div>Bananas</div=>
<div>Quantity: 2</div>

</div>

<div className={classes.item}>
<div>Lettuce</div=>
<div>Quantity: 1</div>

</div>

</div>

</Alert>

In addition to creating rules for the wrapper, you also created a rule for ite
m. After creating the custom hook, you passed the custom class names to the

className property.

Save the file. Notice that you are using the same name—wrapper —in both
this component and the App component. But when the browser reloads,
there will be no naming conflict; everything will look correct. If you inspect
the elements in your browser, you’ll see that even though they started with

the same name, they each have a unique class:

Items Not Added

Your items are out of stock.

Added to Cart

You have added 3 items:

Bananas Lettuce
Quantity: 2 Quantity: 1

w ﬂ Elements Console Sources Network Performance Memory Application Security Audits Redux € Components € Profiler FE)

Styles Computed Event Listeners »
html lang="en —_
» <head>..</head: Filter thov .cls Ho
v <body:
noscript>You need to enable JavaScript to run this app.</noscript elenent.style {
v<div id="root }
v<div class="wrapper-0-2-1 .wrapper-0-2-3 { <styl
»<div style="border: 1px solid rgb(245, 98, 96); margin-bottom: 15px; padding: 15px; position: relative;">.</div: display: flex;

v<div style="border: 1px solid rgb(109, 160, 111); margin-bottom: 15px; padding: 15px; position: relative; flex-wrap: wrap;
h2 style="color: rgb(109, 160, 111); margin: @px @px 1@px;'>Added to Cart</h2 border-top: » Mblack solid 1px;
» <div class="wrapper-8-2-3">.</div> == $0
/div div { user agent styleshe
/div e LG

/div: }

Image with multiple wrapper classes

In this case, the class for the outer component is wrapper-0-2-1, which was
generated in the App component. The class for CartSuccess is wrapper-0-2
-3. Your component names may be slightly different, but they will be

unique.

In some situations, you may need to make a specific selector to override
other styles. For example, let’s say you only want the item styling to apply
when the element is a child of the wrapper class. To do this, first create the
class on the object with no properties. Then inside the wrapper class,

reference the new class with a $ symbol:

styling-tutorial/src/components/CartSuccess/Car
tSuccess. js

import React from 'react’;
import { createUseStyles } from 'react-jss'

import Alert from '../Alert/Alert’';

const useStyles = createUseStyles({
item: {},
wrapper: {
borderTop: 'black solid 1px',
display: 'flex',
flexWrap: 'wrap',
'& h2': {
width: '100%'
b,
'& $item': {

marginRight: 20

}
})

export default function CartSuccess() {
const classes = useStyles()
return(
<Alert title="Added to Cart" type="success">

<div className={classes.wrapper}>

<h2>
You have added 3 items:

</h2>

<div className={classes.item}>
<div>Bananas</div>
<div>Quantity: 2</div>

</div>

<div className={classes.item}>
<div>Lettuce</div>
<div>Quantity: 1</div>

</div>

</div>

</Alert>

Save and close the file. When the browser reloads, the page will look the

same, but the item CSS will be applied more specifically to items under the

wrapper component:

Items Not Added

Your items are out of stock.

Added to Cart

You have added 3 items:

Bananas Lettuce
Quantity: 2 Quantity: 1

® ﬂ Elements Console Sources Network Performance Memory Application Security Audits Redux 3 Components & Profiler 02 i X

Styles Computed Event Listeners >
html lang="en

» <head>..</head Filter thov .cls +,
v <body:
noscript>You need to enable JavaScript to run this app.</noscript element. style {
v<div id="root i
v<div class="wrapper-0-2-1 .wrapper-0-2-3 .item-0-2-2 { <style>

»<div style="border: 1px solid rgb(245, 98, 96); margin-bottom: 15px; padding: 15px; position: relative;">..</div: margin-right: 2@px;
v<div style="border: 1px solid rgb(109, 160, 111); margin-bottom: 15px; padding: 15px; position: relative; }
h2 style="color: rgb(109, 160, 111); margin: @px @px 10px;">Added to Cart</h2
v<div class="wrapper-0-2-3
h2>You have added 3 items:</h2
»<div class="item-0-2-2">..</div> == $0
v<div class="item-8-2-2 Inherited from body
div>Lettuce</div.
div>Quantity: 1</div:

/div font-family: -apple-system,
/div. BlinkMacSystemFont, 'Segoe UI', 'Roboto',
/div ‘Oxygen', ‘'Ubuntu', 'Cantarell', 'Fira
html body div#root div.wrapper-0-2-1 div div.wrapper-0-2-3 div.item-0-2-2 Sans', 'Dz?ld Sans', 'Helvetica Neue',

div { user agent stylesheet
display: block;

body { <styles

Item class applied

JSS gives you the ability to create rules with the same level of focus that
you’d create with regular CSS, but will do so while creating unique class

names that won’t clash.

One final advantage of JSS is that you have the ability to use variables and
other JavaScript language features. Since you are using react-jss, you can
pass props to the style object to create dynamic styles. To test this out,
refactor the Alert.js component to use props and variables to create

dynamic properties.

First, open the file:

nano src/components/Alert/Alert.js

Create a style object like you did in the last refactored code. Be sure to
move the object defining the colors outside of the component function so it

is in the same scope as the createUseStyles function:

https://www.digitalocean.com/community/tutorials/understanding-variables-scope-hoisting-in-javascript#variable-scope

styling-tutorial/src/components/Alert/Alert.js

import React from 'react’;
import PropTypes from 'prop-types';

import { createUseStyles } from 'react-jss';

const colors = {
success: '#6da06f',
error: '#f56260',

};

const useStyles = createUseStyles({
wrapper: {
border: ({ type }) => ${colors[type]} solid 1px ,
marginBottom: 15,
padding: 15,
position: 'relative’,
'& h2': {
color: ({ type }) => colors[type],
margin: [0, 0, 10, 0],

1)

export default function Alert({ children, type, title }) {

const classes = useStyles({ type })

return(

<div className={classes.wrapper}>
<h2>{title}</h2>
{children}

</div>

To pass props, you make the style rule a function. The function accepts the
props as an argument then returns a rule. To create a dynamic border, you
add border as the property name and an arrow function that takes type and
returns a string: ({ type }) => “${colors[type]} solid 1px',.Then after
you create your hook, you pass in the props you want to reference when
creating the classes object. As before, you style the <h2> tag by element
instead of creating a specific class. You also pass an array of values for mar

gin rather than a string such as 0px Opx 10px 10px.

Save the file. Notice that you don’t have to pass all the props into the
function. In this case, you only want to use type, so that’s all you need to
pass. However, you can pass more or even pass unknown props using the
rest operator to collect props and then pass them as a group. You do need to
pass it as an object; however, since that’s the standard way to pass props, it

will make extending the arguments easier in the future.

https://www.digitalocean.com/community/tutorials/how-to-define-functions-in-javascript#arrow-functions

When the page reloads, you’ll see the correct colors, but there will be a
slight problem: the green success color is now updating the <h2> element in

CartSuccess:

Your items are out of stock.

You have added 3 items

Bananas Lettuce
Quantity: 2 Quantity: 1

H2 is green

JSS solves many problems, but it still creates standard CSS. That means
that styles can apply to child elements if you are not careful. To fix this, add

the > symbol to make the CSS only apply to immediate children:

styling-tutorial/src/components/Alert/Alert.js

import React from 'react’;

const useStyles = createUseStyles({
wrapper: {
border: ({ type }) => ${colors[type]} solid 1px ,
marginBottom: 15,
padding: 15,
position: 'relative',
'& > h2': {
color: ({ type }) => colors[type],
margin: [0, 0, 10, 0],

});

export default function Alert({ children, type, title }) {

Save and close the file. When you do the browser will reload and you’ll see

the correct styles:

Your items are out of stock.

You have added 3 items:

Bananas Lettuce
Quantity: 2 Quantity: 1

H2 with dark color

There is much more to JSS beyond what is covered in this tutorial. One
important advantage that we haven’t touched on is theming. JSS gives you
the ability to create styles based off of pre-defined theme objects. That
means that instead of creating a color red from a hard coded value, you can
make the alert border the alert color, which will likely be a shade of red,
but could be different depending on the theme definition. This is useful
when creating white label products or creating reusable components that

need to work across projects.

In this step, you styled components using a third-party library called react-
jss. You also created style object and used JSS to convert those objects into

dynamic classes to avoid conflicting with other components. Using this

method, you can safely reuse simple class names without worrying about

https://cssinjs.org/react-jss/?v=v10.1.1#theming

conflicts later in the code. Finally, you learned how to create styles using

functions and props to build dynamic styles that reference component

props.
Conclusion

Throughout this tutorial, you have developed several reusable components
that use different style techniques. You’ve learned how style objects and
JSS create objects using names that closely mirror standard CSS properties,
and have created components that can dynamically set styles based on
incoming properties. You also learned how different approaches provide

different options for handling name conflicts and reusability.

As with most React techniques, there is no single best solution. Instead, you
can choose the styling option that is the best fit for your project. With these
options in hand, you can start with something simple and refactor as the
project grows or the requirements change, while remaining confident that

your components will continue to meet your style goals.

If you would like to look at more React tutorials, check out our React Topic

page, or return to the How To Code in React.js series page.

https://www.digitalocean.com/community/tags/react
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-react-js

How To Manage State on React Class
Components

Written by Joe Morgan

The author selected Creative Commons to receive a donation as part of the

Write for DOnations program.

In React, state refers to a structure that keeps track of how data changes
over time in your application. Managing state is a crucial skill in React
because it allows you to make interactive components and dynamic web
applications. State is used for everything from tracking form inputs to
capturing dynamic data from an API. In this tutorial, you’ll run through an

example of managing state on class-based components.

As of the writing of this tutorial, the official React documentation
encourages developers to adopt React Hooks to manage state with
functional components when writing new code, rather than using class-
based components. Although the use of React Hooks is considered a more
modern practice, it’s important to understand how to manage state on class-
based components as well. Learning the concepts behind state management
will help you navigate and troubleshoot class-based state management in
existing code bases and help you decide when class-based state
management is more appropriate. There’s also a class-based method called

componentDidCatch that is not available in Hooks and will require setting

state using class methods.

https://www.digitalocean.com/community/tutorials/how-to-manage-state-on-react-class-components
https://creativecommons.org/
https://do.co/w4do-cta
https://reactjs.org/
https://reactjs.org/docs/state-and-lifecycle.html
https://www.digitalocean.com/community/tutorials/how-to-create-custom-components-in-react
https://reactjs.org/docs/hooks-faq.html#should-i-use-hooks-classes-or-a-mix-of-both
https://reactjs.org/docs/hooks-state.html
https://www.digitalocean.com/community/tutorials/how-to-create-custom-components-in-react#step-4-%E2%80%94-building-a-functional-component
https://www.digitalocean.com/community/tutorials/how-to-create-custom-components-in-react#step-2-%E2%80%94-creating-an-independent-component-with-react-classes
https://reactjs.org/docs/error-boundaries.html

This tutorial will first show you how to set state using a static value, which
is useful for cases where the next state does not depend on the first state,
such as setting data from an API that overrides old values. Then it will run
through how to set a state as the current state, which is useful when the next
state depends on the current state, such as toggling a value. To explore these
different ways of setting state, you’ll create a product page component that

you’ll update by adding purchases from a list of options.
Prerequisites

e You will need a development environment running Node.js; this
tutorial was tested on Node.js version 10.20.1 and npm version 6.14.4.
To install this on macOS or Ubuntu 18.04, follow the steps in How to
Install Node.js and Create a Local Development Environment on
macOS or the Installing Using a PPA section of How To Install
Node.js on Ubuntu 18.04.

e In this tutorial, you will create apps with Create React App. You can
find instructions for installing an application with Create React App at

How To Set Up a React Project with Create React App.

e You will also need a basic knowledge of JavaScript, which you can
find in How To Code in JavaScript, along with a basic knowledge of
HTML and CSS. A good resource for HTML and CSS is the Mozilla

Developer Network.

Step 1 — Creating an Empty Project

https://nodejs.org/en/about/
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-and-create-a-local-development-environment-on-macos
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-on-ubuntu-18-04
https://github.com/facebook/create-react-app
https://www.digitalocean.com/community/tutorials/how-to-set-up-a-react-project-with-create-react-app
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-javascript
https://developer.mozilla.org/en-US/docs/Learn/HTML/Introduction_to_HTML

In this step, you’ll create a new project using Create React App. Then you
will delete the sample project and related files that are installed when you
bootstrap the project. Finally, you will create a simple file structure to
organize your components. This will give you a solid basis on which to
build this tutorial’s sample application for managing state on class-based

components.

To start, make a new project. In your terminal, run the following script to

install a fresh project using create-react-app:

npx create-react-app state-class-tutorial

After the project is finished, change into the directory:

cd state-class-tutorial

In a new terminal tab or window, start the project using the Create React
App start script. The browser will auto-refresh on changes, so leave this

script running while you work:

npm start

You will get a running local server. If the project did not open in a browser
window, you can open it with http://localhost:3000/. If you are running

this from a remote server, the address will be http://your_domain:3000.

Your browser will load with a simple React application included as part of

Create React App:

https://github.com/facebook/create-react-app
https://www.digitalocean.com/community/tutorials/how-to-set-up-a-react-project-with-create-react-app#step-3-%E2%80%94-starting-the-server
http://localhost:3000/

Hello, world

Learn React

React template project

You will be building a completely new set of custom components, so you’ll
need to start by clearing out some boilerplate code so that you can have an

empty project.

To start, open src/App.js in a text editor. This is the root component that is
injected into the page. All components will start from here. You can find
more information about App.js at How To Set Up a React Project with

Create React App.
Open src/App.js with the following command:

nano src/App.js

You will see a file like this:

https://www.digitalocean.com/community/tutorials/how-to-set-up-a-react-project-with-create-react-app#step-5-%E2%80%94-modifying-the-heading-tag-and-styling

state-class-tutorial/src/App.js

import React from 'react’;
import logo from './logo.svg';

import './App.css';

function App() {
return (
<div className="App">
<header className="App-header">

<p>
Edit <code>src/App.js</code> and save to reload.
</p>
<a
className="App-Link"
href="https://reactjs.org"
target="_blank"

rel="noopener noreferrer"

Learn React

</header=>
</div>

);

export default App;

Delete the line import logo from './logo.svg';. Then replace everything
in the return statement to return a set of empty tags: <></>. This will give

you a valid page that returns nothing. The final code will look like this:

state-class-tutorial/src/App.js

import React from 'react’;

import './App.css';

function App() {

return <></>;

export default App;

Save and exit the text editor.

Finally, delete the logo. You won’t be using it in your application and you
should remove unused files as you work. It will save you from confusion in

the long run.

In the terminal window type the following command:

rm src/logo.svg

If you look at your browser, you will see a blank screen.

C ® localhost:3000

blank screen in chrome

Now that you have cleared out the sample Create React App project, create
a simple file structure. This will help you keep your components isolated

and independent.

Create a directory called components in the src directory. This will hold all

of your custom components.

mkdir src/components

Each component will have its own directory to store the component file

along with the styles, images, and tests.
Create a directory for App:

mkdir src/components/App

Move all of the App files into that directory. Use the wildcard, *, to select
any files that start with App. regardless of file extension. Then use the mv

command to put them into the new directory:

mv src/App.* src/components/App

Next, update the relative import path in 1index.js, which is the root

component that bootstraps the whole process:

nano src/index.js

The import statement needs to point to the App.js file in the App directory,

so make the following highlighted change:

state-class-tutorial/src/index.js

import React from 'react’;

import ReactDOM from 'react-dom';
import './index.css';

import App from './components/App/App';

import * as serviceWorker from './serviceWorker';

ReactDOM. render(
<React.StrictMode>
<App />
</React.StrictMode>,

document.getElementById('root")
)5

// If you want your app to work offline and load faster, you ca
// unregister() to register() below. Note this comes with some
// Learn more about service workers: https://bit. ly/CRA-PWA

serviceWorker.unregister();

Save and exit the file.

Now that the project is set up, you can create your first component.

Step 2 — Using State in a Component

In this step, you’ll set the initial state of a component on its class and
reference the state to display a value. You’ll then make a product page with
a shopping cart that displays the total items in the cart using the state value.
By the end of the step, you’ll know the different ways to hold a value and

when you should use state rather than a prop or a static value.
Building the Components
Start by creating a directory for Product:

mkdir src/components/Product

Next, open up Product. js in that directory:

nano src/components/Product/Product.js

Start by creating a component with no state. The component will have two
parts: The cart, which has the number of items and the total price, and the
product, which has a button to add and remove an item. For now, the

buttons will have no actions.

Add the following code to Product.js:

state-class-tutorial/src/components/Product/Pro
duct.js

import React, { Component } from 'react';

import './Product.css';

export default class Product extends Component {
render() {
return(
<div className="wrapper">
<div>
Shopping Cart: 0 total items.
</div>

<div>Total: 0O</div>

<div className="product"><span role="img" aria-label="1
<button>Add</button> <button>Remove</button>

</div>

You have also included a couple of div elements that have JSX class names

so you can add some basic styling.

https://www.digitalocean.com/community/tutorials/how-to-create-react-elements-with-jsx

Save and close the file, then open Product.css:

nano src/components/Product/Product.css

Give some light styling to increase the font-size for the text and the

emoji:
state-class-tutorial/src/components/Product/Pro

duct.css

.product span {

font-size: 100px;

}
.wrapper {
padding: 20px;
font-size: 20px;
}

.wrapper button {
font-size: 20px;

background: none;

The emoji will need a much larger font size than the text, since it’s acting as

the product image in this example. In addition, you are removing the default

gradient background on buttons by setting the background to none.

Save and close the file.

Now, render the Product component in the App component so you can see

the results in the browser. Open App.js:

nano src/components/App/App.]js

Import the component and render it. You can also delete the CSS import

since you won'’t be using it in this tutorial:

state-class-tutorial/src/components/App/App.js

import React from 'react’;

import Product from '../Product/Product';

function App() {

return <Product />

export default App;

Save and close the file. When you do, the browser will refresh and you’ll

see the Product component.

Shopping Cart: O total items.
Total: O

0
{

Add Remove

Product Page

Setting the Initial State on a Class Component

There are two values in your component values that are going to change in
your display: total number of items and total cost. Instead of hard coding

them, in this step you’ll move them into an object called state.

The state of a React class is a special property that controls the rendering
of a page. When you change the state, React knows that the component is
out-of-date and will automatically re-render. When a component re-renders,
it modifies the rendered output to include the most up-to-date information
in state. In this example, the component will re-render whenever you add
a product to the cart or remove it from the cart. You can add other properties
to a React class, but they won’t have the same ability to trigger re-

rendering.

https://www.digitalocean.com/community/tutorials/understanding-objects-in-javascript

Open Product. js:

nano src/components/Product/Product.js

Add a property called state to the Product class. Then add two values to
the state object: cart and total. The cart will be an array, since it may
eventually hold many items. The total will be a number. After assigning

these, replace references to the values with this.state.property:

https://www.digitalocean.com/community/tutorials/understanding-arrays-in-javascript

state-class-tutorial/src/components/Product/Pro
duct.js

import React, { Component } from 'react';

import './Product.css';

export default class Product extends Component {

state = {
cart: [1],
total: 0

render() A
return(
<div className="wrapper">
<div>
Shopping Cart: {this.state.cart.length} total items.
</div>

<div>Total {this.state.total}</div>

<div className="product"><span role="img" aria-label="1
<button>Add</button> <button>Remove</button>

</div>

Notice that in both cases, since you are referencing JavaScript inside of
your JSX, you need to wrap the code in curly braces. You are also

displaying the length of the cart array to get a count of the number of

items in the array.

Save the file. When you do, the browser will refresh and you’ll see the same

page as before.

Shopping Cart: O total items.
Total: O

—
f

Add Remove

Product Page

The state property is a standard class property, which means that it is

accessible in other methods, not just the render method.

Next, instead of displaying the price as a static value, convert it to a string
using the toLocaleString method, which will convert the number to a string

that matches the way numbers are displayed in the browser’s region.

Create a method called getTotal() that takes the state and converts it to a
localized string using an array of currencyOptions. Then, replace the

reference to state in the JSX with a method call:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/toLocaleString

state-class-tutorial/src/components/Product/Pro
duct.js

import React, { Component } from 'react';

import './Product.css';

export default class Product extends Component {

state = {
cart: [1],
total: 0
Iy

currencyOptions = {
minimumFractionDigits: 2,

maximumFractionDigits: 2,

getTotal = () => {

return this.state.total.toLocaleString(undefined, this.curr

render() A
return(
<div className="wrapper">
<div>

Shopping Cart: {this.state.cart.length} total items.

</div>

<div>Total {this.getTotal()}</div>

<div className="product"><span role="img" aria-label="1
<button>Add</button> <button>Remove</button>

</div>

Since total is a price for goods, you are passing currencyOptions that set
the maximum and minimum decimal places for your total to two. Note

that this is set as a separate property. Often, beginner React developers will

put information like this in the state object, but it is best to only add
information to state that you expect to change. This way, the information

in state will be easier to keep strack of as your application scales.

Another important change you made was to create the getTotal() method

by assigning an arrow function to a class property. Without using the arrow

function, this method would create a new this binding, which would
interfere with the current this binding and introduce a bug into our code.

You’ll see more on this in the next step.

Save the file. When you do, the page will refresh and you’ll see the value

converted to a decimal.

https://www.digitalocean.com/community/tutorials/getting-started-with-es6-arrow-functions-in-javascript
https://www.digitalocean.com/community/conceptual_articles/understanding-this-bind-call-and-apply-in-javascript

Shopping Cart: O total items.
Total 0.00

]

v
f

Add Remove

Price converted to decimal

You’ve now added state to a component and referenced it in your class. You
also accessed values in the render method and in other class methods.

Next, you’ll create methods to update the state and show dynamic values.

Step 3 — Setting State from a Static Value

So far you’ve created a base state for the component and you’ve referenced
that state in your functions and your JSX code. In this step, you’ll update
your product page to modify the state on button clicks. You’ll learn how
to pass a new object containing updated values to a special method called s

etState, which will then set the state with the updated data.

To update state, React developers use a special method called setState
that is inherited from the base Component class. The setState method can

take either an object or a function as the first argument. If you have a static

value that doesn’t need to reference the state, it’s best to pass an object

containing the new value, since it’s easier to read. If you need to reference
the current state, you pass a function to avoid any references to out-of-date

state.

Start by adding an event to the buttons. If your user clicks Add, then the
program will add the item to the cart and update the total. If they click

Remove, it will reset the cart to an empty array and the total to 0. For

example purposes, the program will not allow a user to add an item more

then once.
Open Product. js:

nano src/components/Product/Product.js

Inside the component, create a new method called add, then pass the

method to the onClick prop for the Add button:

state-class-tutorial/src/components/Product/Pro
duct.js

import React, { Component } from 'react';

import './Product.css';

export default class Product extends Component {

state = {
cart: [1],
total: 0

add = () => {
this.setState({
cart: ['ice cream'],
total: 5
})

currencyOptions = {
minimumFractionDigits: 2,

maximumFractionDigits: 2,

getTotal = () => {

return this.state.total.toLocaleString(undefined, this.curr

render() {
return(
<div className="wrapper">
<div>
Shopping Cart: {this.state.cart.length} total items.
</div>

<div>Total {this.getTotal()}</div>

<div className="product"><span role="img" aria-label="1
<button onClick={this.add}>Add</button>
<button>Remove</button>

</div>

Inside the add method, you call the setState method and pass an object
containing the updated cart with a single item ice cream and the updated
price of 5. Notice that you again used an arrow function to create the add
method. As mentioned before, this will ensure the function has the proper t
his context when running the update. If you add the function as a method
without using the arrow function, the setState would not exist without

binding the function to the current context.

https://www.digitalocean.com/community/conceptual_articles/understanding-this-bind-call-and-apply-in-javascript

For example, if you created the add function this way:

export default class Product extends Component {

add() {
this.setState({
cart: ['ice cream'],

total: 5
})

The user would get an error when they click on the Add button.

TypeError: Cannot read property 'setState' of undefined X

add
src/components/Product/Product. js:12
91}
10 |
11 | add() {
> 12 | this.setState({
13 | ~ cart: ['ice cream'],
14 | total: 5
5] 1

ew compiled

» 22 stack frames were collapsed.

Context Error

Using an arrow function ensures that you’ll have the proper context to

avoid this error.

Save the file. When you do, the browser will reload, and when you click on

the Add button the cart will update with the current amount.

Shopping Cart: O total items.
Total 0.00

¥

Adg Remove

Click on the button and see state updated

With the add method, you passed both properties of the state object: cart
and total. However, you do not always need to pass a complete object.

You only need to pass an object containing the properties that you want to

update, and everything else will stay the same.

To see how React can handle a smaller object, create a new function called
remove. Pass a new object containing just the cart with an empty array,

then add the method to the onClick property of the Remove button:

state-class-tutorial/src/components/Product/Pro
duct.js

import React, { Component } from 'react';

import './Product.css';

export default class Product extends Component {

remove = () => {
this.setState({
cart: [1]
})

render() A
return(
<div className="wrapper">
<div>
Shopping Cart: {this.state.cart.length} total items.
</div>

<div>Total {this.getTotal()}</div>

<div className="product"><span role="img" aria-label="1
<button onClick={this.add}>Add</button>
<button onClick={this.remove}>Remove</button>

</div>

Save the file. When the browser refreshes, click on the Add and Remove

buttons. You’ll see the cart update, but not the price. The total state value
is preserved during the update. This value is only preserved for example
purposes; with this application, you would want to update both properties of
the state object. But you will often have components with stateful
properties that have different responsibilities, and you can make them

persist by leaving them out of the updated object.

The change in this step was static. You knew exactly what the values would

be ahead of time, and they didn’t need to be recalculated from state. But if

the product page had many products and you wanted to be able to add them
multiple times, passing a static object would provide no guarantee of
referencing the most up-to-date state, even if your object used a this.sta

te value. In this case, you could instead use a function.

In the next step, you’ll update state using functions that reference the

current state.

Step 4 — Setting State Using Current State

There are many times when you’ll need to reference a previous state to

update a current state, such as updating an array, adding a number, or

modifying an object. To be as accurate as possible, you need to reference

the most up-to-date state object. Unlike updating state with a predefined
value, in this step you’ll pass a function to the setState method, which

will take the current state as an argument. Using this method, you will

update a component’s state using the current state.

Another benefit of setting state with a function is increased reliability. To
improve performance, React may batch setState calls, which means that t
his.state.value may not be fully reliable. For example, if you update sta
te quickly in several places, it is possible that a value could be out of date.
This can happen during data fetches, form validations, or any situation
where several actions are occurring in parallel. But using a function with
the most up-to-date state as the argument ensures that this bug will not

enter your code.

To demonstrate this form of state management, add some more items to the

product page. First, open the Product. js file:

nano src/components/Product/Product.js

Next, create an array of objects for different products. The array will
contain the product emoji, name, and price. Then loop over the array to

display each product with an Add and Remeove button:

state-class-tutorial/src/components/Product/Pro
duct.js

import React, { Component } from 'react';

import './Product.css';

const products = [

{
emoji: '§',
name: '1ice cream',
price: 5

},

{
emoji: '@',
name: 'donuts',
price: 2.5,

},

{
emoji: '&',
name: ‘watermelon’,
price: 4

}

1;

export default class Product extends Component {

render() {
return(
<div className="wrapper">
<div>
Shopping Cart: {this.state.cart.length} total items.
</div>
<div>Total {this.getTotal()}</div>
<div>
{products.map(product => (
<div key={product.name}>
<div className="product">
{pro
</div>
<button onClick={this.add}>Add</button>
<button onClick={this.remove}>Remove</button>
</div>
))}
</div>

</div>

In this code, you are using the map() array method to loop over the product

s array and return the JSX that will display each element in your browser.

Save the file. When the browser reloads, you’ll see an updated product list:

https://www.digitalocean.com/community/tutorials/how-to-use-array-methods-in-javascript-iteration-methods#map()

Shopping Cart: O total items.
Total 0.00

D)
¢ ’

v

Add Remove

Add Remove

L™

Add Remove

Product 1list

Now you need to update your methods. First, change the add() method to
take the product as an argument. Then instead of passing an object to setS
tate(), pass a function that takes the state as an argument and returns an
object that has the cart updated with the new product and the total

updated with the new price:

state-class-tutorial/src/components/Product/Pro
duct.js

import React, { Component } from 'react';

import './Product.css';

export default class Product extends Component {

state = {
cart: [1],
total: 0
Iy

add = (product) => {
this.setState(state => ({
cart: [...state.cart, product.name],

total: state.total + product.price

})

currencyOptions = {
minimumFractionDigits: 2,

maximumFractionDigits: 2,

getTotal = () => {

return this.state.total.toLocaleString(undefined, this.curr

remove = () => {
this.setState({
cart: []
})

render() {
return(
<div className="wrapper">
<div>
Shopping Cart: {this.state.cart.length} total items.
</div>

<div>Total {this.getTotal()}</div>

<div>
{products.map(product => (
<div key={product.name}>
<div className="product">
{pro
</div>
<button onClick={() => this.add(product)}>Add</bu
<button onClick={this.remove}>Remove</button>

</div>

))}
</div>

</div>

Inside the anonymous function that you pass to setState(), make sure you
reference the argument— state—and not the component’s state— this.st
ate. Otherwise, you still run a risk of getting an out-of-date state object.

The state in your function will be otherwise identical.

Take care not to directly mutate state. Instead, when adding a new value to

the cart, you can add the new product to the state by using the spread

syntax on the current value and adding the new value onto the end.

Finally, update the call to this.add by changing the onClick() prop to
take an anonymous function that calls this.add() with the relevant

product.

Save the file. When you do, the browser will reload and you’ll be able to

add multiple products.

https://www.digitalocean.com/community/tutorials/understanding-destructuring-rest-parameters-and-spread-syntax-in-javascript#spread

Shopping Cart: O total items.
Total 0.00

|
,‘_\..]

Add Remove

=

Add Remove

-

Adtitl Remove

Adding products

Next, update the remove() method. Follow the same steps: convert setSta
te to take a function, update the values without mutating, and update the on

Change() prop:

state-class-tutorial/src/components/Product/Pro
duct.js

import React, { Component } from 'react';

import './Product.css';

export default class Product extends Component {

remove = (product) => {
this.setState(state => {
const cart = [...state.cart];
cart.splice(cart. index0Of(product.name))
return ({
cart,
total: state.total - product.price
})
})

render() {
return(
<div className="wrapper">

<div>

Shopping Cart: {this.state.cart.length} total items.
</div>
<div>Total {this.getTotal()}</div>
<div>
{products.map(product => (
<div key={product.name}>
<div className="product">
{pro
</div>
<button onClick={() => this.add(product)}>Add</bu
<button onClick={() => this.remove(product)}>Remo
</div>
))}
</div>

</div>

To avoid mutating the state object, you must first make a copy of it using
the spread operator. Then you can splice out the item you want from the
copy and return the copy in the new object. By copying state as the first

step, you can be sure that you will not mutate the state object.

https://www.digitalocean.com/community/tutorials/how-to-use-array-methods-in-javascript-mutator-methods#splice()

Save the file. When you do, the browser will refresh and you’ll be able to

add and remove items:

Shopping Cart: O total items.
Total 0.00

Add Remove

Add Remove

-

Add Remove

Remove items

There is still a bug in this application: In the remove method, a user can
subtract from the total even if the item is not in the cart. If you click

Remove on the ice cream without adding it to your cart, your total will be
-5.00.

You can fix the bug by checking for an item’s existence before subtracting,
but an easier way is to keep your state object small by only keeping
references to the products and not separating references to products and
total cost. Try to avoid double references to the same data. Instead, store the
raw data in state— in this case the whole product object—then perform

the calculations outside of the state.

Refactor the component so that the add() method adds the whole object,
the remove() method removes the whole object, and the getTotal method

uses the cart:

state-class-tutorial/src/components/Product/Pro
duct.js

import React, { Component } from 'react';

import './Product.css';

export default class Product extends Component {

state = {
cart: [1],

add = (product) => {
this.setState(state => ({

cart: [...state.cart, product],

})

currencyOptions = {
minimumFractionDigits: 2,

maximumFractionDigits: 2,

getTotal = () => {

const total = this.state.cart.reduce(
(totalCost, item) => totalCost + item.price, 0);

return total.tolLocaleString(undefined, this.currencyOptions

remove = (product) => {
this.setState(state => {
const cart = [...state.cart];
const productIndex = cart.findIndex(p => p.name === produ
if(productIndex < 0) {
return;
}
cart.splice(productIndex, 1)
return ({
cart
})
})

render() A

The add() method is similar to what it was before, except that reference to

the total property has been removed. In the remove() method, you find

the index of the product with findByIndex. If the index doesn’t exist,
you’ll get a -1. In that case, you use a conditional statement toreturn
nothing. By returning nothing, React will know the state didn’t change
and won’t trigger a re-render. If you return state or an empty object, it will

still trigger a re-render.

When using the splice() method, you are now passing 1 as the second

argument, which will remove one value and keep the rest.

Finally, you calculate the total using the reduce() array method.

Save the file. When you do, the browser will refresh and you’ll have your

final cart:

https://www.digitalocean.com/community/tutorials/how-to-write-conditional-statements-in-javascript
https://www.digitalocean.com/community/tutorials/list-processing-with-map-filter-and-reduce

Shopping Cart: O total items.
Total 0.00

|
,‘_\.. L]

Add Remove

=

Add Remq.ue

-

Add Remove

Add and remove

The setState function you pass can have an additional argument of the

current props, which can be helpful if you have state that needs to reference

the current props. You can also pass a callback function to setState as the

second argument, regardless of if you pass an object or function for the first

argument. This is particularly useful when you are setting state after
fetching data from an API and you need to perform a new action after the s

tate update is complete.

In this step, you learned how to update a new state based on the current
state. You passed a function to the setState function and calculated new
values without mutating the current state. You also learned how to exit a se
tState function if there is no update in a manner that will prevent a re-

render, adding a slight performance enhancement.

Conclusion

In this tutorial, you have developed a class-based component with a
dynamic state that you’ve updated statically and using the current state. You
now have the tools to make complex projects that respond to users and

dynamic information.

React does have a way to manage state with Hooks, but it is helpful to
understand how to use state on components if you need to work with

components that must be class-based, such as those that use the componentD

idCatch method.

Managing state is key to nearly all components and is necessary for creating
interactive applications. With this knowledge you can recreate many
common web components, such as sliders, accordions, forms, and more.
You will then use the same concepts as you build applications using hooks

or develop components that pull data dynamically from APIs.

If you would like to look at more React tutorials, check out our React Topic

page, or return to the How To Code in React.js series page.

https://www.digitalocean.com/community/tags/react
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-react-js

How To Manage State with Hooks on
React Components

Written by Joe Morgan

The author selected Creative Commons to receive a donation as part of the

Write for DOnations program.

In React development, keeping track of how your application data changes
over time is called state management. By managing the state of your
application, you will be able to make dynamic apps that respond to user
input. There are many methods of managing state in React, including class-
based state management and third-party libraries like Redux. In this tutorial,
you’ll manage state on functional components using a method encouraged

by the official React documentation: Hooks.

Hooks are a broad set of tools that run custom functions when a
component’s props change. Since this method of state management doesn’t
require you to use classes, developers can use Hooks to write shorter, more
readable code that is easy to share and maintain. One of the main
differences between Hooks and class-based state management is that there
is no single object that holds all of the state. Instead, you can break up state

into multiple pieces that you can update independently.

Throughout this tutorial, you’ll learn how to set state using the useState
and useReducer Hooks. The useState Hook is valuable when setting a
value without referencing the current state; the useReducer Hook is useful

when you need to reference a previous value or when you have different

https://www.digitalocean.com/community/tutorials/how-to-manage-state-with-hooks-on-react-components
https://creativecommons.org/
https://do.co/w4do-cta
https://reactjs.org/
https://www.digitalocean.com/community/tutorials/how-to-manage-state-on-react-class-components
https://redux.js.org/
https://reactjs.org/docs/hooks-faq.html#should-i-use-hooks-classes-or-a-mix-of-both
https://www.digitalocean.com/community/tutorials/how-to-customize-react-components-with-props
https://reactjs.org/docs/hooks-reference.html#usestate
https://reactjs.org/docs/hooks-reference.html#usereducer

actions the require complex data manipulations. To explore these different
ways of setting state, you’ll create a product page component with a
shopping cart that you’ll update by adding purchases from a list of options.
By the end of this tutorial, you’ll be comfortable managing state in a
functional component using Hooks, and you’ll have a foundation for more

advanced Hooks such as useEffect, useMemo, and useContext.

Prerequisites

e You will need a development environment running Node.js; this
tutorial was tested on Node.js version 10.20.1 and npm version 6.14.4.
To install this on macOS or Ubuntu 18.04, follow the steps in How to
Install Node.js and Create a Local Development Environment on
macOS or the Installing Using a PPA section of How To Install
Node.js on Ubuntu 18.04.

e A React development environment set up with Create React App, with
the non-essential boilerplate removed. To set this up, follow Step 1 —
Creating an Empty Project of the How To Manage State on React

Class Components tutorial. This tutorial will use hooks-tutorial as

the project name.

e You will also need a basic knowledge of JavaScript, which you can
find in How To Code in JavaScript, along with a basic knowledge of
HTML and CSS. A useful resource for HTML and CSS is the Mozilla

Developer Network.

Step 1 - Setting Initial State in a Component

https://reactjs.org/docs/hooks-reference.html#useeffect
https://reactjs.org/docs/hooks-reference.html#usememo
https://reactjs.org/docs/hooks-reference.html#usecontext
https://nodejs.org/en/about/
https://www.npmjs.com/
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-and-create-a-local-development-environment-on-macos
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-on-ubuntu-18-04
https://github.com/facebook/create-react-app
https://www.digitalocean.com/community/tutorials/how-to-manage-state-on-react-class-components#step-1-%E2%80%94-creating-an-empty-project
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-javascript
https://developer.mozilla.org/en-US/docs/Learn/HTML/Introduction_to_HTML

In this step, you’ll set the initial state on a component by assigning the

initial state to a custom variable using the useState Hook. To explore

Hooks, you’ll make a product page with a shopping cart, then display the
initial values based on the state. By the end of the step, you’ll know the
different ways to hold a state value using Hooks and when to use state

rather than a prop or a static value.
Start by creating a directory for a Product component:

mkdir src/components/Product

Next, open up a file called Product.js inthe Product directory:

nano src/components/Product/Product.js

Start by creating a component with no state. The component will consist of
two parts: the cart, which has the number of items and the total price, and
the product, which has a button to add or remove the item from the cart. For

now, these buttons will have no function.

Add the following code to the file:

https://www.digitalocean.com/community/tutorials/how-to-create-custom-components-in-react

hooks-tutorial/src/components/Product/Product.j
S

import React from 'react’;

import './Product.css';

export default function Product() {
return(
<div className="wrapper">
<div>
Shopping Cart: 0 total items.
</div>

<div>Total: O</div>

<div className="product"><span role="img" aria-label="1ice
<button>Add</button> <button>Remove</button>

</div>

In this code, you used JSX to create the HTML elements for the Product

component, with an ice cream emoji to represent the product. In addition,

two of the <div> elements have class names so you can add some basic

CSS styling.

https://www.digitalocean.com/community/tutorials/how-to-create-react-elements-with-jsx

Save and close the file, then create a new file called Product.css in the Pro

duct directory:

nano src/components/Product/Product.css

Add some styling to increase the font size for the text and the emoji:

hooks-tutorial/src/components/Product/Product.c
SS

.product span {

font-size: 100px;

¥
.wrapper {
padding: 20px;
font-size: 20px;
¥

.wrapper button {
font-size: 20px;
background: none;

border: black solid 1px;

The emoji will need a much larger font-size, since it’s acting as the
product image. In addition, you are removing the default gradient

background on the button by setting background to none.

Save and close the file. Now, add the component into the App component to

render the Product component in the browser. Open App.js:

nano src/components/App/App.]js

Import the component and render it. Also, delete the CSS import since you

won’t be using it in this tutorial:

hooks-tutorial/src/components/App/App.js

import React from 'react’;

import Product from '../Product/Product’;

function App() {

return <Product />

export default App;

Save and close the file. When you do, the browser will refresh and you’ll

see the Product component:

Shopping Cart: O total items.
Total: O

Add Remove

Product Page

Now that you have a working component, you can replace the hard-coded

data with dynamic values.

React exports several Hooks that you can import directly from the main Re
act package. By convention, React Hooks start with the word use, such as
useState, useContext, and useReducer. Most third-party libraries follow
the same convention. For example, Redux has a useSelector and a useStor

e Hook.

Hooks are functions that let you run actions as part of the React lifecycle.
Hooks are triggered either by other actions or by changes in a component’s
props and are used to either create data or to trigger further changes. For

example, the useState Hook generates a stateful piece of data along with a

function for changing that piece of data and triggering a re-render. It will

https://reactjs.org/docs/hooks-reference.html
https://react-redux.js.org/
https://react-redux.js.org/api/hooks
https://reactjs.org/docs/react-component.html#the-component-lifecycle

create a dynamic piece of code and hook into the lifecycle by triggering re-
renders when the data changes. In practice, that means you can store

dynamic pieces of data in variables using the useState Hook.

For example, in this component, you have two pieces of data that will
change based on user actions: the cart and the total cost. Each of these can

be stored in state using the above Hook.
To try this out, open up Product.js:

nano src/components/Product/Product.js

Next, import the useState Hook from React by adding the highlighted

code:

hooks-tutorial/src/components/Product/Product.j
S

import React, { useState } from 'react';

import './Product.css';

export default function Product() {
return(
<div className="wrapper">
<div>
Shopping Cart: 0 total items.
</div>

<div>Total: O</div>

<div className="product"><span role="img" aria-label="1ice
<button>Add</button> <button>Remove</button>

</div>

useState is a function that takes the initial state as an argument and returns
an array with two items. The first item is a variable containing the state,
which you will often use in your JSX. The second item in the array is a
function that will update the state. Since React returns the data as an array,

you can use destructuring to assign the values to any variable names you

https://www.digitalocean.com/community/tutorials/understanding-arrays-in-javascript
https://www.digitalocean.com/community/tutorials/understanding-destructuring-rest-parameters-and-spread-syntax-in-javascript

want. That means you can call useState many times and never have to

worry about name conflicts, since you can assign every piece of state and

update function to a clearly named variable.

Create your first Hook by invoking the useState Hook with an empty

array. Add in the following highlighted code:

hooks-tutorial/src/components/Product/Product.j
S

import React, { useState } from 'react';

import './Product.css';

export default function Product() {
const [cart, setCart] = useState([]);
return(
<div className="wrapper">
<div>
Shopping Cart: {cart.length} total items.
</div>

<div>Total: O</div>

<div className="product"><span role="img" aria-label="1ice
<button>Add</button> <button>Re