

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0

International License.

ISBN 978-1-7358317-4-9

How To Code in React.js

Joe Morgan

DigitalOcean, New York City, New York, USA

2021-07

How To Code in React.js

1. About DigitalOcean
2. Introduction
3. How To Set Up a React Project with Create React App
4. How To Create React Elements with JSX
5. How To Create Custom Components in React
6. How To Customize React Components with Props
7. How To Create Wrapper Components in React with Props
8. How To Style React Components
9. How To Manage State on React Class Components

10. How To Manage State with Hooks on React Components
11. How To Share State Across React Components with Context
12. How To Debug React Components Using React Developer Tools
13. How To Handle DOM and Window Events with React
14. How To Build Forms in React
15. How To Handle Async Data Loading, Lazy Loading, and Code

Splitting with React
16. How To Call Web APIs with the useEffect Hook in React
17. How To Manage State in React with Redux
18. How To Handle Routing in React Apps with React Router
19. How To Add Login Authentication to React Applications
20. How To Avoid Performance Pitfalls in React with memo,

useMemo, and useCallback
21. How To Deploy a React Application with Nginx on Ubuntu 20.04

22. How To Deploy a React Application to DigitalOcean App
Platform

About DigitalOcean

DigitalOcean is a cloud services platform delivering the simplicity
developers love and businesses trust to run production applications at scale.
It provides highly available, secure and scalable compute, storage and
networking solutions that help developers build great software faster.
Founded in 2012 with offices in New York and Cambridge, MA,
DigitalOcean offers transparent and affordable pricing, an elegant user
interface, and one of the largest libraries of open source resources available.
For more information, please visit https://www.digitalocean.com or follow
@digitalocean on Twitter.

https://www.digitalocean.com/
https://twitter.com/digitalocean

Introduction

About this Book

React seems to be everywhere. Companies and projects large and small are
using it to build their applications. The popularity comes from the fact that
React builds on core web development skills. That’s not to say you will
learn it in a day or that every feature is easy to understand on the first try.
Instead, React excels precisely because it minimizes the amount of React-
specific knowledge you need. You don’t need to learn about templates or
controllers or complex patterns. Instead, most of the code you write will be
JavaScript combined with standard HTML. It can get complicated from
there. The HTML, for example, is really a markup language called JSX that
is parsed by React before going into the DOM. But as you take each step in
your learning you will be building on solid foundations of web
development. That means you gain a double benefit as your learn React.
Not only will you be building world class applications, you will be
strengthening your own knowledge of JavaScript and web standards. You
will develop transferable skills that you can use in any future web-based
application whether it’s built with React or not.

This book is an introduction to React that works from the foundations
upward. Each chapter takes you a little deeper into the React ecosystem,
building on your previous knowledge. Along the way, you’ll maintain
internal state, pass information between parts of an application, and explore
different options for styling your application. Whether you are completely
new to React or if you’ve worked with it before, this series will be

accessible to you. Every chapter is self contained, so you can jump between
chapters or skip whole sections. The book is designed for you to take a
concept and explore it by building a small project that mirrors what you will
see in everyday development.

Learning Goals and Outcomes

By the end of the book, you’ll have a strong understanding of the different
parts of a React application and you’ll be able to combine the parts together
to build individual components and whole applications. You’ll be able to
build small applications that use external data and respond to user actions.
You’ll also learn how to debug and optimize your application to make the
best user experience.

How to Use This Book

You can read the book in any order, but if you are new to React, start with
the first chapter that shows you how to create a new project using a tool
called Create React App. Every subsequent chapter will start with a new
project, so it will be useful to learn how to bootstrap a new application.
After that, continue straight through or skip to the chapters that interest you.
If something is unfamiliar, back up and you’ll find a whole tutorial
dedicated to the concept.

https://reactjs.org/docs/create-a-new-react-app.html

How To Set Up a React Project with Create
React App

Written by Joe Morgan

The author selected Creative Commons to receive a donation as part of the Write for
DOnations program.

React is a popular JavaScript framework for creating front-end applications. Originally
created by Facebook, it has gained popularity by allowing developers to create fast
applications using an intuitive programming paradigm that ties JavaScript with an HTML-
like syntax known as JSX.

Starting a new React project used to be a complicated multi-step process that involved
setting up a build system, a code transpiler to convert modern syntax to code that is
readable by all browsers, and a base directory structure. But now, Create React App
includes all the JavaScript packages you need to run a React project, including code
transpiling, basic linting, testing, and build systems. It also includes a server with hot
reloading that will refresh your page as you make code changes. Finally, it will create a
structure for your directories and components so you can jump in and start coding in just a
few minutes.

In other words, you don’t have to worry about configuring a build system like Webpack.
You don’t need to set up Babel to transpile you code to be cross-browser usable. You don’t
have to worry about most of the complicated systems of modern front-end development.
You can start writing React code with minimal preparation.

By the end of this tutorial, you’ll have a running React application that you can use as a
foundation for any future applications. You’ll make your first changes to React code,
update styles, and run a build to create a fully minified version of your application. You’ll
also use a server with hot reloading to give you instant feedback and will explore the parts
of a React project in depth. Finally, you will begin writing custom components and
creating a structure that can grow and adapt with your project.

https://www.digitalocean.com/community/tutorials/how-to-set-up-a-react-project-with-create-react-app
https://creativecommons.org/
https://do.co/w4do-cta
https://reactjs.org/
https://reactjs.org/docs/introducing-jsx.html
https://github.com/facebook/create-react-app
https://www.digitalocean.com/community/tutorials/whats-new-in-webpack-4
https://babeljs.io/

Prerequisites

To follow this tutorial, you’ll need the following:

Node.js version 10.16.0 installed on your computer. To install this on macOS or
Ubuntu 18.04, follow the steps in How to Install Node.js and Create a Local
Development Environment on macOS or the Installing Using a PPA section of How
To Install Node.js on Ubuntu 18.04.

It will also help to have a basic understanding of JavaScript, which you can find in
the How To Code in JavaScript series, along with a basic knowledge of HTML and
CSS.

Step 1 — Creating a New Project with Create React App

In this step, you’ll create a new application using the npm package manager to run a
remote script. The script will copy the necessary files into a new directory and install all
dependencies.

When you installed Node, you also installed a package managing application called npm. n

pm will install JavaScript packages in your project and also keep track of details about the

project. If you’d like to learn more about npm , take a look at our How To Use Node.js

Modules with npm and package.json tutorial.

npm also includes a tool called npx, which will run executable packages. What that means

is you will run the Create React App code without first downloading the project.

The executable package will run the installation of create-react-app into the directory

that you specify. It will start by making a new project in a directory, which in this tutorial
will be called digital-ocean-tutorial . Again, this directory does not need to exist

beforehand; the executable package will create it for you. The script will also run npm ins

tall inside the project directory, which will download any additional dependencies.

To install the base project, run the following command:

https://nodejs.org/
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-and-create-a-local-development-environment-on-macos
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-on-ubuntu-18-04
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-javascript
https://www.npmjs.com/
https://www.npmjs.com/
https://www.digitalocean.com/community/tutorials/how-to-use-node-js-modules-with-npm-and-package-json
https://www.npmjs.com/package/npx

npx create-react-app digital-ocean-tutorial

This command will kick off a build process that will download the base code along with a
number of dependencies.

When the script finishes you will see a success message that says:

Output
...

Success! Created digital-ocean-tutorial at your_file_path/digital-ocean-tut

orial

Inside that directory, you can run several commands:

 npm start

 Starts the development server.

 npm run build

 Bundles the app into static files for production.

 npm test

 Starts the test runner.

 npm run eject

 Removes this tool and copies build dependencies, configuration files

 and scripts into the app directory. If you do this, you can’t go back!

We suggest that you begin by typing:

 cd digital-ocean-tutorial

 npm start

Happy hacking!

your_file_path will be your current path. If you are a macOS user, it will be something

like /Users/your_username ; if you are on an Ubuntu server, it will say something like /ho

me/your_username .

You will also see a list of npm commands that will allow you to run, build, start, and test

your application. You’ll explore these more in the next section.

Note: There is another package manager for JavaScript called yarn. It’s supported by

Facebook and does many of the same things as npm . Originally, yarn provided new

functionality such as lock files, but now these are implemented in npm as well. yarn

also includes a few other features such as offline caching. Further differences can be
found on the yarn documentation.

If you have previously installed yarn on your system, you will see a list of yarn

commands such as yarn start that work the same as npm commands. You can run n

pm commands even if you have yarn installed. If you prefer yarn , just replace npm

with yarn in any future commands. The results will be the same.

Now your project is set up in a new directory. Change into the new directory:

cd digital-ocean-tutorial

You are now inside the root of your project. At this point, you’ve created a new project
and added all of the dependencies. But you haven’t take any actions to run the project. In
the next section, you’ll run custom scripts to build and test the project.

Step 2 — Using react-scripts

In this step, you will learn about the different react-scripts that are installed with the

repo. You will first run the test script to execute the test code. Then you will run the bui

ld script to create a minified version. Finally, you’ll look at how the eject script can give

you complete control over customization.

Now that you are inside the project directory, take a look around. You can either open the
whole directory in your text editor, or if you are on the terminal you can list the files out

https://yarnpkg.com/
https://yarnpkg.com/features/pnp

with the following command:

ls -a

The -a flag ensures that the output also includes hidden files.

Either way, you will see a structure like this:

Output
node_modules/

public/

src/

.gitignore

README.md

package-lock.json

package.json

Let’s explain these one by one:

node_modules/ contains all of the external JavaScript libraries used by the

application. You will rarely need to open it.

The public/ directory contains some base HTML, JSON, and image files. These are

the roots of your project. You’ll have an opportunity to explore them more in Step 4.

The src/ directory contains the React JavaScript code for your project. Most of the

work you do will be in that directory. You’ll explore this directory in detail in Step 5.

The .gitignore file contains some default directories and files that git—your source

control—will ignore, such as the node_modules directory. The ignored items tend to

be larger directories or log files that you would not need in source control. It also will
include some directories that you’ll create with some of the React scripts.

https://www.digitalocean.com/community/tutorials/an-introduction-to-json
https://www.digitalocean.com/community/tutorial_series/introduction-to-git-installation-usage-and-branches

README.md is a markdown file that contains a lot of useful information about Create

React App, such as a summary of commands and links to advanced configuration.
For now, it’s best to leave the README.md file as you see it. As your project

progresses, you will replace the default information with more detailed information
about your project.

The last two files are used by your package manager. When you ran the initial npx

command, you created the base project, but you also installed the additional dependencies.
When you installed the dependencies, you created a package-lock.json file. This file is

used by npm to ensure that the packages match exact versions. This way if someone else

installs your project, you can ensure they have identical dependencies. Since this file is
created automatically, you will rarely edit this file directly.

The last file is a package.json. This contains metadata about your project, such as the title,

version number, and dependencies. It also contains scripts that you can use to run your
project.

Open the package.json file in your favorite text editor:

nano package.json

When you open the file, you will see a JSON object containing all the metadata. If you
look at the scripts object, you’ll find four different scripts: start , build , test , and ej

ect .

These scripts are listed in order of importance. The first script starts the local development
environment; you’ll get to that in the next step. The second script will build your project.
You’ll explore this in detail in Step 4, but it’s worth running now to see what happens.

The build Script

To run any npm script, you just need to type npm run script_name in your terminal. There

are a few special scripts where you can omit the run part of the command, but it’s always

https://www.digitalocean.com/community/tutorials/how-to-use-node-js-modules-with-npm-and-package-json#step-1-%E2%80%94-creating-a-packagejson-file

fine to run the full command. To run the build script, type the following in your terminal:

npm run build

You will immediately see the following message:

Output
> digital-ocean-tutorial@0.1.0 build your_file_path/digital-ocean-tutorial

> react-scripts build

Creating an optimized production build...

...

This tells you that Create React App is compiling your code into a usable bundle.

When it’s finished, you’ll see the following output:

Output
...

Compiled successfully.

File sizes after gzip:

 39.85 KB build/static/js/9999.chunk.js

 780 B build/static/js/runtime-main.99999.js

 616 B build/static/js/main.9999.chunk.js

 556 B build/static/css/main.9999.chunk.css

The project was built assuming it is hosted at the server root.

You can control this with the homepage field in your package.json.

For example, add this to build it for GitHub Pages:

 "homepage" : "http://myname.github.io/myapp",

The build folder is ready to be deployed.

You may serve it with a static server:

 serve -s build

Find out more about deployment here:

 bit.ly/CRA-deploy

List out the project contents and you will see some new directories:

ls -a

Output
build/

node_modules/

public/

src/

.gitignore

README.md

package-lock.json

package.json

You now have a build directory. If you opened the .gitignore file, you may have

noticed that the build directory is ignored by git. That’s because the build directory is

just a minified and optimized version of the other files. There’s no need to use version
control since you can always run the build command. You’ll explore the output more

later; for now, it’s time to move on to the test script.

The test Script

The test script is one of those special scripts that doesn’t require the run keyword, but

works even if you include it. This script will start up a test runner called Jest. The test
runner looks through your project for any files with a .spec.js or .test.js extension,

then runs those files.

To run the test script, type the following command:

npm test

After running this script your terminal will have the output of the test suite and the
terminal prompt will disappear. It will look something like this:

https://jestjs.io/

Output
 PASS src/App.test.js

 ✓ renders learn react link (67ms)

Test Suites: 1 passed, 1 total

Tests: 1 passed, 1 total

Snapshots: 0 total

Time: 4.204s

Ran all test suites.

Watch Usage

 › Press f to run only failed tests.

 › Press o to only run tests related to changed files.

 › Press q to quit watch mode.

 › Press p to filter by a filename regex pattern.

 › Press t to filter by a test name regex pattern.

 › Press Enter to trigger a test run.

There are a few things to notice here. First, as noted before, it automatically detects any
files with test extensions including .test.js and .spec.js . In this case, there is only one

test suite—that is, only one file with a .test.js extension—and that test suite contains

only one test. Jest can detect tests in your code hierarchy, so you can nest tests in a
directory and Jest will find them.

Second, Jest doesn’t run your test suite once and then exit. Rather, it continues running in
the terminal. If you make any changes in the source code, it will rerun the tests again.

You can also limit which tests you run by using one of the keyboard options. If you type
o , for example, you will only run the tests on files that have changed. This can save you

lots of time as your test suites grow.

Finally, you can exit the test runner by typing q . Do this now to regain your command

prompt.

The eject Script

The final script is npm eject . This script copies your dependencies and configuration files

into your project, giving you full control over your code but ejecting the project from the
Create React App integrated toolchain. You will not run this now because, once you run
this script, you can’t undo this action and you will lose any future Create React App
updates.

The value in Create React App is that you don’t have to worry about a significant amount
of configuration. Building modern JavaScript applications requires a lot of tooling from
build systems, such as Webpack, to compilation tools, such as Babel. Create React App
handles all the configuration for you, so ejecting means dealing with this complexity
yourself.

The downside of Create React App is that you won’t be able to fully customize the project.
For most projects that’s not a problem, but if you ever want to take control of all aspects of
the build process, you’ll need to eject the code. However, as mentioned before, once you
eject the code you will not be able to update to new versions of Create React App, and
you’ll have to manually add any enhancements on your own.

At this point, you’ve executed scripts to build and test your code. In the next step, you’ll
start the project on a live server.

Step 3 — Starting the Server

In this step, you will initialize a local server and run the project in your browser.

You start your project with another npm script. Like npm test , this script does not need

the run command. When you run the script you will start a local server, execute the

project code, start a watcher that listens for code changes, and open the project in a web
browser.

https://www.digitalocean.com/community/tutorials/whats-new-in-webpack-4
https://babeljs.io/

Start the project by typing the following command in the root of your project. For this
tutorial, the root of your project is the digital-ocean-tutorial directory. Be sure to open

this in a separate terminal or tab, because this script will continue running as long as you
allow it:

npm start

You’ll see some placeholder text for a brief moment before the server starts up, giving this
output:

Output
Compiled successfully!

You can now view digital-ocean-tutorial in the browser.

 http://localhost:3000

Note that the development build is not optimized.

To create a production build, use npm run build.

If you are running the script locally, it will open the project in your browser window and
shift the focus from the terminal to the browser.

If that doesn’t happen, you can visit http://localhost:3000/ to see the site in action. If

you already happen to have another server running on port 3000 , that’s fine. Create React

App will detect the next available port and run the server with that. In other words, if you
already have one project running on port 3000 , this new project will start on port 3001 .

If you are running this from a remote server you can still see your site without any
additional configuration. The address will be http://your_server_ip:3000 . If you have a

firewall configured, you’ll need to open up the port on your remote server.

http://localhost:3000/
https://www.digitalocean.com/community/tutorials/ufw-essentials-common-firewall-rules-and-commands

In the browser, you will see the following React template project:

React template project

As long as the script is running, you will have an active local server. To stop the script,
either close the terminal window or tab or type CTRL+C or ⌘-+c in the terminal window or

tab that is running your script.

At this point, you have started the server and are running your first React code. But before
you make any changes to the React JavaScript code, you will see how React renders to the
page in the first place.

Step 4 — Modifying the Homepage

In this step, you will modify code in the public/ directory. The public directory contains

your base HTML page. This is the page that will serve as the root to your project. You will
rarely edit this directory in the future, but it is the base from which the project starts and a
crucial part of a React project.

If you cancelled your server, go ahead and restart it with npm start , then open public/ in

your favorite text editor in a new terminal window:

nano public/

Alternatively, you can list the files with the ls command:

ls public/

You will see a list of files such as this:

Output
favicon.ico

logo192.png

manifest.json

index.html

logo512.png

robots.txt

favicon.ico , logo192.png , and logo512.png are icons that a user would see either in the

tab of their browser or on their phone. The browser will select the proper-sized icons.
Eventually, you’ll want to replace these with icons that are more suited to your project.
For now, you can leave them alone.

The manifest.json is a structured set of metadata that describes your project. Among

other things, it lists which icon will be used for different size options.

The robots.txt file is information for web crawlers. It tells crawlers which pages they

are or are not allowed to index. You will not need to change either file unless there is a
compelling reason to do so. For instance, if you wanted to give some users a URL to
special content that you do not want easily accessible, you can add it to robots.txt and it

will still be publicly available, but not indexed by search engines.

The index.html file is the root of your application. This is the file the server reads, and it

is the file that your browser will display. Open it up in your text editor and take a look.

https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/manifest.json
https://developer.mozilla.org/en-US/docs/Glossary/Robots.txt

If you are working from the command line, you can open it with the following command:

nano public/index.html

Here’s what you will see:

digital-ocean-tutorial/public/index.html
<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8" />

 <link rel="icon" href="%PUBLIC_URL%/favicon.ico" />

 <meta name="viewport" content="width=device-width, initial-scale=1" />

 <meta name="theme-color" content="#000000" />

 <meta

 name="description"

 content="Web site created using create-react-app"

 />

 <link rel="apple-touch-icon" href="%PUBLIC_URL%/logo192.png" />

 <!--

 manifest.json provides metadata used when your web app is installed on a

 user's mobile device or desktop.

 See https://developers.google.com/web/fundamentals/web-app-manifest/

 -->

 <link rel="manifest" href="%PUBLIC_URL%/manifest.json" />

 <!--

 Notice the use of %PUBLIC_URL% in the tags above.

 It will be replaced with the URL of the `public` folder during the build.

 Only files inside the `public` folder can be referenced from the HTML.

 Unlike "/favicon.ico" or "favicon.ico", "%PUBLIC_URL%/favicon.ico" will

 work correctly both with client-side routing and a non-root public URL.

 Learn how to configure a non-root public URL by running `npm run build`.

 -->

 <title>React App</title>

 </head>

 <body>

The file is pretty short. There are no images or words in the <body> . That’s because React

builds the entire HTML structure itself and injects it with JavaScript. But React needs to
know where to inject the code, and that’s the role of index.html .

In your text editor, change the <title> tag from React App to Sandbox :

 <noscript>You need to enable JavaScript to run this app.</noscript>

 <div id="root"></div>

 <!--

 This HTML file is a template.

 If you open it directly in the browser, you will see an empty page.

 You can add webfonts, meta tags, or analytics to this file.

 The build step will place the bundled scripts into the <body> tag.

 To begin the development, run `npm start` or `yarn start`.

 To create a production bundle, use `npm run build` or `yarn build`.

 -->

 </body>

</html>

digital-ocean-tutorial/public/index.html

Save and exit your text editor. Check your browser. The title is the name located on the
browser tab. It will update automatically. If not, refresh the page and notice the change.

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8" />

 <link rel="icon" href="%PUBLIC_URL%/favicon.ico" />

 <meta name="viewport" content="width=device-width, initial-scale=1" />

 <meta name="theme-color" content="#000000" />

 ...

<title>Sandbox</title>

 </head>

 <body>

 <noscript>You need to enable JavaScript to run this app.</noscript>

 <div id="root"></div>

 <!--

 This HTML file is a template.

 If you open it directly in the browser, you will see an empty page.

 You can add webfonts, meta tags, or analytics to this file.

 The build step will place the bundled scripts into the <body> tag.

 To begin the development, run `npm start` or `yarn start`.

 To create a production bundle, use `npm run build` or `yarn build`.

 -->

 </body>

</html>

Now go back to your text editor. Every React project starts from a root element. There can
be multiple root elements on a page, but there needs to be at least one. This is how React
knows where to put the generated HTML code. Find the element <div id="root"> . This is

the div that React will use for all future updates. Change the id from root to base :

digital-ocean-tutorial/public/index.html

Save the changes.

You will see an error in your browser:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8" />

 ...

 <body>

 <noscript>You need to enable JavaScript to run this app.</noscript>

 <div id="base"></div>

 <!--

 This HTML file is a template.

 If you open it directly in the browser, you will see an empty page.

 You can add webfonts, meta tags, or analytics to this file.

 The build step will place the bundled scripts into the <body> tag.

 To begin the development, run `npm start` or `yarn start`.

 To create a production bundle, use `npm run build` or `yarn build`.

 -->

 </body>

</html>

Error message saying “Target container is not a DOM elem
ent”

React was looking for an element with an id of root . Now that it is gone, React can’t

start the project.

Change the name back from base to root :

digital-ocean-tutorial/public/index.html

Save and exit index.html .

At this point, you’ve started the server and made a small change to the root HTML page.
You haven’t yet changed any JavaScript code. In the next section, you will update the
React JavaScript code.

Step 5 — Modifying the Heading Tag and Styling

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8" />

 ...

 <body>

 <noscript>You need to enable JavaScript to run this app.</noscript>

 <div id="root"></div>

 <!--

 This HTML file is a template.

 If you open it directly in the browser, you will see an empty page.

 You can add webfonts, meta tags, or analytics to this file.

 The build step will place the bundled scripts into the <body> tag.

 To begin the development, run `npm start` or `yarn start`.

 To create a production bundle, use `npm run build` or `yarn build`.

 -->

 </body>

</html>

In this step, you will make your first change to a React component in the src/ directory.

You’ll make a small change to the CSS and the JavaScript code that will automatically
update in your browser using the built-in hot reloading.

If you stopped the server, be sure to restart it with npm start . Now, take some time to see

the parts of the src/ directory. You can either open the full directory in your favorite text

editor, or you can list out the project in a terminal with the following command:

ls src/

You will see the following files in your terminal or text editor.

Output
App.css

App.js

App.test.js

index.css

index.js

logo.svg

serviceWorker.js

setupTests.js

Let’s go through these files one at a time.

You will not spend much time with the serviceWorker.js file at first, but it can be

important as you start to make progressive web applications. The service worker can do
many things including push notifications and offline caching, but for now it’s best to leave
it alone.

The next files to look at are setupTests.js and App.test.js . These are used for test files.

In fact, when you ran npm test in Step 2, the script ran these files. The setupTests.js

https://developers.google.com/web/progressive-web-apps

file is short; all it includes is a few custom expect methods. You’ll learn more about these

in future tutorials in this series.

Open App.test.js :

nano src/App.test.js

When you open it, you’ll see a basic test:

digital-ocean-tutorial/src/App.test.js

The test is looking for the phrase learn react to be in the document. If you go back to

the browser running your project, you’ll see the phrase on the page. React testing is
different from most unit tests. Since components can include visual information, such as
markup, along with logic for manipulating data, traditional unit tests do not work as easily.
React testing is closer to a form of functional or integration testing.

Next, you’ll see some styling files: App.css , index.css , and logo.svg . There are

multiple ways of working with styling in React, but the easiest is to write plain CSS since
that requires no additional configuration.

import React from 'react';

import { render } from '@testing-library/react';

import App from './App';

test('renders learn react link', () => {

 const { getByText } = render(<App />);

 const linkElement = getByText(/learn react/i);

 expect(linkElement).toBeInTheDocument();

});

https://en.wikipedia.org/wiki/Unit_testing
https://en.wikipedia.org/wiki/Integration_testing

There are multiple CSS files because you can import the styles into a component just like
they were another JavaScript file. Since you have the power to import CSS directly into a
component, you might as well split the CSS to only apply to an individual component.
What you are doing is separating concerns. You are not keeping all the CSS separate from
the JavaScript. Instead you are keeping all the related CSS, JavaScript, markup, and
images grouped together.

Open App.css in your text editor. If you are working from the command line, you can

open it with the following command:

nano src/App.css

This is the code you’ll see:

digital-ocean-tutorial/src/App.css

.App {

 text-align: center;

}

.App-logo {

 height: 40vmin;

 pointer-events: none;

}

@media (prefers-reduced-motion: no-preference) {

 .App-logo {

 animation: App-logo-spin infinite 20s linear;

 }

}

.App-header {

 background-color: #282c34;

 min-height: 100vh;

 display: flex;

 flex-direction: column;

 align-items: center;

 justify-content: center;

 font-size: calc(10px + 2vmin);

 color: white;

}

.App-link {

 color: #61dafb;

}

This is a standard CSS file with no special CSS preprocessors. You can add them later if
you want, but at first, you only have plain CSS. Create React App tries to be
unopinionated while still giving an out-of-the-box environment.

Back to App.css , one of the benefits of using Create React App is that it watches all files,

so if you make a change, you’ll see it in your browser without reloading.

To see this in action make a small change to the background-color in App.css . Change it

from #282c34 to blue then save the file. The final style will look like this:

@keyframes App-logo-spin {

 from {

 transform: rotate(0deg);

 }

 to {

 transform: rotate(360deg);

 }

}

digital-ocean-tutorial/src/App.css

Check out your browser. Here’s how it looked before:

.App {

 text-align: center;

}

...

.App-header {

 background-color: blue

 min-height: 100vh;

 display: flex;

 flex-direction: column;

 align-items: center;

 justify-content: center;

 font-size: calc(10px + 2vmin);

 color: white;

}

...

@keyframes App-logo-spin {

 from {

 transform: rotate(0deg);

 }

 to {

 transform: rotate(360deg);

 }

}

React app with dark background

Here’s how it will look after the change:

React app with blue background

Go ahead and change background-color back to #282c34 .

digital-ocean-tutorial/src/App.css

Save and exit the file.

.App {

 text-align: center;

...

.App-header {

 background-color: #282c34

 min-height: 100vh;

 display: flex;

 flex-direction: column;

 align-items: center;

 justify-content: center;

 font-size: calc(10px + 2vmin);

 color: white;

}

...

@keyframes App-logo-spin {

 from {

 transform: rotate(0deg);

 }

 to {

 transform: rotate(360deg);

 }

}

You’ve made a small CSS change. Now it’s time to make changes to the React JavaScript
code. Start by opening index.js .

nano src/index.js

Here’s what you’ll see:

digital-ocean-tutorial/src/index.js

At the top, you are importing React , ReactDOM , index.css , App , and serviceWorker . By

importing React , you are actually pulling in code to convert JSX to JavaScript. JSX are

the HTML-like elements. For example, notice how when you use App , you treat it like an

HTML element <App /> . You’ll explore this more in future tutorials in this series.

ReactDOM is the code that connects your React code to the base elements, like the index.h

tml page you saw in public/ . Look at the following highlighted line:

import React from 'react';

import ReactDOM from 'react-dom';

import './index.css';

import App from './App';

import * as serviceWorker from './serviceWorker';

ReactDOM.render(<App />, document.getElementById('root'));

// If you want your app to work offline and load faster, you can change

// unregister() to register() below. Note this comes with some pitfalls.

// Learn more about service workers: https://bit.ly/CRA-PWA

serviceWorker.unregister();

digital-ocean-tutorial/src/index.js

This code instructs React to find an element with an id of root and inject the React code

there. <App/> is your root element, and everything will branch from there. This is the

beginning point for all future React code.

At the top of the file, you’ll see a few imports. You import index.css , but don’t actually

do anything with it. By importing it, you are telling Webpack via the React scripts to
include that CSS code in the final compiled bundle. If you don’t import it, it won’t show
up.

Exit from src/index.js .

At this point, you still haven’t seen anything that you are viewing in your browser. To see
this, open up App.js :

nano src/App.js

The code in this file will look like a series of regular HTML elements. Here’s what you’ll
see:

...

import * as serviceWorker from './serviceWorker';

ReactDOM.render(<App />,document.getElementById('root'));

...

serviceWorker.unregister();

digital-ocean-tutorial/src/App.js

Change the contents of the <p> tag from Edit <code>src/App.js</code> and save to re

load. to Hello, world and save your changes.

import React from 'react';

import logo from './logo.svg';

import './App.css';

function App() {

 return (

 <div className="App">

 <header className="App-header">

 <p>

 Edit <code>src/App.js</code> and save to reload.

 </p>

 <a

 className="App-link"

 href="https://reactjs.org"

 target="_blank"

 rel="noopener noreferrer"

 >

 Learn React

 </header>

 </div>

);

}

export default App;

digital-ocean-tutorial/src/App.js

Head over to your browser and you’ll see the change:

...

function App() {

 return (

 <div className="App">

 <header className="App-header">

 <p>

 Hello, world

 </p>

 <a

 className="App-link"

 href="https://reactjs.org"

 target="_blank"

 rel="noopener noreferrer"

 >

 Learn React

 </header>

 </div>

);

}

...

React app with “Hello, world” in paragraph tag

You’ve now made your first update to a React component.

Before you go, notice a few more things. In this component, you import the logo.svg file

and assign it to a variable. Then in the element, you add that code as the src .

There are a few things going on here. Look at the img element:

digital-ocean-tutorial/src/App.js

Notice how you pass the logo into curly braces. Anytime you are passing attributes that

are not strings or numbers, you need to use the curly braces. React will treat those as
JavaScript instead of strings. In this case, you are not actually importing the image; instead
you are referencing the image. When Webpack builds the project it will handle the image
and set the source to the appropriate place.

Exit the text editor.

If you look at the DOM elements in your browser, you’ll see it adds a path. If you are
using Chrome, you can inspect the element by right-clicking the element and selecting
Inspect.

Here’s how it would look in the browser:

...

function App() {

 return (

 <div className="App">

 <header className="App-header">

 <p>

 Hello, world

 </p>

...

https://developers.google.com/web/tools/chrome-devtools

Inspecting element with chrome dev tools

The DOM has this line:

Your code will be slightly different since the logo will have a different name. Webpack
wants to make sure the image path is unique. So even if you import images with the same
name, they will be saved with different paths.

At this point, you’ve made a small change to the React JavaScript code. In the next step,
you’ll use the build command to minify the code into a small file that can be deployed to

a server.

Step 6 — Building the Project

In this step, you will build the code into a bundle that can be deployed to external servers.

Head back to your terminal and build the project. You ran this command before, but as a
reminder, this command will execute the build script. It will create a new directory with

the combined and minified files. To execute the build, run the following command from
the root of your project:

npm run build

There will be a delay as the code compiles and when it’s finished, you’ll have a new
directory called build/ .

Open up build/index.html in a text editor.

nano build/index.html

You will see something like this:

digital-ocean-tutorial/build/index.html
<!doctype html><html lang="en"><head><meta charset="utf-8"/><link rel="ico

n" href="/favicon.ico"/><meta name="viewport" content="width=device-width,i

nitial-scale=1"/><meta name="theme-color" content="#000000"/><meta name="de

scription" content="Web site created using create-react-app"/><link rel="ap

ple-touch-icon" href="/logo192.png"/><link rel="manifest" href="/manifest.j

son"/><title>React App</title><link href="/static/css/main.d1b05096.chunk.c

ss" rel="stylesheet"></head><body><noscript>You need to enable JavaScript t

o run this app.</noscript><div id="root"></div><script>!function(e){functio

n r(r){for(var n,a,p=r[0],l=r[1],c=r[2],i=0,s=[];i<p.length;i++)a=p[i],Obje

ct.prototype.hasOwnProperty.call(o,a)&&o[a]&&s.push(o[a][0]),o[a]=0;for(n i

n l)Object.prototype.hasOwnProperty.call(l,n)&&(e[n]=l[n]);for(f&&f(r);s.le

ngth;)s.shift()();return u.push.apply(u,c||[]),t()}function t(){for(var e,r

=0;r<u.length;r++){for(var t=u[r],n=!0,p=1;p<t.length;p++){var l=t[p];0!==o

[l]&&(n=!1)}n&&(u.splice(r--,1),e=a(a.s=t[0]))}return e}var n={},o={1:0},u=

[];function a(r){if(n[r])return n[r].exports;var t=n[r]={i:r,l:!1,exports:

{}};return e[r].call(t.exports,t,t.exports,a),t.l=!0,t.exports}a.m=e,a.c=n,

a.d=function(e,r,t){a.o(e,r)||Object.defineProperty(e,r,{enumerable:!0,get:

t})},a.r=function(e){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Objec

t.defineProperty(e,Symbol.toStringTag,{value:"Module"}),Object.defineProper

ty(e,"__esModule",{value:!0})},a.t=function(e,r){if(1&r&&(e=a(e)),8&r)retur

n e;if(4&r&&"object"==typeof e&&e&&e.__esModule)return e;var t=Object.creat

e(null);if(a.r(t),Object.defineProperty(t,"default",{enumerable:!0,value:

e}),2&r&&"string"!=typeof e)for(var n in e)a.d(t,n,function(r){return e

[r]}.bind(null,n));return t},a.n=function(e){var r=e&&e.__esModule?function

(){return e.default}:function(){return e};return a.d(r,"a",r),r},a.o=functi

on(e,r){return Object.prototype.hasOwnProperty.call(e,r)},a.p="/";var p=thi

s["webpackJsonpdo-create-react-app"]=this["webpackJsonpdo-create-react-ap

p"]||[],l=p.push.bind(p);p.push=r,p=p.slice();for(var c=0;c<p.length;c++)r

(p[c]);var f=l;t()}([])</script><script src="/static/js/2.c0be6967.chunk.j

s"></script><script src="/static/js/main.bac2dbd2.chunk.js"></script></body

></html>

The build directory takes all of your code and compiles and minifies it into the smallest
usable state. It doesn’t matter if a human can read it, since this is not a public-facing piece
of code. Minifying like this will make the code take up less space while still allowing it to
work. Unlike some languages like Python, the whitespace doesn’t change how the
computer interprets the code.

Conclusion

In this tutorial, you have created your first React application, configuring your project
using JavaScript build tools without needing to go into the technical details. That’s the
value in Create React App: you don’t need to know everything to get started. It allows you
to ignore the complicated build steps so you can focus exclusively on the React code.

You’ve learned the commands to start, test, and build a project. You’ll use these
commands regularly, so take note for future tutorials. Most importantly, you updated your
first React component.

If you would like to see React in action, try our How To Display Data from the
DigitalOcean API with React tutorial.

https://www.digitalocean.com/community/tutorials/how-to-display-data-from-the-digitalocean-api-with-react

How To Create React Elements with JSX

Written by Joe Morgan

The author selected Creative Commons to receive a donation as part of the
Write for DOnations program.

In this tutorial, you’ll learn how to describe elements with JSX. JSX is an
abstraction that allows you to write HTML-like syntax in your JavaScript
code and will enable you to build React components that look like standard
HTML markup. JSX is the templating language of React elements, and is
therefore the foundation for any markup that React will render into your
application.

Since JSX enables you to also write JavaScript in your markup, you’ll be
able to take advantage of JavaScript functions and methods, including array
mapping and short-circuit evaluation for conditionals.

As part of the tutorial, you’ll capture click events on buttons directly in the
markup and catch instances when the syntax does not match exactly to
standard HTML, such as with CSS classes. At the end of this tutorial, you’ll
have a working application that uses a variety of JSX features to display a
list of elements that have a built-in click listener. This is a common pattern
in React applications that you will use often in the course of learning the
framework. You’ll also be able to mix standard HTML elements along with
JavaScript to see how React gives you the ability to create small, reusable
pieces of code.

https://www.digitalocean.com/community/tutorials/how-to-create-react-elements-with-jsx
https://creativecommons.org/
https://do.co/w4do-cta
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-javascript
https://reactjs.org/
https://www.digitalocean.com/community/tutorials/understanding-arrays-in-javascript
https://www.digitalocean.com/community/tutorials/how-to-write-conditional-statements-in-javascript

Prerequisites

You will need a development environment running Node.js; this
tutorial was tested on Node.js version 10.19.0 and npm version 6.13.4.
To install this on macOS or Ubuntu 18.04, follow the steps in How to
Install Node.js and Create a Local Development Environment on
macOS or the Installing Using a PPA section of How To Install
Node.js on Ubuntu 18.04.

You will need to be able to create apps with Create React App. You can
find instructions for installing an application with Create React App at
How To Set Up a React Project with Create React App.

You will also need a basic knowledge of JavaScript, which you can
find in How To Code in JavaScript, along with a basic knowledge of
HTML and CSS. A good resource for HTML and CSS is the Mozilla
Developer Network.

Step 1 — Adding Markup to a React Element

As mentioned earlier, React has a special markup language called JSX. It is
a mix of HTML and JavaScript syntax that looks something like this:

<div>

 {inventory.filter(item => item.available).map(item => (

 <Card>

 <div className="title"}>{item.name}</div>

 <div className="price">{item.price}</div>

 </Card>

https://nodejs.org/en/about/
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-and-create-a-local-development-environment-on-macos
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-on-ubuntu-18-04
https://github.com/facebook/create-react-app
https://www.digitalocean.com/community/tutorials/how-to-set-up-a-react-project-with-create-react-app
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-javascript
https://developer.mozilla.org/en-US/docs/Learn/HTML/Introduction_to_HTML

You will recognize some JavaScript functionality such as .filter and .map,

as well as some standard HTML like <div> . But there are other parts that

look like both HTML and JavaScript, such as <Card> and className .

This is JSX, the special markup language that gives React components the
feel of HTML with the power of JavaScript.

In this step, you’ll learn to add basic HTML-like syntax to an existing React
element. To start, you’ll add standard HTML elements into a JavaScript
function, then see the compiled code in a browser. You’ll also group
elements so that React can compile them with minimal markup leaving
clean HTML output.

To start, make a new project. On your command line run the following
script to install a fresh project using create-react-app :

npx create-react-app jsx-tutorial

After the project is finished, change into the directory:

cd jsx-tutorial

In a new terminal tab or window, start the project using the Create React
App start script. The browser will autorefresh on changes, so leave this

))

 }

</div>

https://www.digitalocean.com/community/tutorials/how-to-use-array-methods-in-javascript-iteration-methods#filter()
https://www.digitalocean.com/community/tutorials/how-to-use-array-methods-in-javascript-iteration-methods#map()
https://www.digitalocean.com/community/tutorials/how-to-set-up-a-react-project-with-create-react-app#step-3-%E2%80%94-starting-the-server

script running the whole time that you work:

npm start

You will get a running local server. If the project did not open in a browser
window, you can find it at http://localhost:3000/. If you are running this

from a remote server, the address will be http://your_IP_address:3000 .

Your browser will load with a React application included as part of Create
React App.

React template project

You will be building a completely new set of custom components, so you’ll
need to start by clearing out some boilerplate code so that you can have an
empty project. To start open App.js in a text editor. This is the root

http://localhost:3000/
https://www.digitalocean.com/community/tutorials/how-to-set-up-a-react-project-with-create-react-app#step-5-%E2%80%94-modifying-the-heading-tag-and-styling

component that is injected into the page. All components will start from
here.

In a new terminal, move into the project folder and open src/App.js with

the following command:

nano src/App.js

You will see a file like this:

jsx-tutorial/src/App.js

import React from 'react';

import logo from './logo.svg';

import './App.css';

function App() {

 return (

 <div className="App">

 <header className="App-header">

 <p>

 Edit <code>src/App.js</code> and save to reload.

 </p>

 <a

 className="App-link"

 href="https://reactjs.org"

 target="_blank"

 rel="noopener noreferrer"

 >

 Learn React

 </header>

 </div>

);

}

Now, delete the line import logo from './logo.svg and everything after

the return statement in the function. Change it to return null . The final

code will look like this:

jsx-tutorial/src/App.js

Save and exit the text editor.

Finally, delete the logo. In the terminal window type the following
command:

rm src/logo.svg

export default App;

import React from 'react';

import './App.css';

function App() {

 return null;

}

export default App;

You won’t be using this SVG file in your application, and you should
remove unused files as you work. It will better organize your code in the
long run.

Now that these parts of your project are removed, you can move on to
exploring the facets of JSX. This markup language is compiled by React
and eventually becomes the HTML you see on a web page. Without going
too deeply into the internals, React takes the JSX and creates a model of
what your page will look like, then creates the necessary elements and adds
them to the page.

What that means is that you can write what looks like HTML and expect
that the rendered HTML will be similar. However, there are a few catches.

First, if you look at the tab or window running your server, you’ll see this:

Output
...

./src/App.js

 Line 1:8: 'React' is defined but never used no-unused-vars

...

That’s the linter telling you that you aren’t using the imported React code.
When you add the line import React from 'react' to your code, you are

importing JavaScript code that converts the JSX to React code. If there’s no
JSX, there’s no need for the import.

https://reactjs.org/docs/introducing-jsx.html#jsx-represents-objects
https://create-react-app.dev/docs/setting-up-your-editor/#displaying-lint-output-in-the-editor

Let’s change that by adding a small amount of JSX. Start by replacing null

with a Hello, World example:

jsx-tutorial/src/App.js

Save the file. If you look at the terminal with the server running, the
warning message will be gone. If you visit your browser, you will see the
message as an h1 element.

import React from 'react';

import './App.css';

function App() {

 return <h1>Hello, World</h1>;

}

export default App;

browser screen showing “Hello, World”

Next, below the <h1> tag, add a paragraph tag that contains the string I am

writing JSX . The code will look like this:

jsx-tutorial/src/App.js

Since the JSX spans multiple lines, you’ll need to wrap the expression in
parentheses.

Save the file. When you do you’ll see an error in the terminal running your
server:

import React from 'react';

import './App.css';

function App() {

 return(

 <h1>Hello, World</h1>

 <p>I am writing JSX</p>

)

}

export default App;

Output
./src/App.js

 Line 7:5: Parsing error: Adjacent JSX elements must be wrap

ped in an enclosing tag. Did you want a JSX fragment <>...</>?

 5 | return(

 6 | <h1>Hello, World</h1>

> 7 | <p>I am writing JSX</p>

 | ^

 8 |)

 9 | }

 10 |

When you return JSX from a function or statement, you must return a single
element. That element may have nested children, but there must be a single
top-level element. In this case, you are returning two elements.

The fix is a small code change. Surround the code with an empty tag. An
empty tag is an HTML element without any words. It looks like this: <>

</> .

Go back to ./src/App.js in your editor and add the empty tag:

https://reactjs.org/docs/fragments.html#short-syntax

jsx-tutorial/src/App.js

The empty tag creates a single element, but when the code is compiled, it is
not added to the final markup. This will keep your code clean while still
giving React a single element.

Note: You could have also wrapped the code with a div instead of

empty tags, as long as the code returns one element. In this example,
an empty tag has the advantage of not adding extra markup to the
parsed output.

import React from 'react';

import './App.css';

function App() {

 return(

 <>

 <h1>Hello, World</h1>

 <p>I am writing JSX</p>

 </>

)

}

export default App;

Save the code and exit the file. Your browser will refresh and show the
updated page with the paragraph element. In addition, when the code is
converted the empty tags are stripped out:

Browser showing markup and devtools showing mar
kup without empty tags

You’ve now added some basic JSX to your component and learned how all
JSX needs to be nested in a single component. In the next step, you’ll add
some styling to your component.

Step 2 — Adding Styling to an Element with Attributes

In this step, you’ll style the elements in your component to learn how
HTML attributes work with JSX. There are many styling options in React.
Some of them involve writing CSS in Javascript, others use preprocessors.
In this tutorial you’ll work with imported CSS and CSS classes.

Now that you have your code, it’s time to add some styling. Open App.css

in your text editor:

nano src/App.css

Since you are starting with new JSX, the current CSS refers to elements that
no longer exist. Since you don’t need the CSS, you can delete it.

After deleting the code, you’ll have an empty file.

Next, you will add in some styling to center the text. In src/App.css , add

the following code:

jsx-tutorial/src/App.css

.container {

 display: flex;

 flex-direction: column;

 align-items: center;

}

https://reactjs.org/docs/faq-styling.html

In this code block, you created a CSS class selector called .container and

used that to center the content using display: flex.

Save the file and exit. The browser will update, but nothing will change.
Before you can see the change, you need to add the CSS class to your React
component. Open the component JavaScript code:

nano src/App.js

The CSS code is already imported with the line import './App.css' . That

means that webpack will pull in the code to make a final style sheet, but to
apply the CSS to your elements, you need to add the classes.

First, in your text editor, change the empty tags, <> , to <div> .

https://developer.mozilla.org/en-US/docs/Web/CSS/Class_selectors
https://developer.mozilla.org/en-US/docs/Web/CSS/flex
https://webpack.js.org/

jsx-tutorial/src/App.js

In this code, you replaced the empty tags— <>—with div tags. Empty tags

are useful for grouping your code without adding any extra tags, but here
you need to use a div because empty tags do not accept any HTML

attributes.

Next, you need to add the class name. This is where JSX will start to
diverge from HTML. If you wanted to add a class to a usual HTML element
you would do it like this:

import React from 'react';

import './App.css';

function App() {

 return(

 <div>

 <h1>Hello, World</h1>

 <p>I am writing JSX</p>

 </div>

)

}

export default App;

<div class="container">

https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes

But since JSX is JavaScript, it has a few limitations. One of the limitations
is that JavaScript has reserved keywords. That means you can’t use certain
words in any JavaScript code. For example, you can’t make a variable
called null because that word is already reserved.

One of the reserved words is class . React gets around this reserved word

by changing it slightly. Instead of adding the attribute class , you will add

the attribute className . As a rule, if an attribute is not working as expected,

try adding the camel case version. Another attribute that is slightly different
is the for attribute that you’d use for labels. There are a few other cases,

but fortunately the list is fairly short.

Note: In React, attributes are often called props. Props are pieces of
data that you can pass to other custom components. They look the
same as attributes except that they do not match any HTML specs. In
this tutorial, we’ll call them attributes since they are mainly used like
standard HTML attributes. This will distinguish them from props that
do not behave like HTML attributes, which will be covered later in this
series.

Now that you know how the class attribute is used in React, you can

update your code to include the styles. In your text editor, add className

="container" to your opening div tag:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Lexical_grammar#Keywords
https://reactjs.org/docs/dom-elements.html

jsx-tutorial/src/App.js

Save the file. When you do, the page will reload and the content will be
centered.

import React from 'react';

import './App.css';

function App() {

 return(

 <div className="container">

 <h1>Hello, World</h1>

 <p>I am writing JSX</p>

 </div>

)

}

export default App;

.

The className attribute is unique in React. You can add most HTML

attributes to JSX without any change. As an example, go back to your text
editor and add an id of greeting to your <h1> element. It will look like

standard HTML:

jsx-tutorial/src/App.js

Save the page and reload the browser. It will be the same.

So far, JSX looks like standard markup, but the advantage of JSX is that
even though it looks like HTML, it has the power of JavaScript. That means
you can assign variables and reference them in your attributes. To reference
an attribute, wrap it with curly braces— {}—instead of quotes.

In your text editor, add the following highlighted lines to reference an
attribute:

import React from 'react';

import './App.css';

function App() {

 return(

 <div className="container">

 <h1 id="greeting">Hello, World</h1>

 <p>I am writing JSX</p>

 </div>

)

}

export default App;

jsx-tutorial/src/App.js

In this code, you created a variable above the return statement called gree

ting with the value of "greeting" , then referenced the variable in the id

attribute of your <h1> tag.

Save and exit the file. The page will be the same, but with an id tag.

import React from 'react';

import './App.css';

function App() {

 const greeting = "greeting";

 return(

 <div className="container">

 <h1 id={greeting}>Hello, World</h1>

 <p>I am writing JSX</p>

 </div>

)

}

export default App;

Page with id tag highlighted in the developer t
ools

So far you’ve worked with a few elements on their own, but you can also
use JSX to add many HTML elements and nest them to create complex
pages.

To demonstrate this, you’ll make a page with a list of emoji. These emoji
will be wrapped with a <button> element. When you click on the emoji,

you’ll get their CLDR Short Name.

To start, you’ll need to add a few more elements to the page. Open src/Ap

p.js in your text editor. Keep it open during this step.

nano src/App.js

http://cldr.unicode.org/

First, add a list of emojis by adding the following highlighted lines:

jsx-tutorial/src/App.js

import React from 'react';

import './App.css';

function App() {

 const greeting = "greeting";

 return(

 <div className="container">

 <h1 id={greeting}>Hello, World</h1>

 <p>I am writing JSX</p>

 <button>

 <span role="img" aria-label="grinning face" id="g

 </button>

 <button>

 <span role="img" aria-label="party popper" id="pa

 </button>

 <button>

 <span role="img" aria-label="woman dancing" id="w

 </button>

Here you created a tag to hold a list of emojis. Each emoji is in a

separate element and is surrounded with a <button> element. In the

next step you’ll add an event to this button.

You also surrounded the emoji with a tag that has a few more

attributes. Each span has the role attribute set to the img role. This will

signal to accessibility software that the element is acting like an image. In
addition, each also has an aria-label and an id attribute with the

name of the emoji. The aria-label will tell visitors with screen readers

what is displayed. You will use the id when writing events in the next step.

When you write code this way, you are using semantic elements, which will
help keep the page accessible and easy to parse for screen readers.

Save and exit the file. Your browser will refresh and you will see this:

 </div>

)

}

export default App;

https://www.digitalocean.com/community/tutorials/understanding-events-in-javascript
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/Roles/Role_Img
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/Roles/Role_Img
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Techniques/Using_the_aria-label_attribute
https://developer.mozilla.org/en-US/docs/Glossary/Semantics

browser with emoji as a list

Now add a little styling. Open the CSS code in your text editor:

nano src/App.css

Add the following highlighted code to remove the default background and
border for the buttons while increasing the font size:

jsx-tutorial/src/App.css

.container {

 display: flex;

 flex-direction: column;

 align-items: center;

}

button {

 font-size: 2em

 border: 0;

 padding: 0;

 background: none;

 cursor: pointer;

}

ul { display: flex;

 padding: 0;

}

li {

 margin: 0 20px;

 list-style: none;

 padding: 0;

}

In this code, you used font-size , border , and other parameters to adjust

the look of your buttons and change the font. You also removed the list
styles and added display: flex to the element to make it horizontal.

Save and close the CSS file. Your browser will refresh and you will see this:

list with default styles removed

You’ve now worked with several JSX elements that look like regular
HTML. You’ve added classes, ids, and aria tags, and have worked with data
as strings and variables. But React also uses attributes to define how your
elements should respond to user events. In the next step, you’ll start to
make the page interactive by adding events to the button.

Step 3 — Adding Events to Elements

In this step, you’ll add events to elements using special attributes and
capture a click event on a button element. You’ll learn how to capture
information from the event to dispatch another action or use other
information in the scope of the file.

Now that you have a basic page with information, it’s time to add a few
events to it. There are many event handlers that you can add to HTML
elements. React gives you access to all of these. Since your JavaScript code
is coupled with your markup, you can quickly add the events while keeping
your code well-organized.

To start, add the onclick event handler. This lets you add some JavaScript

code directly to your element rather than attaching an event listener:

https://www.digitalocean.com/community/tutorials/understanding-events-in-javascript#event-handlers-and-event-listeners
https://developer.mozilla.org/en-US/docs/Web/API/GlobalEventHandlers/onclick

jsx-tutorial/src/App.js

import React from 'react';

import './App.css';

function App() {

 const greeting = "greeting";

 return(

 <div className="container">

 <h1 id={greeting}>Hello, World</h1>

 <p>I am writing JSX</p>

 <button

 onClick={event => alert(event.target.id)}

 >

 <span role="img" aria-label="grinning face" id="gri

 </button>

 <button

 onClick={event => alert(event.target.id)}

 >

 <span role="img" aria-label="party popper" id="pa

 </button>

Since this is JSX, you camelCased onclick , which means you added it as o

nClick . This onClick attribute uses an anonymous function to retrieve

information about the item that was clicked.

You added an anonymous arrow function that will get the event from the
clicked button, and the event will have a target that is the element.

The information you need is in the id attribute, which you can access with

event.target.id . You can trigger the alert with the alert() function.

Save the file. In your browser, click on one of the emoji and you will get an
alert with the name.

 <button

 onClick={event => alert(event.target.id)}

 >

 <span role="img" aria-label="woman dancing" id="w

 </button>

 </div>

)

}

export default App;

https://www.digitalocean.com/community/tutorials/how-to-define-functions-in-javascript#function-expressions
https://www.digitalocean.com/community/tutorials/how-to-define-functions-in-javascript#arrow-functions
https://developer.mozilla.org/en-US/docs/Web/API/Window/alert

Alert for party popper

You can reduce a duplication by declaring the function once and passing it
to each onClick action. Since the function does not rely on anything other

than inputs and outputs, you can declare it outside the main component
function. In other words, the function does not need to access the scope of
the component. The advantage to keeping them separate is that your
component function is slightly shorter and you could move the function out
to a separate file later if you wanted to.

In your text editor, create a function called displayEmojiName that takes the

event and calls the alert() function with an id. Then pass the function to

each onClick attribute:

jsx-tutorial/src/App.js

import React from 'react';

import './App.css';

const displayEmojiName = event => alert(event.target.id);

function App() {

 const greeting = "greeting";

 return(

 <div className="container">

 <h1 id={greeting}>Hello, World</h1>

 <p>I am writing JSX</p>

 <button

 onClick={displayEmojiName}

 >

 <span role="img" aria-label="grinning face" id="gri

 </button>

 <button

 onClick={displayEmojiName}

 >

 <span role="img" aria-label="party popper" id="pa

 </button>

Save the file. In your browser, click on an emoji and you will see the same
alert.

In this step, you added events to each element. You also saw how JSX uses
slightly different names for element events, and you started writing reusable
code by taking the function and reusing it on several elements. In the next
step, you will write a reusable function that returns JSX elements rather
than writing each element by hand. This will further reduce duplication.

Step 4 — Mapping Over Data to Create Elements

 <button

 onClick={displayEmojiName}

 >

 <span role="img" aria-label="woman dancing" id="w

 </button>

 </div>

)

}

export default App;

In this step, you’ll move beyond using JSX as simple markup. You’ll learn
to combine it with JavaScript to create dynamic markup that reduces code
and improves readability. You’ll refactor your code into an array that you
will loop over to create HTML elements.

JSX doesn’t limit you to an HTML-like syntax. It also gives you the ability
to use JavaScript directly in your markup. You tried this a little already by
passing functions to attributes. You also used variables to reuse data. Now
it’s time to create JSX directly from data using standard JavaScript code.

In your text editor, you will need to create an array of the emoji data in the
src/App.js file. Reopen the file if you have closed it:

nano src/App.js

Add an array that will contain objects that have the emoji and the emoji
name. Note that emojis need to be surrounded by quote marks. Create this
array above the App function:

https://www.digitalocean.com/community/tutorials/understanding-objects-in-javascript

jsx-tutorial/src/App.js

import React from 'react';

import './App.css';

const displayEmojiName = event => alert(event.target.id);

const emojis = [

 {

 emoji: "😀",

 name: "grinning face"

 },

 {

 emoji: "🎉",

 name: "party popper"

 },

 {

 emoji: "💃",

 name: "woman dancing"

 }

];

function App() {

...

}

export default App;

Now that you have the data you can loop over it. To use JavaScript inside of
JSX, you need to surround it with curly braces: {} . This is the same as

when you added functions to attributes.

To create React components, you’ll need to convert the data to JSX
elements. To do this, you’ll map over the data and return a JSX element.
There are a few things you’ll need to keep in mind as you write the code.

First, a group of items needs to be surrounded by a container <div> .

Second, every item needs a special property called key . The key needs to

be a unique piece of data that React can use to keep track of the elements so
it can know when to update the component. The key will be stripped out of
the compiled HTML, since it is for internal purposes only. Whenever you
are working with loops you will need to add a simple string as a key.

Here’s a simplified example that maps a list of names into a containing <di

v> :

https://reactjs.org/docs/lists-and-keys.html#keys

The resulting HTML would look like this:

...

const names = [

 "Atul Gawande",

 "Stan Sakai",

 "Barry Lopez"

];

return(

 <div>

 {names.map(name => <div key={name}>{name}</div>)}

 </div>

)

...

...

<div>

 <div>Atul Gawande</div>

 <div>Stan Sakai</div>

 <div>Barry Lopez</div>

</div>

...

Converting the emoji list will be similar. The will be the container.

You’ll map over data and return a with a key of the emoji short name.

You will replace the hard-coded data in the <button> and tags with

information from the loop.

In your text editor, add the following:

jsx-tutorial/src/App.js

import React from 'react';

import './App.css';

const displayEmojiName = event => alert(event.target.id);

const emojis = [

 {

 emoji: '😀',

 name: "test grinning face"

 },

 {

 emoji: '🎉',

 name: "party popper"

 },

 {

 emoji: '💃',

 name: "woman dancing"

 }

];

function App() {

 const greeting = "greeting";

 return(

 <div className="container">

 <h1 id={greeting}>Hello, World</h1>

 <p>I am writing JSX</p>

In the code, you mapped over the emojis array in the tag and returned

a . In each you used the emoji name as the key prop. The button

will have the same function as normal. In the element, replace the a

ria-label and id with the name . The content of the tag should be

the emoji.

 {

 emojis.map(emoji => (

 <li key={emoji.name}>

 <button

 onClick={displayEmojiName}

 >

 <span role="img" aria-label={emoji.name}
 id={emoji.name}>{emoji.emoji}

 </button>

))

 }

 </div>

)

}

export default App;

https://www.digitalocean.com/community/tutorials/how-to-use-array-methods-in-javascript-iteration-methods#map()

Save the file. Your window will refresh and you’ll see the data. Notice that
the key is not present in the generated HTML.

Browser with developer tools showing updated HT
ML without key props

Combining JSX with standard JavaScript gives you a lot of tools to create
content dynamically, and you can use any standard JavaScript you want. In
this step, you replaced hard-coded JSX with an array and a loop to create
HTML dynamically. In the next step, you’ll conditionally show information
using short circuiting.

Step 5 — Conditionally Showing Elements with Short
Circuiting

In this step, you’ll use short circuiting to conditionally show certain HTML
elements. This will let you create components that can hide or show HTML

based on additional information giving your components flexibility to
handle multiple situations.

There are times when you will need a component to show information in
some cases and not others. For example, you may only want to show an
alert message for the user if certain cases are true, or you may want to
display some account information for an admin that you wouldn’t want a
normal user to see.

To do this you will use short circuting. This means that you will use a
conditional, and if the first part is truthy, it will return the information in the
second part.

Here’s an example. If you wanted to show a button only if the user was
logged in, you would surround the element with curly braces and add the
condition before.

In this example, you are using the && operator, which returns the last value

if everything is truthy. Otherwise, it returns false , which will tell React to

return no additional markup. If isLoggedIn is truthy, React will display the

button. If isLoggedIn is falsy, it will not show the button.

To try this out, add the following highlighted lines:

{isLoggedIn && <button>Log Out</button>}

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Logical_Operators#Short-circuit_evaluation

jsx-tutorial/src/App.js

In your text editor, you created a variable called displayAction with a

value of false. You then surrounded the <p> tag with curly braces. At the

import React from 'react';

import './App.css';

...

function App() {

 const greeting = "greeting";

 const displayAction = false;

 return(

 <div className="container">

 <h1 id={greeting}>Hello, World</h1>

 {displayAction && <p>I am writing JSX</p>}

...

 </div>

)

}

export default App;

start of the curly braces, you added displayAction && to create the

conditional.

Save the file and you will see the element disappear in your browser.
Crucially, it will also not appear in the generated HTML. This is not the
same as hiding an element with CSS. It won’t exist at all in the final
markup.

Browser with developer tools showing no paragra
ph element

Right now the value of displayAction is hard-coded, but you can also store

that value as a state or pass it as a prop from a parent component.

https://reactjs.org/docs/state-and-lifecycle.html
https://reactjs.org/docs/components-and-props.html

In this step, you learned how to conditionally show elements. This gives
you the ability to create components that are customizable based on other
information.

Conclusion

At this point, you’ve created a custom application with JSX. You’ve learned
how to add HTML-like elements to your component, add styling to those
elements, pass attributes to create semantic and accessible markup, and add
events to the components. You then mixed JavaScript into your JSX to
reduce duplicate code and to conditionally show and hide elements.

This is the basis you need to make future components. Using a combination
of JavaScript and HTML, you can build dynamic components that are
flexible and allow your application to grow and change.

If you’d like to learn more about React, check out our React topic page.

https://www.digitalocean.com/community/tags/react

How To Create Custom Components in
React

Written by Joe Morgan

The author selected Creative Commons to receive a donation as part of the
Write for DOnations program.

In this tutorial, you’ll learn to create custom components in React.
Components are independent pieces of functionality that you can reuse in
your application, and are the building blocks of all React applications.
Often, they can be simple JavaScript functions and classes, but you use
them as if they were customized HTML elements. Buttons, menus, and any
other front-end page content can all be created as components. Components
can also contain state information and display markdown.

After learning how to create components in React, you’ll be able to split
complex applications into small pieces that are easier to build and maintain.

In this tutorial, you’ll create a list of emojis that will display their names on
click. The emojis will be built using a custom component and will be called
from inside another custom component. By the end of this tutorial, you’ll
have made custom components using both JavaScript classes and JavaScript
functions, and you’ll understand how to separate existing code into reusable
pieces and how to store the components in a readable file structure.

Prerequisites

https://www.digitalocean.com/community/tutorials/how-to-create-custom-components-in-react
https://creativecommons.org/
https://do.co/w4do-cta
https://reactjs.org/
https://www.digitalocean.com/community/tutorials/how-to-define-functions-in-javascript
https://www.digitalocean.com/community/tutorials/understanding-classes-in-javascript

You will need a development environment running Node.js; this
tutorial was tested on Node.js version 10.20.1 and npm version 6.14.4.
To install this on macOS or Ubuntu 18.04, follow the steps in How to
Install Node.js and Create a Local Development Environment on
macOS or the Installing Using a PPA section of How To Install
Node.js on Ubuntu 18.04.

You will need to be able to create apps with Create React App. You can
find instructions for installing an application with Create React App at
How To Set Up a React Project with Create React App.

You will be using JSX syntax, which you can learn about in our How
To Create Elements with JSX tutorial.

You will also need a basic knowledge of JavaScript, which you can
find in How To Code in JavaScript, along with a basic knowledge of
HTML and CSS. A good resource for HTML and CSS is the Mozilla
Developer Network.

Step 1 — Setting Up the React Project

In this step, you’ll create a base for your project using Create React App.
You will also modify the default project to create your base project by
mapping over a list of emojis and adding a small amount of styling.

First, create a new project. Open a terminal, then run the following
command:

npx create-react-app tutorial-03-component

https://nodejs.org/en/about/
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-and-create-a-local-development-environment-on-macos
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-on-ubuntu-18-04
https://github.com/facebook/create-react-app
https://www.digitalocean.com/community/tutorials/how-to-set-up-a-react-project-with-create-react-app
https://www.digitalocean.com/community/tutorials/how-to-create-react-elements-with-jsx
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-javascript
https://developer.mozilla.org/en-US/docs/Learn/HTML/Introduction_to_HTML

Once this is finished, change into the project directory:

cd tutorial-03-component

Open the App.js code in a text editor:

nano src/App.js

Next, take out the template code created by Create React App, then replace
the contents with new React code that displays a list of emojis:

tutorial-03-component/src/App.js

import React from 'react';

import './App.css';

const displayEmojiName = event => alert(event.target.id);

const emojis = [

 {

 emoji: '😀',

 name: "test grinning face"

 },

 {

 emoji: '🎉',

 name: "party popper"

 },

 {

 emoji: '💃',

 name: "woman dancing"

 }

];

function App() {

 const greeting = "greeting";

 const displayAction = false;

 return(

 <div className="container">

 <h1 id={greeting}>Hello, World</h1>

This code uses JSX syntax to map() over the emojis array and list them as

 list items. It also attaches onClick events to display emoji data in the

browser. To explore the code in more detail, check out How to Create React
Elements with JSX, which contains a detailed explanation of the JSX.

 {displayAction && <p>I am writing JSX</p>}

 {

 emojis.map(emoji => (

 <li key={emoji.name}>

 <button

 onClick={displayEmojiName}

 >

 <span role="img" aria-label={emoji.name}
 id={emoji.name}>{emoji.emoji}

 </button>

))

 }

 </div>

)

}

export default App;

https://www.digitalocean.com/community/tutorials/how-to-use-array-methods-in-javascript-iteration-methods#map()
https://www.digitalocean.com/community/tutorials/understanding-arrays-in-javascript
https://www.digitalocean.com/community/tutorials/understanding-events-in-javascript
https://www.digitalocean.com/community/tutorials/how-to-create-react-elements-with-jsx

Save and close the file. You can now delete the logo.svg file, since it was

part of the template and you are not referencing it anymore:

rm src/logo.svg

Now, update the styling. Open src/App.css :

nano src/App.css

Replace the contents with the following CSS to center the elements and
adjust the font:

tutorial-03-component/src/App.css

.container {

 display: flex;

 flex-direction: column;

 align-items: center;

}

button {

 font-size: 2em;

 border: 0;

 padding: 0;

 background: none;

 cursor: pointer;

}

ul {

 display: flex;

 padding: 0;

}

li {

 margin: 0 20px;

 list-style: none;

 padding: 0;

}

This uses flex to center the main <h1> and list elements. It also removes

default button styles and styles so the emojis line up in a row. More

details can be found at How to Create React Elements with JSX.

Save and exit the file.

Open another terminal window in the root of your project. Start the project
with the following command:

npm start

After the command runs, you’ll see the project running in your web browser
at http://localhost:3000.

Leave this running the entire time you work on your project. Every time
you save the project, the browser will auto-refresh and show the most up-to-
date code.

You will see your project page with Hello, World and the three emojis that
you listed in your App.js file:

https://www.digitalocean.com/community/tutorials/how-to-create-react-elements-with-jsx
http://localhost:3000/

Browser with emoji

Now that you’ve set up your code, you can now start putting together
components in React.

Step 2 — Creating an Independent Component with
React Classes

Now that you have your project running, you can start making your custom
component. In this step, you’ll create an independent React component by
extending the base React Component class. You’ll create a new class, add

methods, and use the render function to show data.

React components are self-contained elements that you can reuse
throughout a page. By making small, focused pieces of code, you can move
and reuse pieces as your application grows. The key here is that they are
self-contained and focused, allowing you to separate out code into logical
pieces. In fact, you have already been working with logically separated

https://www.digitalocean.com/community/tutorials/understanding-classes-in-javascript

components: The App.js file is a functional component, one that you will

see more of in Step 3.

There are two types of custom component: class-based and functional. The
first component you are going to make is a class-based component. You will
make a new component called Instructions that explains the instructions

for the emoji viewer.

Note: Class-based components used to be the most popular way of
creating React components. But with the introduction of React Hooks,
many developers and libraries are shifting to using functional
components.

Though functional components are now the norm, you will often find
class components in legacy code. You don’t need to use them, but you
do need to know how to recognize them. They also give a clear
introduction to many future concepts, such as state management. In
this tutorial, you’ll learn to make both class and functional
components.

To start, create a new file. By convention, component files are capitalized:

touch src/Instructions.js

Then open the file in your text editor:

nano src/Instructions.js

https://reactjs.org/docs/hooks-intro.html

First, import React and the Component class and export Instructions with

the following lines:

tutorial-03-component/src/Instructions.js

Importing React will convert the JSX. Component is a base class that you’ll

extend to create your component. To extend that, you created a class that
has the name of your component (Instructions) and extended the base Com

ponent with the export line. You’re also exporting this class as the default

with export default keywords at the start of the class declaration.

The class name should be capitalized and should match the name of the file.
This is important when using debugging tools, which will display the name
of the component. If the name matches the file structure, it will be easier to
locate the relevant component.

The base Component class has several methods you can use in your custom

class. The most important method, and the only one you’ll use in this
tutorial, is the render() method. The render() method returns the JSX

code that you want to display in the browser.

import React, { Component } from 'react';

export default class Instructions extends Component {}

https://reactjs.org/docs/react-component.html#the-component-lifecycle

To start, add a little explanation of the app in a <p> tag:

tutorial-03-component/src/Instructions.js

Save and close the file. At this point, there’s still no change to your browser.
That’s because you haven’t used the new component yet. To use the
component, you’ll have to add it into another component that connects to
the root component. In this project, <App> is the root component in index.

js . To make it appear in your application, you’ll need to add to the <App>

component.

Open src/App.js in a text editor:

nano src/App.js

import React, { Component } from 'react';

export class Instructions extends Component {

 render() {

 return(

 <p>Click on an emoji to view the emoji short name.</p>

)

 }

}

First, you’ll need to import the component:

tutorial-03-component/src/App.js

Since it’s the default import, you could import to any name you wanted. It’s
best to keep the names consistent for readability—the import should match
the component name, which should match the file name—but the only firm
rule is that the component must start with a capital letter. That’s how React
knows it’s a React component.

Now that you’ve imported the component, add it to the rest of your code as
if it were a custom HTML element:

import React from 'react';

import Instructions from './Instructions';

import './App.css';

...

export default App;

https://reactjs.org/docs/jsx-in-depth.html#specifying-the-react-element-type

tutorial-03-component/src/App.js

import React from 'react';

import Instructions from './Instructions.js'

...

function App() {

 const greeting = "greeting";

 const displayAction = false;

 return(

 <div className="container">

 <h1 id={greeting}>Hello, World</h1>

 {displayAction && <p>I am writing JSX</p>}

 <Instructions />

 {

 emojis.map(emoji => (

 <li key={emoji.name}>

 <button

 onClick={displayEmojiName}

 >

 <span role="img" aria-label={emoji.name}
 id={emoji.name}>{emoji.emoji}

 </button>

))

In this code, you wrapped the component with angle brackets. Since this
component doesn’t have any children, it can be self closing by ending with
/> .

Save the file. When you do, the page will refresh and you’ll see the new
component.

 }

 </div>

)

}

export default App;

Browser with instruction text

Now that you have some text, you can add an image. Download an emoji
image from wikimedia and save it in the src directory as emoji.svg with

the following command:

curl -o src/emoji.svg https://upload.wikimedia.org/wikipedia/c

ommons/3/33/Twemoji_1f602.svg

curl makes the request to the URL, and the -o flag allows you to save the

file as src/emoji.svg .

Next, open your component file:

nano src/Instructions.js

Import the emoji and add it to your custom component with a dynamic link:

https://commons.wikimedia.org/wiki/File:Twemoji_1f602.svg
https://curl.haxx.se/

tutorial-03-component/src/Instructions.js

Notice that you need to include the file extension .svg when importing.

When you import, you are importing a dynamic path that is created by
webpack when the code compiles. For more information, refer to How To
Set Up a React Project with Create React App.

You also need to wrap the and <p> tags with empty tags to ensure

that you are returning a single element.

import React, { Component } from 'react';

import emoji from './emoji.svg'

export default class Instructions extends Component {

 render() {

 return(

 <>

 <p>Click on an emoji to view the emoji short name.</p>

 </>

)

 }

}

https://webpack.js.org/
https://www.digitalocean.com/community/tutorials/how-to-set-up-a-react-project-with-create-react-app

Save the file. When you reload, the image will be very large compared to
the rest of the content:

Browser window with large emoji image

To make the image smaller, you’ll need to add some CSS and a className

to your custom component.

First, in Instructions.js , change the empty tags to a div and give it a clas

sName of instructions :

tutorial-03-component/src/Instructions.js

Save and close the file. Next open App.css :

nano src/App.css

Create rules for the .instructions class selector:

import React, { Component } from 'react';

import emoji from './emoji.svg'

export default class Instructions extends Component {

 render() {

 return(

 <div className="instructions">

 <p>Click on an emoji to view the emoji short name.</p>

 </div>

)

 }

}

https://developer.mozilla.org/en-US/docs/Web/CSS/Class_selectors

tutorial-03-component/src/App.css

When you add a display of flex styling, you make the img and the p

centered with flexbox. You changed the direction so that everything lines up
vertically with flex-direction: column; . The line align-items: center;

will center the elements on the screen.

Now that your elements are lined up, you need to change the image size.
Give the img inside the div a width and height of 100px .

.container {

 display: flex;

 flex-direction: column;

 align-items: center;

}

...

.instructions {

 display: flex;

 flex-direction: column;

 align-items: center;

}

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Flexible_Box_Layout/Basic_Concepts_of_Flexbox

tutorial-03-component/src/App.css

Save and close the file. The browser will reload and you’ll see the image is
much smaller:

.container {

 display: flex;

 flex-direction: column;

 align-items: center;

}

...

.instructions {

 display: flex;

 flex-direction: column;

 align-items: center;

}

.instructions img {

 width: 100px;

 height: 100px;

}

Browser window with smaller image

At this point, you’ve created an independent and reusable custom
component. To see how it’s reusable, add a second instance to App.js .

Open App.js :

nano src/App.js

In App.js , add a second instance of the component:

tutorial-03-component/src/App.js

import React from 'react';

import Instructions from './Instructions.js'

...

function App() {

 const greeting = "greeting";

 const displayAction = false;

 return(

 <div className="container">

 <h1 id={greeting}>Hello, World</h1>

 {displayAction && <p>I am writing JSX</p>}

 <Instructions />

 <Instructions />

 {

 emojis.map(emoji => (

 <li key={emoji.name}>

 <button

 onClick={displayEmojiName}

 >

 <span role="img" aria-label={emoji.name}
 id={emoji.name}>{emoji.emoji}

 </button>

Save the file. When the browser reloads, you’ll see the component twice.

))

 }

 </div>

)

}

export default App;

Browser with two instances of the Instructions
component

In this case, you wouldn’t want two instances of Instructions , but you can

see that the component can be efficiently reused. When you create custom
buttons or tables, you will likely use them multiple times on one page,
making them perfect for custom components.

For now, you can delete the extra image tag. In your text editor, delete the
second <Instructions /> and save the file:

tutorial-03-component/src/App.js

import React from 'react';

import Instructions from './Instructions.js'

...

function App() {

 const greeting = "greeting";

 const displayAction = false;

 return(

 <div className="container">

 <h1 id={greeting}>Hello, World</h1>

 {displayAction && <p>I am writing JSX</p>}

 <Instructions />

 {

 emojis.map(emoji => (

 <li key={emoji.name}>

 <button

 onClick={displayEmojiName}

 >

 <span role="img" aria-label={emoji.name}
 id={emoji.name}>{emoji.emoji}

 </button>

Now you have a reusable, independent component that you can add to a
parent component multiple times. The structure you have now works for a
small number of components, but there is a slight problem. All of the files
are mixed together. The image for <Instructions> is in the same directory

as the assets for <App> . You also are mixing the CSS code for <App> with

the CSS for <Instructions> .

In the next step, you’ll create a file structure that will give each component
independence by grouping their functionality, styles, and dependencies
together, giving you the ability to move them around as you need.

Step 3 — Creating a Readable File Structure

In this step, you’ll create a file structure to organize your components and
their assets, such as images, CSS, and other JavaScript files. You’ll be
grouping code by component, not by asset type. In other words, you won’t
have a separate directory for CSS, images, and JavaScript. Instead you’ll

))

 }

 </div>

)

}

export default App;

have a separate directory for each component that will contain the relevant
CSS, JavaScript, and images. In both cases, you are separating concerns.

Since you have an independent component, you need a file structure that
groups the relevant code. Currently, everything is in the same directory. List
out the items in your src directory:

ls src/

The output will show that things are getting pretty cluttered:

Output
App.css Instructions.js index.js

App.js emoji.svg serviceWorker.

js

App.test.js index.css setupTests.js

You have code for the <App> component (App.css , App.js , and App.test.

js) sitting alongside your root component (index.css and index.js) and

your custom component Instructions.js .

React is intentionally agnostic about file structure. It does not recommend a
particular structure, and the project can work with a variety of different file
hierarchies. But we recommend to add some order to avoid overloading
your root directory with components, CSS files, and images that will be
difficult to navigate. Also, explicit naming can make it easier to see which

https://github.com/alexnm/react-training/blob/master/03-introduction-to-react.md
https://reactjs.org/docs/faq-structure.html

pieces of your project are related. For example, an image file named Logo.

svg may not clearly be part of a component called Header.js .

One of the simplest structures is to create a components directory with a

separate directory for each component. This will allow you to group your
components separately from your configuration code, such as serviceWork

er , while grouping the assets with the components.

Creating a Components Directory

To start, create a directory called components :

mkdir src/components

Next, move the following components and code into the directory:
App.css , App.js , App.test.js , Instructions.js , and emoji.svg :

mv src/App.* src/components/

mv src/Instructions.js src/components/

mv src/emoji.svg src/components/

Here, you are using a wildcard (*) to select all files that start with App. .

After you move the code, you’ll see an error in your terminal running npm s

tart .

https://tldp.org/LDP/GNU-Linux-Tools-Summary/html/x11655.htm

Output
Failed to compile.

./src/App.js

Error: ENOENT: no such file or directory, open 'your_file_path

/tutorial-03-component/src/App.js'

Remember, all of the code is importing using relative paths. If you change
the path for some files, you’ll need to update the code.

To do that, open index.js .

nano src/index.js

Then change the path of the App import to import from the components/

directory.

tutorial-03-component/src/index.js

Save and close the file. Your script will detect the changes and the error will
disappear.

Now you have components in a separate directory. As your applications
become more complex, you may have directories for API services, data
stores, and utility functions. Separating component code is the first step, but
you still have CSS code for Instructions mixed in the App.css file. To

create this logical separation, you will first move the components into
separate directories.

Moving Components to Individual Directories

First, make a directory specifically for the <App> component:

mkdir src/components/App

import React from 'react';

import ReactDOM from 'react-dom';

import './index.css';

import App from './components/App';

import * as serviceWorker from './serviceWorker';

...

serviceWorker.unregister();

Then move the related files into the new directory:

mv src/components/App.* src/components/App

When you do you’ll get a similar error to the last section:

Output
Failed to compile.

./src/components/App.js

Error: ENOENT: no such file or directory, open 'your_file_path

/tutorial-03-component/src/components/App.js'

In this case, you’ll need to update two things. First, you’ll need to update
the path in index.js .

Open the index.js file:

nano src/index.js

Then update the import path for App to point to the App component in the

App directory.

tutorial-03-component/src/index.js

Save and close the file. The application still won’t run. You’ll see an error
like this:

Output
Failed to compile.

./src/components/App/App.js

Module not found: Can't resolve './Instructions.js' in 'your_f

ile_path/tutorial-03-component/src/components/App'

Since <Instructions> is not on the same directory level as the <App>

component, you’ll need to change the import path. Before that, create a

import React from 'react';

import ReactDOM from 'react-dom';

import './index.css';

import App from './components/App/App';

import * as serviceWorker from './serviceWorker';

...

serviceWorker.unregister();

directory for Instructions . Make a directory called Instructions in the s

rc/components directory:

mkdir src/components/Instructions

Then move Instructions.js and emoji.svg into that directory:

mv src/components/Instructions.js src/components/Instructions

mv src/components/emoji.svg src/components/Instructions

Now that the Instructions component directory has been created, you can

finish updating the file paths to connect your component to your app.

Updating import Paths

Now that components are in individual directories, you can adjust the
import path in App.js .

Open App.js :

nano src/components/App/App.js

Since the path is relative, you’ll need to move up one directory— src/compo

nents—then into the Instructions directory for Instructions.js , but

since this is a JavaScript file, you don’t need the final import.

tutorial-03-component/src/components/App/App.js

Save and close the file. Now that your imports are all using the correct path,
you’re browser will update and show the application.

import React from 'react';

import Instructions from '../Instructions/Instructions.js';

import './App.css';

...

export default App;

Browser window with smaller image

Note: You can also call the root file in each directory index.js . For

example, instead of src/components/App/App.js you could create sr

c/components/App/index.js . The advantage to this is that your

imports are slightly smaller. If the path points to a directory, the import
will look for an index.js file. The import for src/components/App/in

dex.js in the src/index.js file would be import ./components/App .

The disadvantage of this approach is that you have a lot of files with
the same name, which can make it difficult to read in some text
editors. Ultimately, it’s a personal and team decision, but it’s best to be
consistent.

Separating Code in Shared Files

Now each component has its own directory, but not everything is fully
independent. The last step is to extract the CSS for Instructions to a

separate file.

First, create a CSS file in src/components/Instructions :

touch src/components/Instructions/Instructions.css

Next, open the CSS file in your text editor:

nano src/components/Instructions/Instructions.css

Add in the instructions CSS that you created in an earlier section:

tutorial-03-component/src/components/Instructio
ns/Instructions.css

Save and close the file. Next, remove the instructions CSS from src/compon

ents/App/App.css .

nano src/components/App/App.css

Remove the lines about .instructions . The final file will look like this:

.instructions {

 display: flex;

 flex-direction: column;

 align-items: center;

}

.instructions img {

 width: 100px;

 height: 100px;

}

tutorial-03-component/src/components/App/App.cs
s

.container {

 display: flex;

 flex-direction: column;

 align-items: center;

}

button {

 font-size: 2em;

 border: 0;

 padding: 0;

 background: none;

 cursor: pointer;

}

ul {

 display: flex;

 padding: 0;

}

li {

 margin: 0 20px;

 list-style: none;

 padding: 0;

}

Save and close the file. Finally, import the CSS in Instructions.js :

nano src/components/Instructions/Instructions.js

Import the CSS using the relative path:

tutorial-03-component/src/components/Instructio
ns/Instructions.js

import React, { Component } from 'react';

import './Instructions.css';

import emoji from './emoji.svg'

export default class Instructions extends Component {

 render() {

 return(

 <div className="instructions">

 <p>Click on an emoji to view the emoji short name.</p>

 </div>

)

 }

}

Save and close the file. Your browser window will look as it did before,
except now all the file assets are grouped in the same directory.

Browser window with smaller image

Now, take a final look at the structure. First, the src/ directory:

ls src

You have the root component index.js and the related CSS index.css

next to the components/ directory and utility files such as serviceWorker.j

s and setupTests.js :

Output
components serviceWorker.js

index.css setupTests.js

index.js

Next, look inside components :

ls src/components

You’ll see a directory for each component:

Output
App Instructions

If you look inside each component, you’ll see the component code, CSS,
test, and image files if they exist.

ls src/components/App

Output
App.css App.js App.test.js

ls src/components/Instructions

Output
Instructions.css Instructions.js emoji.svg

At this point, you’ve created a solid structure for your project. You moved a
lot of code around, but now that you have a structure, it will scale easier.

This is not the only way to compose your structure. Some file structures can
take advantage of code splitting by specifying a directory that will be split
into different packages. Other file structures split by route and use a
common directory for components that are used across routes.

For now, stick with a less complex approach. As a need for another
structure emerges, it’s always easier to move from simple to complex.
Starting with a complex structure before you need it will make refactoring
difficult.

Now that you have created and organized a class-based component, in the
next step you’ll create a functional component.

Step 4 — Building a Functional Component

In this step, you’ll create a functional component. Functional components
are the most common component in contemporary React code. These
components tend to be shorter, and unlike class-based components, they can
use React hooks, a new form of state and event management.

A functional component is a JavaScript function that returns some JSX. It
doesn’t need to extend anything and there are no special methods to

https://reactjs.org/docs/code-splitting.html
https://survivejs.com/react/advanced-techniques/structuring-react-projects/#directory-per-view
https://reactjs.org/docs/hooks-intro.html

memorize.

To refactor <Instructions> as a functional component, you need to change

the class to a function and remove the render method so that you are left
with only the return statement.

To do that, first open Instructions.js in a text editor.

nano src/components/Instructions/Instructions.js

Change the class declaration to a function declaration:

tutorial-03-component/src/components/Instructio
ns/Instructions.js

Next, remove the import of { Component } :

import React, { Component } from 'react';

import './Instructions.css';

import emoji from './emoji.svg'

export default function Instructions() {

 render() {

 return(

 <div className="instructions">

 <p>Click on an emoji to view the emoji short name.</p>

 </div>

)

 }

}

tutorial-03-component/src/components/Instructio
ns/Instructions.js

Finally, remove the render() method. At that point, you are only returning

JSX.

import React from 'react';

import './Instructions.css';

import emoji from './emoji.svg'

export default function Instructions() {

 render() {

 return(

 <div className="instructions">

 <p>Click on an emoji to view the emoji short name.</p>

 </div>

)

 }

}

tutorial-03-component/src/components/Instructio
ns/Instructions.js

Save the file. The browser will refresh and you’ll see your page as it was
before.

import React from 'react';

import './Instructions.css';

import emoji from './emoji.svg'

export default function Instructions() {

 return(

 <div className="instructions">

 <p>Click on an emoji to view the emoji short name.</p>

 </div>

)

}

Browser with emoji

You could also rewrite the function as an arrow function using the implicit
return. The main difference is that you lose the function body. You will also
need to first assign the function to a variable and then export the variable:

https://www.digitalocean.com/community/tutorials/how-to-define-functions-in-javascript#arrow-functions

tutorial-03-component/src/components/Instructio
ns/Instructions.js

Simple functional components and class-based components are very similar.
When you have a simple component that doesn’t store state, it’s best to use
a functional component. The real difference between the two is how you
store a component’s state and use properties. Class-based components use
methods and properties to set state and tend to be a little longer. Functional
components use hooks to store state or manage changes and tend to be a
little shorter.

Conclusion

import React from 'react';

import './Instructions.css';

import emoji from './emoji.svg'

const Instructions = () => (

 <div className="instructions">

 <p>Click on an emoji to view the emoji short name.</p>

 </div>

)

export default Instructions;

Now you have a small application with independent pieces. You created two
major types of components: functional and class. You separated out parts of
the components into directories so that you could keep similar pieces of
code grouped together. You also imported and reused the components.

With an understanding of components, you can start to look at your
applications as pieces that you can take apart and put back together. Projects
become modular and interchangable. The ability to see whole applications
as a series of components is an important step in thinking in React. If you
would like to look at more React tutorials, take a look at our React Topic
page, or return to the How To Code in React.js series page.

https://www.digitalocean.com/community/tags/react
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-react-js

How To Customize React Components
with Props

Written by Joe Morgan

The author selected Creative Commons to receive a donation as part of the
Write for DOnations program.

In this tutorial, you’ll create custom components by passing props to your
component. Props are arguments that you provide to a JSX element. They
look like standard HTML props, but they aren’t predefined and can have
many different JavaScript data types including numbers, strings, functions,
arrays, and even other React components. Your custom components can use
props to display data or use the data to make the components interactive.
Props are a key part of creating components that are adaptable to different
situations, and learning about them will give you the tools to develop
custom components that can handle unique situations.

After adding props to your component, you will use PropTypes to define

the type of data you expect a component to receive. PropTypes are a simple

type system to check that data matches the expected types during runtime.
They serve as both documentation and an error checker that will help keep
your application predictable as it scales.

By the end of the tutorial, you’ll use a variety of props to build a small

application that will take an array of animal data and display the
information, including the name, scientific name, size, diet, and additional
information.

https://www.digitalocean.com/community/tutorials/how-to-customize-react-components-with-props
https://creativecommons.org/
https://do.co/w4do-cta
https://www.digitalocean.com/community/tutorials/how-to-create-react-elements-with-jsx
https://www.digitalocean.com/community/tutorials/understanding-data-types-in-javascript
https://www.digitalocean.com/community/tutorials/how-to-define-functions-in-javascript
https://www.digitalocean.com/community/tutorials/understanding-arrays-in-javascript
https://www.digitalocean.com/community/tutorials/how-to-create-custom-components-in-react

Note: The first step sets up a blank project on which you will build the
tutorial exercise. If you already have a working project and want to go
directly to working with props, start with Step 2.

Prerequisites

You will need a development environment running Node.js; this
tutorial was tested on Node.js version 10.20.1 and npm version 6.14.4.
To install this on macOS or Ubuntu 18.04, follow the steps in How to
Install Node.js and Create a Local Development Environment on
macOS or the Installing Using a PPA section of How To Install
Node.js on Ubuntu 18.04.

In following this tutorial, you will use Create React App. You can find
instructions for installing an application with Create React App at How
To Set Up a React Project with Create React App. This tutorial also
assumes a knowledge of React components, which you can learn about
in our How To Create Custom Components in React tutorial.

You will also need to know the basics of JavaScript, which you can
find in How To Code in JavaScript, along with a basic knowledge of
HTML and CSS. A good resource for HTML and CSS is the Mozilla
Developer Network.

Step 1 — Creating an Empty Project

https://www.digitalocean.com/community/tutorials/how-to-customize-react-components-with-props#step-2-%E2%80%94-building-dynamic-components-with-props
https://nodejs.org/en/about/
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-and-create-a-local-development-environment-on-macos
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-on-ubuntu-18-04
https://github.com/facebook/create-react-app
https://www.digitalocean.com/community/tutorials/how-to-set-up-a-react-project-with-create-react-app
https://www.digitalocean.com/community/tutorials/how-to-create-custom-com
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-javascript
https://developer.mozilla.org/en-US/docs/Learn/HTML/Introduction_to_HTML

In this step, you’ll create a new project using Create React App. Then you
will delete the sample project and related files that are installed when you
bootstrap the project. Finally, you will create a simple file structure to
organize your components.

To start, make a new project. In your command line, run the following
script to install a fresh project using create-react-app :

npx create-react-app prop-tutorial

After the project is finished, change into the directory:

cd prop-tutorial

In a new terminal tab or window, start the project using the Create React
App start script. The browser will autorefresh on changes, so leave this
script running the whole time that you work:

npm start

You will get a running local server. If the project did not open in a browser
window, you can open it by navigating to http://localhost:3000/. If you

are running this from a remote server, the address will be http://your_doma

in:3000 .

Your browser will load with a simple React application included as part of
Create React App:

https://github.com/facebook/create-react-app
https://www.digitalocean.com/community/tutorials/how-to-set-up-a-react-project-with-create-react-app#step-3-%E2%80%94-starting-the-server
http://localhost:3000/

React template project

You will be building a completely new set of custom components. You’ll
start by clearing out some boilerplate code so that you can have an empty
project.

To start, open src/App.js in a text editor. This is the root component that is

injected into the page. All components will start from here. You can find
more information about App.js at How To Set Up a React Project with

Create React App.

Open src/App.js with the following command:

nano src/App.js

You will see a file like this:

https://www.digitalocean.com/community/tutorials/how-to-set-up-a-react-project-with-create-react-app#step-5-%E2%80%94-modifying-the-heading-tag-and-styling

prop-tutorial/src/App.js

import React from 'react';

import logo from './logo.svg';

import './App.css';

function App() {

 return (

 <div className="App">

 <header className="App-header">

 <p>

 Edit <code>src/App.js</code> and save to reload.

 </p>

 <a

 className="App-link"

 href="https://reactjs.org"

 target="_blank"

 rel="noopener noreferrer"

 >

 Learn React

 </header>

 </div>

);

}

Delete the line import logo from './logo.svg'; . Then replace everything

in the return statement to return a set of empty tags: <></> . This will give

you a validate page that returns nothing. The final code will look like this:

prop-tutorial/src/App.js

Save and exit the text editor.

Finally, delete the logo. You won’t be using it in your application and you
should remove unused files as you work. It will save you from confusion in
the future.

export default App;

import React from 'react';

import './App.css';

function App() {

 return <></>;

}

export default App;

In the terminal window type the following command:

rm src/logo.svg

If you look at your browser, you will see a blank screen.

blank screen in chrome

Now that you have cleared out the sample Create React App project, create
a simple file structure. This will help you keep your components isolated
and independent.

Create a directory called components in the src directory. This will hold all

of your custom components.

mkdir src/components

Each component will have its own directory to store the component file
along with the styles, images if there are any, and tests.

Create a directory for App :

mkdir src/components/App

Move all of the App files into that directory. Use the wildcard, * , to select

any files that start with App. regardless of file extension. Then use the mv

command to put them into the new directory.

mv src/App.* src/components/App

Finally, update the relative import path in index.js , which is the root

component that bootstraps the whole process.

nano src/index.js

The import statement needs to point to the App.js file in the App directory,

so make the following highlighted change:

prop-tutorial/src/index.js

Save and exit the file.

Now that the project is set up, you can create your first component.

Step 2 — Building Dynamic Components with Props

import React from 'react';

import ReactDOM from 'react-dom';

import './index.css';

import App from './components/App/App';

import * as serviceWorker from './serviceWorker';

ReactDOM.render(

 <React.StrictMode>

 <App />

 </React.StrictMode>,

 document.getElementById('root')

);

// If you want your app to work offline and load faster, you ca

// unregister() to register() below. Note this comes with some

// Learn more about service workers: https://bit.ly/CRA-PWA

serviceWorker.unregister();

In this step, you will create a component that will change based on the input
information called props. Props are the arguments you pass to a function or
class, but since your components are transformed into HTML-like objects
with JSX, you will pass the props like they are HTML attributes. Unlike
HTML elements, you can pass many different data types, from strings, to
arrays, to objects, and even functions.

Here you will create a component that will display information about
animals. This component will take the name and scientific name of the
animal as strings, the size as an integer, the diet as an array of strings, and
additional information as an object. You’ll pass the information to the new
component as props and consume that information in your component.

By the end of this step, you’ll have a custom component that will consume
different props. You’ll also reuse the component to display an array of data
using a common component.

Adding Data

First, you need some sample data. Create a file in the src/App directory

called data.

touch src/components/App/data.js

Open the new file in your text editor:

nano src/components/App/data.js

Next, add an array of objects you will use as sample data:

https://www.digitalocean.com/community/tutorials/understanding-objects-in-javascript

prop-tutorial/src/components/App/data.js

export default [

 {

 name: 'Lion',

 scientificName: 'Panthero leo',

 size: 140,

 diet: ['meat'],

 },

 {

 name: 'Gorilla',

 scientificName: 'Gorilla beringei',

 size: 205,

 diet: ['plants', 'insects'],

 additional: {

 notes: 'This is the eastern gorilla. There is also a west
that is a different species.'

 }

 },

 {

 name: 'Zebra',

 scientificName: 'Equus quagga',

 size: 322,

 diet: ['plants'],

 additional: {

 notes: 'There are three different species of zebra.',

 link: 'https://en.wikipedia.org/wiki/Zebra'

The array of objects contains a variety of data and will give you an
opportunity to try a variety of props. Each object is a separate animal with
the name of the animal, the scientific name, size, diet, and an optional field
called additional , which will contain links or notes. In this code, you also

exported the array as the default .

Save and exit the file.

Creating Components

Next, create a placeholder component called AnimalCard . This component

will eventually take props and display the data.

First, make a directory in src/components called AnimalCard then touch a

file called src/components/AnimalCard/AnimalCard.js and a CSS file

called src/components/AnimalCard/AnimalCard.css .

mkdir src/components/AnimalCard

touch src/components/AnimalCard/AnimalCard.js

touch src/components/AnimalCard/AnimalCard.css

Open AnimalCard.js in your text editor:

 }

 }

]

nano src/components/AnimalCard/AnimalCard.js

Add a basic component that imports the CSS and returns an <h2> tag.

prop-tutorial/src/components/AnimalCard/AnimalC
ard.js

Save and exit the file. Now you need to import the data and component into
your base App component.

Open src/components/App/App.js :

nano src/components/App/App.js

Import the data and the component, then loop over the data returning the
component for each item in the array:

import React from 'react';

import './AnimalCard.css'

export default function AnimalCard() {

 return <h2>Animal</h2>

}

prop-tutorial/src/components/App/App.js

Save and exit the file. Here, you use the .map() array method to iterate over

the data. In addition to adding this loop, you also have a wrapping div with

a class that you will use for styling and an <h1> tag to label your project.

When you save, the browser will reload and you’ll see a label for each card.

import React from 'react';

import data from './data';

import AnimalCard from '../AnimalCard/AnimalCard';

import './App.css';

function App() {

 return (

 <div className="wrapper">

 <h1>Animals</h1>

 {data.map(animal => (

 <AnimalCard key={animal.name}/>

))}

 </div>

)

}

export default App;

https://www.digitalocean.com/community/tutorials/how-to-use-array-methods-in-javascript-iteration-methods#map()

React project in the browser without styling

Next, add some styling to line up the items. Open App.css :

nano src/components/App/App.css

Replace the contents with the following to arrange the elements:

prop-tutorial/src/components/App/App.css

This will use flexbox to rearrange the data so it will line up. The padding

gives some space in the browser window. justify-content will spread out

the extra space between elements, and .wrapper h1 will give the Animal

label the full width.

Save and exit the file. When you do, the browser will refresh and you’ll see
some data spaced out.

.wrapper {

 display: flex;

 flex-wrap: wrap;

 justify-content: space-between;

 padding: 20px;

}

.wrapper h1 {

 text-align: center;

 width: 100%;

}

https://alligator.io/css/flexbox-primer/#display-flex

React project in the browser with data spaced o
ut

Adding Props

Now that you have your components set up, you can add your first prop.
When you looped over your data, you had access to each object in the data

array and the items it contained. You will add each piece of the data to a
separate prop that you will then use in your AnimalCard component.

Open App.js :

nano src/components/App/App.js

Add a prop of name to AnimalCard .

prop-tutorial/src/components/App/App.js

Save and exit the file. The name prop looks like a standard HTML attribute,

but instead of a string, you’ll pass the name property from the animal

object in curly braces.

Now that you’ve passed one prop to the new component, you need to use it.
Open AnimalCard.js :

import React from 'react';

...

function App() {

 return (

 <div className="wrapper">

 <h1>Animals</h1>

 {data.map(animal => (

 <AnimalCard

 key={animal.name}

 name={animal.name}

 />

))}

 </div>

)

}

export default App;

nano src/components/AnimalCard/AnimalCard.js

All props that you pass into the component are collected into an object that
will be the first argument of your function. Destructure the object to pull out
individual props:

prop-tutorial/src/components/AnimalCard/AnimalC
ard.js

Note that you do not need to destructure a prop to use it, but that this is a
useful method for dealing with the sample data in this tutorial.

After you destructure the object, you can use the individual pieces of data.
In this case, you’ll use the title in an <h2> tag, surrounding the value with

import React from 'react';

import './AnimalCard.css'

export default function AnimalCard(props) {

 const { name } = props;

 return (

 <h2>{name}</h2>

);

}

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment

curly braces so that React will know to evaluate it as JavaScript.

You can also use a property on the prop object using dot notation. As an

example, you could create an <h2> element like this: <h2>{props.title}</

h2> . The advantage of destructring is that you can collect unused props and

use the object rest operator.

Save and exit the file. When you do, the browser will reload and you’ll see
the specific name for each animal instead of a placeholder.

React projects with animal names rendered

The name property is a string, but props can be any data type that you could

pass to a JavaScript function. To see this at work, add the rest of the data.

Open the App.js file:

nano src/components/App/App.js

Add a prop for each of the following: scientificName , size , diet , and ad

ditional . These include strings, integers, arrays, and objects.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax#Spread_in_object_literals

prop-tutorial/src/components/App/App.js

import React from 'react';

...

function App() {

 return (

 <div className="wrapper">

 <h1>Animals</h1>

 {albums.map(album => (

 <AnimalCard

 additional={animal.additional}

 diet={animal.diet}

 key={animal.name}

 name={animal.name}

 scientificName={animal.scientificName}

 size={animal.size}

 />

))}

 </div>

)

}

export default App;

Since you are creating an object, you can add them in any order you want.
Alphabetizing makes it easier to skim a list of props especially in a larger
list. You also can add them on the same line, but separating to one per line
keeps things readable.

Save and close the file. Open AnimalCard.js .

nano src/components/AnimalCard/AnimalCard.js

This time, destructure the props in the function parameter list and use the
data in the component:

prop-tutorial/src/components/AnimalCard/AnimalC
ard.js

After pulling out the data, you can add the scientificName and size into

heading tags, but you’ll need to convert the array into a string so that React

import React from 'react';

import './AnimalCard.css'

export default function AnimalCard({

 additional,

 diet,

 name,

 scientificName,

 size

}) {

 return (

 <div>

 <h2>{name}</h2>

 <h3>{scientificName}</h3>

 <h4>{size}kg</h4>

 <div>{diet.join(', ')}.</div>

 </div>

);

}

can display it on the page. You can do that with join(', '), which will

create a comma separated list.

Save and close the file. When you do, the browser will refresh and you’ll
see the structured data.

React project with animals with full data

You could create a similar list with the additional object, but instead add a

function to alert the user with the data. This will give you the chance to pass
functions as props and then use data inside a component when you call a
function.

Open App.js :

nano src/components/App/App.js

Create a function called showAdditionalData that will convert the object to

a string and display it as an alert.

https://www.digitalocean.com/community/tutorials/how-to-use-array-methods-in-javascript-accessor-methods#join()

prop-tutorial/src/components/App/App.js

import React from 'react';

...

function showAdditional(additional) {

 const alertInformation = Object.entries(additional)

 .map(information => `${information[0]}: ${information[1]}`)

 .join('\n');

 alert(alertInformation)

};

function App() {

 return (

 <div className="wrapper">

 <h1>Animals</h1>

 {data.map(animal => (

 <AnimalCard

 additional={animal.additional}

 diet={animal.diet}

 key={animal.name}

 name={animal.name}

 scientificName={animal.scientificName}

 showAdditional={showAdditional}

 size={animal.size}

 />

))}

The function showAdditional converts the object to an array of pairs where

the first item is the key and the second is the value. It then maps over the
data converting the key-pair to a string. Then it joins them with a line break
— \n—before passing the complete string to the alert function.

Since JavaScript can accept functions as arguments, React can also accept
functions as props. You can therefore pass showAdditional to AnimalCard

as a prop called showAdditional .

Save and close the file. Open AnimalCard :

nano src/components/AnimalCard/AnimalCard.js

Pull the showAdditional function from the props object, then create a <but

ton> with an onClick event that calls the function with the additional

object:

 </div>

)

}

export default App;

https://www.digitalocean.com/community/tutorials/how-to-create-react-elements-with-jsx#step-3-%E2%80%94-adding-events-to-elements

prop-tutorial/src/components/AnimalCard/AnimalC
ard.js

import React from 'react';

import './AnimalCard.css'

export default function AnimalCard({

 additional,

 diet,

 name,

 scientificName,

 showAdditional,

 size

}) {

 return (

 <div>

 <h2>{name}</h2>

 <h3>{scientificName}</h3>

 <h4>{size}kg</h4>

 <div>{diet.join(', ')}.</div>

 <button onClick={() => showAdditional(additional)}>More I

 </div>

);

}

Save the file. When you do, the browser will refresh and you’ll see a button
after each card. When you click the button, you’ll get an alert with the
additional data.

Alert with information

If you try clicking More Info for the Lion , you will get an error. That’s

because there is no additional data for the lion. You’ll see how to fix that in
Step 3.

Finally, add some styling to the music card. Add a className of animal-wr

apper to the div in AnimalCard :

prop-tutorial/src/components/AnimalCard/AnimalC
ard.js

Save and close the file. Open AnimalCard.css :

nano src/components/AnimalCard/AnimalCard.css

Add CSS to give the cards and the button a small border and padding:

import React from 'react';

import './AnimalCard.css'

export default function AnimalCard({

...

 return (

 <div className="animal-wrapper">

...

 </div>

)

}

prop-tutorial/src/components/AnimalCard/AnimalC
ard.css

This CSS will add a slight border to the card and replace the default button
styling with a border and padding. cursor: pointer will change the cursor

when you hover over the button.

Save and close the file. When you do the browser will refresh and you’ll see
the data in individual cards.

.animal-wrapper {

 border: solid black 1px;

 margin: 10px;

 padding: 10px;

 width: 200px;

}

.animal-wrapper button {

 font-size: 1em;

 border: solid black 1px;

 padding: 10;

 background: none;

 cursor: pointer;

 margin: 10px 0;

}

React project with styled animal cards

At this point, you’ve created two custom components. You’ve passed data
to the second component from the first component using props. The props
included a variety of data, such as strings, integers, arrays, objects, and
functions. In your second component, you used the props to create a
dynamic component using JSX.

In the next step, you’ll use a type system called prop-types to specify the

structure your component expects to see, which will create predictability in
your app and prevent bugs.

Step 3 — Creating Predictable Props with PropTypes and def
aultProps

In this step, you’ll add a light type system to your components with PropTy

pes . PropTypes act like other type systems by explicitly defining the type

of data you expect to receive for a certain prop. They also give you the

chance to define default data in cases where the prop is not always required.
Unlike most type systems, PropTypes is a runtime check, so if the props do

not match the type the code will still compile, but will also display a
console error.

By the end of this step, you’ll add predictability to your custom component
by defining the type for each prop. This will ensure that the next person to
work on the component will have a clear idea of the structure of the data the
component will need.

The prop-types package is included as part of the Create React App

installation, so to use it, all you have to do is import it into your component.

Open up AnimalCard.js :

nano src/components/AnimalCard/AnimalCard.js

Then import PropTypes from prop-types :

prop-tutorial/src/components/AnimalCard/AnimalC
ard.js

Add PropTypes directly to the component function. In JavaScript, functions

are objects, which means you can add properties using dot syntax. Add the
following PropTypes to AnimalCard.js :

import React from 'react';

import PropTypes from 'prop-types';

import './AnimalCard.css'

export default function AnimalCard({

...

}

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions

prop-tutorial/src/components/AnimalCard/AnimalC
ard.js

Save and close the file.

import React from 'react';

import PropTypes from 'prop-types';

import './AnimalCard.css'

export default function AnimalCard({

...

}

AnimalCard.propTypes = {

 additional: PropTypes.shape({

 link: PropTypes.string,

 notes: PropTypes.string

 }),

 diet: PropTypes.arrayOf(PropTypes.string).isRequired,

 name: PropTypes.string.isRequired,

 scientificName: PropTypes.string.isRequired,

 showAdditional: PropTypes.func.isRequired,

 size: PropTypes.number.isRequired,

}

As you can see, there are many different PropTypes . This is only a small

sample; see the official React documentation to see the others you can use.

Let’s start with the name prop. Here, you are specifying that name must be a

string . The property scientificName is the same. size is a number ,

which can include both floats such as 1.5 and integers such as 6 . showAddi

tional is a function (func).

diet , on the other hand, is a little different. In this case, you are specifying

that diet will be an array , but you also need to specify what this array

will contain. In this case, the array will only contain strings. If you want to
mix types, you can use another prop called oneOfType , which takes an array

of valid PropTypes . You can use oneOfType anywhere, so if you wanted si

ze to be either a number or a string you could change it to this:

The prop additional is also a little more complex. In this case, you are

specifying an object, but to be a little more clear, you are stating what you
want the object to contain. To do that, you use PropTypes.shape , which

takes an object with additional fields that will need their own PropTypes . In

this case, link and notes are both PropTypes.string .

Currently, all of the data is well-formed and matches the props. To see what
happens if the PropTypes don’t match, open up your data:

nano src/components/App/data.js

size: PropTypes.oneOfType([PropTypes.number, PropTypes.string])

https://reactjs.org/docs/typechecking-with-proptypes.html#proptypes

Change the size to a string on the first item:

prop-tutorial/src/components/App/data.js

Save the file. When you do the browser will refresh and you’ll see an error
in the console.

Error
index.js:1 Warning: Failed prop type: Invalid prop `size` of t

ype `string` supplied to `AnimalCard`, expected `number`.

 in AnimalCard (at App.js:18)

 in App (at src/index.js:9)

 in StrictMode (at src/index.js:8)

export default [

 {

 name: 'Lion',

 scientificName: 'Panthero leo',

 size: '140',

 diet: ['meat'],

 },

...

]

Browser with type error

Unlike other type systems such as TypeScript, PropTypes will not give you

a warning at build time, and as long as there are no code errors, it will still
compile. This means that you could accidentally publish code with prop
errors.

Change the data back to the correct type:

https://www.typescriptlang.org/

prop-tutorial/src/components/App/data.js

Save and close the file.

Open up AnimalCard.js :

nano src/components/AnimalCard/AnimalCard.js

Every prop except for additional has the isRequired property. That

means, that they are required. If you don’t include a required prop, the code
will still compile, but you’ll see a runtime error in the console.

If a prop isn’t required, you can add a default value. It’s good practice to
always add a default value to prevent runtime errors if a prop is not
required. For example, in the AnimalCard component, you are calling a

export default [

 {

 name: 'Lion',

 scientificName: 'Panthero leo',

 size: 140,

 diet: ['meat'],

 },

...

]

function with the additional data. If it’s not there, the function will try and

modify an object that doesn’t exist and the application will crash.

To prevent this problem, add a defaultProp for additional :

prop-tutorial/src/components/AnimalCard/AnimalC
ard.js

import React from 'react';

import PropTypes from 'prop-types';

import './AnimalCard.css'

export default function AnimalCard({

...

}

AnimalCard.propTypes = {

 additional: PropTypes.shape({

 link: PropTypes.string,

 notes: PropTypes.string

 }),

...

}

AnimalCard.defaultProps = {

 additional: {

 notes: 'No Additional Information'

 }

}

You add the defaultProps to the function using dot syntax just as you did

with propTypes , then you add a default value that the component should

use if the prop is undefined . In this case, you are matching the shape of ad

ditional , including a message that the there is no additional information.

Save and close the file. When you do, the browser will refresh. After it
refreshes, click on the More Info button for Lion. It has no additional

field in the data so the prop is undefined . But AnimalCard will substitute in

the default prop.

Browser with default message in the alert

Now your props are well-documented and are either required or have a
default to ensure predictable code. This will help future developers
(including yourself) understand what props a component needs. It will make

it easier to swap and reuse your components by giving you full information
about how the component will use the data it is receiving.

Conclusion

In this tutorial, you have created several components that use props to
display information from a parent. Props give you the flexibility to begin to
break larger components into smaller, more focused pieces. Now that you
no longer have your data tightly coupled with your display information, you
have the ability to make choices about how to segment your application.

Props are a crucial tool in building complex applications, giving the
opportunity to create components that can adapt to the data they receive.
With PropTypes , you are creating predictable and readable components that

will give a team the ability to reuse each other’s work to create a flexible
and stable code base. If you would like to look at more React tutorials, take
a look at our React Topic page, or return to the How To Code in React.js
series page.

https://www.digitalocean.com/community/tags/react
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-react-js

How To Create Wrapper Components in
React with Props

Written by Joe Morgan

The author selected Creative Commons to receive a donation as part of the
Write for DOnations program.

In this tutorial, you’ll create wrapper components with props using the
React JavaScript library. Wrapper components are components that
surround unknown components and provide a default structure to display
the child components. This pattern is useful for creating user interface (UI)
elements that are used repeatedly throughout a design, like modals,
template pages, and information tiles.

To create wrapper components, you’ll first learn to use the rest and spread
operators to collect unused props to pass down to nested components. Then
you’ll create a component that uses the built-in children component to

wrap nested components in JSX as if they were HTML elements. Finally,
you’ll pass components as props to create flexible wrappers that can embed
custom JSX in multiple locations in a component.

During the tutorial, you’ll build components to display a list of animal data
in the form of cards. You’ll learn to split data and refactor components as
you create flexible wrapping components. By the end of this tutorial, you’ll
have a working application that will use advanced prop techniques to create
reusable components that will scale and adapt as you application grows and
changes.

https://www.digitalocean.com/community/tutorials/how-to-create-wrapper-components-in-react-with-props
https://creativecommons.org/
https://do.co/w4do-cta
https://reactjs.org/
https://www.digitalocean.com/community/tutorials/understanding-destructuring-rest-parameters-and-spread-syntax-in-javascript#spread
https://www.digitalocean.com/community/tutorials/how-to-create-react-elements-with-jsx
https://developer.mozilla.org/en-US/docs/Web/HTML

Note: The first step sets up a blank project on which you will build the
tutorial exercise. If you already have a working project and want to go
directly to working with props, start with Step 2.

Prerequisites

You will need a development environment running Node.js; this
tutorial was tested on Node.js version 10.20.1 and npm version 6.14.4.
To install this on macOS or Ubuntu 18.04, follow the steps in How to
Install Node.js and Create a Local Development Environment on
macOS or the Installing Using a PPA section of How To Install
Node.js on Ubuntu 18.04.

In this tutorial, you will create an app with Create React App. You can
find instructions for installing an application with Create React App
and general information about how it works at How To Set Up a React
Project with Create React App.

You will be using React components, which you can learn about in our
How To Create Custom Components in React tutorial. It will also help
to have a basic understanding of React props, which you can learn
about in How to Customize React Components with Props.

You will also need a basic knowledge of JavaScript, which you can
find in our How To Code in JavaScript series, along with a basic

https://www.digitalocean.com/community/tutorials/how-to-create-wrapper-components-in-react-with-props#step-2-%E2%80%94-collecting-unused-props-with-props
https://nodejs.org/en/about/
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-and-create-a-local-development-environment-on-macos
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-on-ubuntu-18-04#installing-using-a-ppa
https://github.com/facebook/create-react-app
https://www.digitalocean.com/community/tutorials/how-to-set-up-a-react-project-with-create-react-app
https://www.digitalocean.com/community/tutorials/how-to-create-custom-components-in-react
https://www.digitalocean.com/community/tutorials/how-to-customize-react-components-with-props
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-javascript

knowledge of HTML and CSS. A good resource for HTML and CSS is
the Mozilla Developer Network.

Step 1 — Creating an Empty Project

In this step, you’ll create a new project using Create React App. Then you
will delete the sample project and related files that are installed when you
bootstrap the project. Finally, you will create a simple file structure to
organize your components. This will give you a solid basis on which to
build this tutorial’s wrapper application in the next step.

To start, make a new project. In your command line, run the following
script to install a fresh project using create-react-app :

npx create-react-app wrapper-tutorial

After the project is finished, change into the directory:

cd wrapper-tutorial

In a new terminal tab or window, start the project using the Create React
App start script. The browser will auto-refresh on changes, so leave this
script running while you work:

npm start

You will get a running local server. If the project did not open in a browser
window, you can open it with http://localhost:3000/. If you are running

https://developer.mozilla.org/en-US/docs/Learn/HTML/Introduction_to_HTML
https://github.com/facebook/create-react-app
https://www.digitalocean.com/community/tutorials/how-to-set-up-a-react-project-with-create-react-app#step-3-%E2%80%94-starting-the-server
http://localhost:3000/

this from a remote server, the address will be http://your_domain:3000 .

Your browser will load with a simple React application included as part of
Create React App:

React template project

You will be building a completely new set of custom components, so you’ll
need to start by clearing out some boilerplate code so that you can have an
empty project.

To start, open src/App.js in a text editor. This is the root component that is

injected into the page. All components will start from here. You can find
more information about App.js at How To Set Up a React Project with

Create React App.

Open src/App.js with the following command:

https://www.digitalocean.com/community/tutorials/how-to-set-up-a-react-project-with-create-react-app#step-5-%E2%80%94-modifying-the-heading-tag-and-styling

nano src/App.js

You will see a file like this:

wrapper-tutorial/src/App.js

import React from 'react';

import logo from './logo.svg';

import './App.css';

function App() {

 return (

 <div className="App">

 <header className="App-header">

 <p>

 Edit <code>src/App.js</code> and save to reload.

 </p>

 <a

 className="App-link"

 href="https://reactjs.org"

 target="_blank"

 rel="noopener noreferrer"

 >

 Learn React

 </header>

 </div>

);

}

Delete the line import logo from './logo.svg'; . Then replace everything

in the return statement to return a set of empty tags: <></> . This will give

you a valid page that returns nothing. The final code will look like this:

wrapper-tutorial/src/App.js

Save and exit the text editor.

Finally, delete the logo. You won’t be using it in your application and you
should remove unused files as you work. It will save you from confusion in
the long run.

export default App;

import React from 'react';

import './App.css';

function App() {

 return <></>;

}

export default App;

In the terminal window type the following command:

rm src/logo.svg

If you look at your browser, you will see a blank screen.

blank screen in chrome

Now that you have cleared out the sample Create React App project, create
a simple file structure. This will help you keep your components isolated
and independent.

Create a directory called components in the src directory. This will hold all

of you custom components.

mkdir src/components

Each component will have its own directory to store the component file
along with the styles, images if there are any, and tests.

Create a directory for App :

mkdir src/components/App

Move all of the App files into that directory. Use the wildcard, * , to select

any files that start with App. regardless of file extension. Then use the mv

command to put them into the new directory:

mv src/App.* src/components/App

Next, update the relative import path in index.js , which is the root

component that bootstraps the whole process:

nano src/index.js

The import statement needs to point to the App.js file in the App directory,

so make the following highlighted change:

wrapper-tutorial/src/index.js

Save and exit the file.

Now that the project is set up, you can create your first component.

Step 2 — Collecting Unused Props with ...props

import React from 'react';

import ReactDOM from 'react-dom';

import './index.css';

import App from './components/App/App';

import * as serviceWorker from './serviceWorker';

ReactDOM.render(

 <React.StrictMode>

 <App />

 </React.StrictMode>,

 document.getElementById('root')

);

// If you want your app to work offline and load faster, you ca

// unregister() to register() below. Note this comes with some

// Learn more about service workers: https://bit.ly/CRA-PWA

serviceWorker.unregister();

In this step, you’ll create a component to display a set of data about a group
of animals. Your component will contain a second nested component to
display some information visually. To connect the parent and nested
component, you’ll use the rest and spread operators to pass unused props
from the parent to the child without the parent needing to be aware of the
names or types of the props.

By the end of this step, you’ll have a parent component that can provide
props to nested components without having to know what the props are.
This will keep the parent component flexible, allowing you to update the
child component without having to change the parent.

Creating an AnimalCard Component

To start, create a set of data for your animals. First, open a file containing
the data set in the components/App directory:

nano src/components/App/data.js

Add the following data:

https://www.digitalocean.com/community/tutorials/understanding-destructuring-rest-parameters-and-spread-syntax-in-javascript#spread

src/components/App/data.js

This list of animals is an array of objects that includes the animal’s name,
scientific name, weight, and diet.

export default [

 {

 name: 'Lion',

 scientificName: 'Panthero leo',

 size: 140,

 diet: ['meat']

 },

 {

 name: 'Gorilla',

 scientificName: 'Gorilla beringei',

 size: 205,

 diet: ['plants', 'insects']

 },

 {

 name: 'Zebra',

 scientificName: 'Equus quagga',

 size: 322,

 diet: ['plants'],

 }

]

https://www.digitalocean.com/community/tutorials/understanding-arrays-in-javascript
https://www.digitalocean.com/community/tutorials/understanding-objects-in-javascript

Save and close the file.

Next, create a directory for the AnimalCard component:

mkdir src/components/AnimalCard

Open a new file in the directo:

nano src/components/AnimalCard/AnimalCard.js

Now add a component that will take the name , diet , and size as a prop

and display it:

wrapper-tutorial/src/components/AnimalCard/Anim
alCard.js

Here you are destructuring the props in the parameter list for the AnimalCar

d function, then displaying the data in a div . The diet data is listed as a

import React from 'react';

import PropTypes from 'prop-types';

export default function AnimalCard({ diet, name, size }) {

 return(

 <div>

 <h3>{name}</h3>

 <div>{size}kg</div>

 <div>{diet.join(', ')}.</div>

 </div>

)

}

AnimalCard.propTypes = {

 diet: PropTypes.arrayOf(PropTypes.string).isRequired,

 name: PropTypes.string.isRequired,

 size: PropTypes.number.isRequired,

}

https://www.digitalocean.com/community/tutorials/understanding-destructuring-rest-parameters-and-spread-syntax-in-javascript

single string using the join() method. Each piece of data includes a

corresponding PropType to make sure the data type is correct.

Save and close the file.

Now that you have your component and your data, you need to combine
them together. To do that, import the component and the data into the root
component of your project: App.js .

First, open the component:

nano src/components/App/App.js

From there, you can loop over the data and return a new AnimalCard with

the relevant props. Add the highlighted lines to App.js :

https://www.digitalocean.com/community/tutorials/how-to-use-array-methods-in-javascript-accessor-methods#join()
https://www.digitalocean.com/community/tutorials/how-to-customize-react-components-with-props#step-3-%E2%80%94-creating-predictable-props-with-proptypes-and-defaultprops

wrapper-tutorial/src/components/App/App.js

Save and close the file.

import React from 'react';

import './App.css';

import animals from './data';

import AnimalCard from '../AnimalCard/AnimalCard';

function App() {

 return (

 <div className="wrapper">

 {animals.map(animal =>

 <AnimalCard

 diet={animal.diet}

 key={animal.name}

 name={animal.name}

 size={animal.size}

 />

)}

 </div>

);

}

export default App;

As you work on more complex projects, your data will come from more
varied places, such as APIs, localStorage, or static files. But the process

for using each of these will be similar: assign the data to a variable and loop
over the data. In this case, the data is from a static file, so you are importing
directly to a variable.

In this code, you use the .map() method to iterate over animals and display

the props. Notice that you do not have to use every piece of data. You are
not explicitly passing the scientificName property, for example. You are

also adding a separate key prop that React will use to keep track of the

mapped data. Finally, you are wrapping the code with a div with a classNa

me of wrapper that you’ll use to add some styling.

To add this styling, open App.css :

nano src/components/App/App.css

Remove the boilerplate styling and add flex properties to a class called wra

pper :

https://developer.mozilla.org/en-US/docs/Glossary/API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API/Local_storage
https://www.digitalocean.com/community/tutorials/how-to-use-array-methods-in-javascript-iteration-methods#map()
https://www.digitalocean.com/community/tutorials/how-to-create-react-elements-with-jsx#step-4-%E2%80%94-mapping-over-data-to-create-elements
https://developer.mozilla.org/en-US/docs/Glossary/Flexbox

prop-tutorial/src/components/App/App.css

This will use flexbox layout to organize the data so it will line up. padding

gives some space in the browser window, and justify-content spreads out

the extra space between elements.

Save and exit the file. When you do, the browser will refresh and you’ll see
some data spaced out.

Browser with data spaced out

Creating a Details Component

You now have a simple component that displays the data. But let’s say you
wanted to give the diet data a little flair by converting the text to an emoji.

.wrapper {

 display: flex;

 flex-wrap: wrap;

 justify-content: space-between;

 padding: 20px;

}

You can do this by converting the data in your component.

React is designed to be flexible, so when you are thinking about how to
convert data, you have a few different options:

You can create a function inside the component that converts the text
to an emoji.
You can create a function and store it in a file outside the component
so that you can reuse the logic across different components.
You can create a separate component that converts the text to an emoji.

Each approach is fine when applied to the right use case, and you’ll find
yourself switching between them as you build an application. To avoid
premature abstraction and complexity, you should use the first option to
start. If you find yourself wanting to reuse logic, you can pull the function
out separately from the component. The third option is best if you want to
have a reusable piece that includes the logic and the markup, or that you
want to isolate to use across the application.

In this case, we’ll make a new component, since we will want to add more
data later and we are combining markup with conversion logic.

The new component will be called AnimalDetails . To make it, create a new

directory:

mkdir src/components/AnimalDetails

Next, open AnimalDetails.js in your text editor:

nano src/components/AnimalDetails/AnimalDetails.js

Inside the file, make a small component that displays the diet as an emoji:

wrapper-tutorial/src/components/AnimalDetails/A
nimalDetails.js

import React from 'react';

import PropTypes from 'prop-types';

import './AnimalDetails.css';

function convertFood(food) {

 switch(food) {

 case 'insects':

 return '🐜';

 case 'meat':

 return '🍖';

 case 'plants':

 default:

 return '🌱';

 }

}

export default function AnimalDetails({ diet }) {

 return(

 <div className="details">

 <h4>Details:</h4>

 <div>

 Diet: {diet.map(food => convertFood(food)).join(' ')}

 </div>

 </div>

The AnimalDetails.propTypes object sets up the function to take a prop of

diet that is an array of strings. Then inside the component, the code loops

over the diet and converts the string to an emoji using the switch

statement.

Save and close the file.

You are also importing some CSS, so let’s add that now.

Open AnimalDetails.css :

nano src/components/AnimalDetails/AnimalDetails.css

Add some CSS to give the element a border and margin to separate the
details from the rest of the component:

)

}

AnimalDetails.propTypes = {

 diet: PropTypes.arrayOf(PropTypes.string).isRequired,

}

https://www.digitalocean.com/community/tutorials/how-to-use-the-switch-statement-in-javascript

wrapper-tutorial/src/components/AnimalDetails/A
nimalDetails.css

We use .details to match the rule to elements with a className of detai

ls .

Save and close the file.

Now that you have a new custom component, you can add it to your Animal

Card component. Open AnimalCard.js :

nano src/components/AnimalCard/AnimalCard.js

Replace the diet.join statement with the new AnimalDetails component

and pass diet as a prop by adding the highlighted lines:

.details {

 border-top: gray solid 1px;

 margin: 20px 0;

}

wrapper-tutorial/src/components/AnimalCard/Anim
alCard.js

Save the file and you’ll see the new details in the browser.

import React from 'react';

import PropTypes from 'prop-types';

import AnimalDetails from '../AnimalDetails/AnimalDetails';

export default function AnimalCard({ diet, name, size }) {

 return(

 <div>

 <h3>{name}</h3>

 <div>{size}kg</div>

 <AnimalDetails

 diet={diet}

 />

 </div>

)

}

AnimalCard.propTypes = {

 diet: PropTypes.arrayOf(PropTypes.string).isRequired,

 name: PropTypes.string.isRequired,

 size: PropTypes.number.isRequired,

}

Browser with details

Passing Details Through a Component with ...props

The components are working well together, but there’s a slight inefficiency
in AnimalCard . You are explicitly pulling diet out from the props

argument, but you aren’t using the data. Instead, you are passing it through
to the component. There’s nothing inherently wrong about this—in fact, it’s
often better to err on the side of too much communication. But in doing
this, you make your code more difficult to maintain. Whenever you want to
pass new data to AnimalDetails , you need to update three places: App ,

where you pass the props, AnimalDetails , which consumes the prop, and A

nimalCard , which is the go-between.

A better way is to gather any unused props inside AnimalCard and then pass

those directly to AnimalDetails . This gives you the chance to make

changes to AnimalDetails without changing AnimalCard . In effect, Animal

Card doesn’t need to know anything about the props or the PropTypes that

are going into AnimalDetails .

To do that, you’ll use the object rest operator. This operator collects any
items that are not pulled out during destructuring and saves them into a new
object.

Here’s a simple example:

In this case, the variable name will be 'dog' and the variable props will be

{ diet: ['meat']} .

Up till now, you’ve passed all props as if they were HTML attributes, but
you can also use objects to send props. To use an object as a prop, you need
to use the spread operator— ...props—surrounded with curly braces. This

will change each key-value pair into a prop.

Open AnimalCard.js :

nano src/components/AnimalCard/AnimalCard.js

const dog = {

 name: 'dog',

 diet: ['meat']

}

const { name, ...props } = dog;

https://www.digitalocean.com/community/tutorials/understanding-destructuring-rest-parameters-and-spread-syntax-in-javascript#rest-parameters

Inside, remove diet from the destructured object and instead collect the

rest of the props into a variable called props . Then pass those props directly

to AnimalDetails :

wrapper-tutorial/src/components/AnimalCard/Anim
alCard.js

Notice that you can remove the diet PropType since you are not using the

prop in this component.

import React from 'react';

import PropTypes from 'prop-types';

import AnimalDetails from '../AnimalDetails/AnimalDetails';

export default function AnimalCard({ name, size, ...props }) {

 return(

 <div>

 <h3>{name}</h3>

 <div>{size}kg</div>

 <AnimalDetails

 {...props}

 />

 </div>

)

}

AnimalCard.propTypes = {

 name: PropTypes.string.isRequired,

 size: PropTypes.number.isRequired,

}

In this case, you are only passing one prop to AnimalDetails . In cases

where you have multiple props, the order will matter. A later prop will
overwrite earlier props, so if you have a prop you want to take priority,
make sure it is last. This can cause some confusion if your props object has

a property that is also a named value.

Save and close the file. The browser will refresh and everything will look
the same:

Browser with details

To see how the ...props object adds flexibility, let’s pass the scientificN

ame to AnimalDetails via the AnimalCard component.

First, open App.js :

nano src/components/App/App.js

Then pass the scientificName as a prop:

wrapper-tutorial/src/components/App/App.js

import React from 'react';

import './App.css';

import animals from './data';

import AnimalCard from '../AnimalCard/AnimalCard';

function App() {

 return (

 <div className="wrapper">

 {animals.map(animal =>

 <AnimalCard

 diet={animal.diet}

 key={animal.name}

 name={animal.name}

 size={animal.size}

 scientificName={animal.scientificName}

 />

)}

 </div>

);

}

export default App;

Save and close the file.

Skip over AnimalCard ; you won’t need to make any changes there. Then

open AnimalDetails so you can consume the new prop:

nano src/components/AnimalDetails/AnimalDetails.js

The new prop will be a string, which you’ll add to the details list along

with a line declaring the PropType :

wrapper-tutorial/src/components/AnimalDetails/A
nimalDetails.js

import React from 'react';

...

export default function AnimalDetails({ diet, scientificName })

 return(

 <div className="details">

 <h4>Details:</h4>

 <div>

 Scientific Name: {scientificName}.

 </div>

 <div>

 Diet: {diet.map(food => convertFood(food)).join(' ')}

 </div>

 </div>

)

}

AnimalDetails.propTypes = {

 diet: PropTypes.arrayOf(PropTypes.string).isRequired,

 scientificName: PropTypes.string.isRequired,

}

Save and close the file. When you do, the browser will refresh and you’ll
see the new details without any changes to the AnimalCard component:

Browser with scientific name

In this step, you learned how to create flexible parent props that can take
unknown props and pass them into nested components with the spread
operator. This is a common pattern that will give you the flexibility you
need to create components with focused responsibilities. In the next step,
you’ll create components that can take unknown components as a prop
using the built in children prop.

Step 3 — Creating Wrapper Components with children

In this step, you’ll create a wrapper component that can take an unknown
group of components as a prop. This will give you the ability to nest
components like standard HTML, and it will give you a pattern for creating
reusable wrappers that will let you make a variety of components that need
a common design but a flexible interior.

React gives you a built-in prop called children that collects any children

components. Using this makes creating wrapper components intuitivie and
readable.

To start, make a new component called Card . This will be a wrapper

component to create a standard style for any new card components.

Create a new directory:

mkdir src/components/Card

Then open the Card component in your text editor:

nano src/components/Card/Card.js

Create a component that takes children and title as props and wraps

them in a div by adding the following code:

wrapper-tutorial/src/components/Card/Card.js

import React from 'react';

import PropTypes from 'prop-types';

import './Card.css';

export default function Card({ children, title }) {

 return(

 <div className="card">

 <div className="card-details">

 <h2>{title}</h2>

 </div>

 {children}

 </div>

)

}

Card.propTypes = {

 children: PropTypes.oneOfType([

 PropTypes.arrayOf(PropTypes.element),

 PropTypes.element.isRequired

]),

 title: PropTypes.string.isRequired,

}

The PropTypes for the children are new. The children prop can either be

a JSX element or an array of JSX elements. The title is a string.

Save and close the file.

Next, add some styling. Open Card.css :

nano src/components/Card/Card.css

Your card will have a border and a line under the details.

wrapper-tutorial/src/components/Card/Card.css

.card {

 border: black solid 1px;

 margin: 10px;

 padding: 10px;

 width: 200px;

}

.card-details {

 border-bottom: gray solid 1px;

 margin-bottom: 20px;

}

Save and close the file. Now that you have your component you need to use
it. You could wrap each AnimalCard with the Card component in App.js ,

but since the name AnimalCard implies it is already a Card , it would be

better to use the Card component inside of AnimalCard .

Open up AnimalCard :

nano src/components/AnimalCard/AnimalCard.js

Unlike other props, you don’t pass children explicitly. Instead, you include

the JSX as if they were HTML child elements. In other words, you just nest
them inside of the element, like the following:

wrapper-tutorial/src/components/AnimalCard/Anim
alCard.js

import React from 'react';

import PropTypes from 'prop-types';

import Card from '../Card/Card';

import AnimalDetails from '../AnimalDetails/AnimalDetails';

export default function AnimalCard({ name, size, ...props }) {

 return(

 <Card title="Animal">

 <h3>{name}</h3>

 <div>{size}kg</div>

 <AnimalDetails

 {...props}

 />

 </Card>

)

}

AnimalCard.propTypes = {

 name: PropTypes.string.isRequired,

 size: PropTypes.number.isRequired,

}

Unlike a React component, you do not need to have a single root element as
a child. That’s why the PropType for Card specified it could be an array of

elements or a single element. In addition to passing the children as nested

components, you are giving the card a title of Animal .

Save and close the file. When you do, the browser will refresh and you’ll
see the updated card component.

Browser with cards

Now you have a reusable Card component that can take any number of

nested children. The primary advantage of this is that you can reuse the Car

d with any arbitrary component. If you wanted to make a Plant card, you

could do that by wrapping the plant information with the Card component.

It doesn’t even need to relate at all: If you wanted to reuse the Card

component in a completely different applications that lists things like music
or account data, you could do that, too. The Card component doesn’t care

what the children are; you are just reusing the wrapper element, which in
this case is the styled border and title.

The downside to using children is that you can only have one instance of

the child prop. Occasionally, you’ll want a component to have custom JSX
in multiple places. Fortunately, you can do that by passing JSX and React
components as props, which we will cover in the next step.

Step 4 — Passing Components as Props

In this step, you’ll modify your Card component to take other components

as props. This will give your component maximum flexibility to display
unknown components or JSX in multiple locations throughout the page.
Unlike children , which you can only use once, you can have as many

components as props, giving your wrapper component the ability to adapt to
a variety of needs while maintaining a standard look and structure.

By the end of this step, you’ll have a component that can wrap children
components and also display other components in the card. This pattern will
give you flexibility when you need to create components that need
information that is more complex than simple strings and integers.

Let’s modify the Card component to take an arbitrary React element called

details .

First, open the Card component:

nano src/components/Card/Card.js

Next, add a new prop called details and place it below the <h2> element:

wrapper-tutorial/src/components/Card/Card.js

import React from 'react';

import PropTypes from 'prop-types';

import './Card.css';

export default function Card({ children, details, title }) {

 return(

 <div className="card">

 <div className="card-details">

 <h2>{title}</h2>

 {details}

 </div>

 {children}

 </div>

)

}

Card.propTypes = {

 children: PropTypes.oneOfType([

 PropTypes.arrayOf(PropTypes.element),

 PropTypes.element.isRequired

]),

 details: PropTypes.element,

 title: PropTypes.string.isRequired,

}

This prop will have the same type as children , but it should be optional.

To make it optional, you add a default value of null . In this case, if a user

passes no details, the component will still be valid and will not display
anything extra.

Save and close the file. The page will refresh and you’ll see the same image
as before:

Browser with cards

Now add some details to the AnimalCard . First, open AnimalCard .

nano src/components/AnimalCard/AnimalCard.js

Card.defaultProps = {

 details: null,

}

Since the Card component is already using children , you’ll need to pass

the new JSX component as a prop. Since these are all mammals, add that to
the card, but wrap it in tags to make it italic.

wrapper-tutorial/src/components/AnimalCard/Anim
alCard.js

Save the file. When you do, the browser will refresh and you’ll see the
update, including the phrase Mammal.

import React from 'react';

...

export default function AnimalCard({ name, size, ...props }) {

 return(

 <Card title="Animal" details={Mammal}>

 <h3>{name}</h3>

 <div>{size}kg</div>

 <AnimalDetails

 {...props}

 />

 </Card>

)

}

...

Browser with card and details

This prop is already powerful because it can take JSX of any size. In this
example, you added only a single element, but you could pass as much JSX
as you wanted. It also doesn’t have to be JSX. If you have a complicated
markup for example, you wouldn’t want to pass it directly in the prop; this
would be difficult to read. Instead, you could create a separate component
and then pass the component as a prop.

To see this at work, pass AnimalDetails to the details prop:

wrapper-tutorial/src/components/AnimalCard/Anim
alCard.js

AnimalDetails is more complicated and has a number of lines of markup.

If you were to add it directly to details , it would increase the prop

import React from 'react';

...

export default function AnimalCard({ name, size, ...props }) {

 return(

 <Card

 title="Animal"

 details={

 <AnimalDetails

 {...props}

 />

 }

 >

 <h3>{name}</h3>

 <div>{size}kg</div>

 </Card>

)

}

...

substantially and make it difficult to read.

Save and close the file. When you do, the browser will refresh and the
details will appear at the top of the card.

Card with details at the top

Now you have a Card component that can take custom JSX and place it in

multiple spots. You are not restricted to a single prop; you can pass
elements to as many props as you want. This gives you the ability to create
flexible wrapping components that can give other developers the
opportunity to customize a component while retaining its overall style and
functionality.

Passing a component as a prop isn’t perfect. It’s a little more difficult to
read and isn’t as clear as passing children , but they are just as flexible and

you can use as many of them as you want in a component. You should use c

hildren first, but don’t hesitate to fall back to props if that is not enough.

In this step, you learned how to pass JSX and React components as props to
another component. This will give your component the flexibility to handle
many situations where a wrapper component may need multiple props to
handle JSX or components.

Conclusion

You have created a variety of wrapping components that can display data
flexibly while keeping a predictable look and structure. You created
components that can collect and pass unknown props to nested components.
You also used the built-in children prop to create wrapper components that

can handle an arbitrary number of nested elements. Finally, you created a
component that can take JSX or React components as a prop so that your
wrapper component can handle multiple instances of different
customizations.

Wrapper components give you the ability to adapt to unknown
circumstances while also maximizing code reuse and consistency. This
pattern is useful for creating basic UI elements that you will reuse
throughout an application including: buttons, alerts, modals, slide shows,
and more. You’ll find yourself returning to it many times.

If you would like to look at more React tutorials, check out our React Topic
page, or return to the How To Code in React.js series page.

https://www.digitalocean.com/community/tags/react
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-react-js

How To Style React Components

Written by Joe Morgan

The author selected Creative Commons to receive a donation as part of the
Write for DOnations program.

In this tutorial, you’ll learn three different ways to style React components:
plain Cascading Style Sheets (CSS), inline styles with JavaScript-style
objects, and JSS, a library for creating CSS with JavaScript. These options
each have advantages and disadvantages, some giving you more protection
against style conflicts or allowing you to directly refer to props or other
dynamic data. But all the options have one thing in common: They let you
keep your component-specific styles close to the component, making
components easier to reuse across a project or even across many unrelated
projects.

Each of these options relies on CSS properties. To use plain CSS without
any runtime data, you can import style sheets. If you want to create styles
that are integrated with the component, you can use inline style objects that
use CSS property names as keys and the style as the value. Finally, if you
want a combination, you can use a third-party library such as JSS to write
your CSS in JavaScript syntax, a software concept known as CSS-in-JS.

To illustrate these methods, you’ll build an example alert component that

will either show a success style or an error style depending on the prop. The
alert component will take any number of children. This means you will

need to be cautious about style conflicts, since you have no way of knowing

https://www.digitalocean.com/community/tutorials/how-to-style-react-components
https://creativecommons.org/
https://do.co/w4do-cta
https://reactjs.org/
https://developer.mozilla.org/en-US/docs/Web/CSS
https://www.digitalocean.com/community/tutorials/understanding-objects-in-javascript
https://cssinjs.org/
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-javascript
https://www.digitalocean.com/community/tutorials/how-to-customize-react-components-with-props

what styles the children components will have. After making the alert

component, you will refactor it using each of the styling options so that you
can see the similarities and differences between the approaches.

Prerequisites

You will need a development environment running Node.js; this
tutorial was tested on Node.js version 10.20.1 and npm version 6.14.4.
To install this on macOS or Ubuntu 18.04, follow the steps in How to
Install Node.js and Create a Local Development Environment on
macOS or the Installing Using a PPA section of How To Install
Node.js on Ubuntu 18.04.

You will need to be able to create apps with Create React App. You can
find instructions for installing an application with Create React App at
How To Set Up a React Project with Create React App.

You will be using React components, which you can learn about in our
How To Create Custom Components in React tutorial.

You will also need a basic knowledge of JavaScript, which you can
find in the How To Code in JavaScript series, along with a basic
knowledge of HTML and CSS. A good resource for HTML and CSS is
the Mozilla Developer Network.

Step 1 — Creating an Empty Project

In this step, you’ll create a new project using Create React App. Then you
will delete the sample project and related files that are installed when you

https://nodejs.org/en/about/
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-and-create-a-local-development-environment-on-macos
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-on-ubuntu-18-04
https://github.com/facebook/create-react-app
https://www.digitalocean.com/community/tutorials/how-to-set-up-a-react-project-with-create-react-app
https://www.digitalocean.com/community/tutorials/how-to-create-custom-components-in-react
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-javascript
https://developer.mozilla.org/en-US/docs/Learn/HTML/Introduction_to_HTML
https://github.com/facebook/create-react-app

bootstrap the project. Finally, you will create a simple file structure to
organize your components. This will give you a solid basis on which to
build this tutorial’s sample application for styling in the next step.

To start, make a new project. In your terminal, run the following script to
install a fresh project using create-react-app :

npx create-react-app styling-tutorial

After the project is finished, change into the directory:

cd styling-tutorial

In a new terminal tab or window, start the project using the Create React
App start script. The browser will auto-refresh on changes, so leave this
script running while you work:

npm start

You will get a running local server. If the project did not open in a browser
window, you can open it with http://localhost:3000/. If you are running

this from a remote server, the address will be http://your_domain:3000 .

Your browser will load with a simple React application included as part of
Create React App:

https://www.digitalocean.com/community/tutorials/how-to-set-up-a-react-project-with-create-react-app#step-3-%E2%80%94-starting-the-server
http://localhost:3000/

React template project

You will be building a completely new set of custom components, so you’ll
need to start by clearing out some boilerplate code so that you can have an
empty project.

To start, open src/App.js in a text editor. This is the root component that is

injected into the page. All components will start from here. You can find
more information about App.js at How To Set Up a React Project with

Create React App.

Open src/App.js with the following command:

nano src/App.js

You will see a file like this:

https://www.digitalocean.com/community/tutorials/how-to-set-up-a-react-project-with-create-react-app#step-5-%E2%80%94-modifying-the-heading-tag-and-styling

styling-tutorial/src/App.js

import React from 'react';

import logo from './logo.svg';

import './App.css';

function App() {

 return (

 <div className="App">

 <header className="App-header">

 <p>

 Edit <code>src/App.js</code> and save to reload.

 </p>

 <a

 className="App-link"

 href="https://reactjs.org"

 target="_blank"

 rel="noopener noreferrer"

 >

 Learn React

 </header>

 </div>

);

}

Delete the line import logo from './logo.svg'; . Then replace everything

in the return statement to return a set of empty tags: <></> . This will give

you a valid page that returns nothing. The final code will look like this:

styling-tutorial/src/App.js

Save and exit the text editor.

Finally, delete the logo. You won’t be using it in your application and you
should remove unused files as you work. It will save you from confusion in
the long run.

export default App;

import React from 'react';

import './App.css';

function App() {

 return <></>;

}

export default App;

In the terminal window type the following command:

rm src/logo.svg

If you look at your browser, you will see a blank screen.

blank screen in chrome

Now that you have cleared out the sample Create React App project, create
a simple file structure. This will help you keep your components isolated
and independent.

Create a directory called components in the src directory. This will hold all

of your custom components.

mkdir src/components

Each component will have its own directory to store the component file
along with the styles, images, and tests.

Create a directory for App :

mkdir src/components/App

Move all of the App files into that directory. Use the wildcard, * , to select

any files that start with App. regardless of file extension. Then use the mv

command to put them into the new directory:

mv src/App.* src/components/App

Next, update the relative import path in index.js , which is the root

component that bootstraps the whole process:

nano src/index.js

The import statement needs to point to the App.js file in the App directory,

so make the following highlighted change:

styling-tutorial/src/index.js

Save and exit the file.

Now that the project is set up, you can create your first component.

Step 2 — Styling a Component with Plain CSS

import React from 'react';

import ReactDOM from 'react-dom';

import './index.css';

import App from './components/App/App';

import * as serviceWorker from './serviceWorker';

ReactDOM.render(

 <React.StrictMode>

 <App />

 </React.StrictMode>,

 document.getElementById('root')

);

// If you want your app to work offline and load faster, you ca

// unregister() to register() below. Note this comes with some

// Learn more about service workers: https://bit.ly/CRA-PWA

serviceWorker.unregister();

In this step, you’ll build a sample Alert component that will display an

alert on a web page. You’ll style this using plain CSS, which you will
import directly into the component. This will ensure that the component’s
styles remain closely coupled with the component’s JavaScript and JSX.
You’ll also create a component that will implement the Alert component to

see how styles can affect children and how you can use props to change
styles dynamically.

By the end of this step, you’ll have created several components that use
plain CSS imported directly into the component.

Building an Alert Component

To start, create a new Alert component. First, make the directory:

mkdir src/components/Alert

Next, open Alert.js :

nano src/components/Alert/Alert.js

Add a basic component that returns the string Alert :

https://www.digitalocean.com/community/tutorials/how-to-create-react-elements-with-jsx

styling-tutorial/src/components/Alert/Alert.js

Save and close the file.

Next, open App.js :

nano src/components/App/App.js

Import the Alert component and render it inside a <div> by adding the

highlighted code:

import React from 'react';

export default function Alert() {

 return <div>Alert</div>

}

styling-tutorial/src/components/App/App.js

In this code, you gave the <div> a className of wrapper , which will be

used for styling later.

Save and close the file. When you do, the browser will refresh and you’ll
see your component:

import React from 'react';

import './App.css';

import Alert from '../Alert/Alert';

function App() {

 return (

 <div className="wrapper">

 <Alert />

 </div>

)

}

export default App;

Browser with Alert

Next, you will style the App component to give it some padding so that the

Alert component is not so close to the edge. Open the App.css file:

nano src/components/App/App.css

This file uses standard CSS. To add padding to the wrapper, replace the
default code with a rule as you would for CSS in a plain HTML project. In
this case, add a padding of 20px :

styling-tutorial/src/components/App/App.css

Save and close the file. When you do, the page will refresh and you’ll see
the extra padding:

.wrapper {

 padding: 20px;

}

Browser with extra padding

When you use Create React App, webpack will take the imported CSS and
add it to a style tag at the top of the file rendered in the browser. If you look
at the <head> element in your page source, you’ll see the styles:

https://webpack.js.org/

Style tag in page source

This means that you can keep the CSS alongside the component and it will
be collected together during the build phase. It also means that your styles
are global in scope, which can create potential name conflicts. With this
method, each class name will need to be unique across all components.

To explore this problem, you will make some changes to the Alert

component.

https://www.digitalocean.com/community/tutorials/how-to-set-up-a-react-project-with-create-react-app#step-6-%E2%80%94-building-the-project

First, open the file:

nano src/components/Alert/Alert.js

Then add some React code that will take children , type , and title as

props:

styling-tutorial/src/components/Alert/Alert.js

The title in this code is in a <h2> tag, and children will allow you to

display child components. You will soon use the type prop to set a success

import React from 'react';

import PropTypes from 'prop-types';

export default function Alert({ children, title, type }) {

 return (

 <div>

 <h2>{title}</h2>

 {children}

 </div>

)

}

Alert.propTypes = {

 children: PropTypes.oneOfType([

 PropTypes.arrayOf(PropTypes.element),

 PropTypes.element.isRequired

]),

 title: PropTypes.string.isRequired,

 type: PropTypes.string.isRequired,

}

and an error alert based on the PropTypes typing system.

Save and close the file. Next, update the Alert component in App to use

the new props.

First, open App.js :

nano src/components/App/App.js

Make an alert that notifies a user that an attempt to add items to a shopping
cart has failed:

https://www.digitalocean.com/community/tutorials/how-to-customize-react-components-with-props#step-3-%E2%80%94-creating-predictable-props-with-proptypes-and-defaultprops

styling-tutorial/src/components/App/App.js

In this code, you updated the title and children with a fail message, then

added a type of error .

Save and close the file. When you do, the browser will refresh and you’ll
see your new component:

import React from 'react';

import './App.css';

import Alert from '../Alert/Alert';

function App() {

 return (

 <div className="wrapper">

 <Alert title="Items Not Added" type="error">

 <div>Your items are out of stock.</div>

 </Alert>

 </div>

)

}

export default App;

Alert component

Your alert is rendering, so the next step is to style the component with CSS.

Adding CSS to the Alert Component

Since the Alert component dislays an error, you will add a border and set

the color of the border to a shade of red. You’ll also give the <h2> tag the

same color. But this presents a problem: You can’t use the name wrapper on

the outer <div> in your Alert component, because that name is already

taken by the App component.

Class name conflicts aren’t a new problem in CSS, and there have been a
number of attempts to solve it using naming conventions such as BEM. But
naming conventions can become verbose, and can still occasionally lead to
conflicts in projects with a large number of components.

http://getbem.com/introduction/

Rather than using a specific set of rules separated by naming convention, in
this tutorial you will prefix the wrapper class name with the name of the

component. Your new class name will be alert-wrapper . In addition, you

will add the type of the alert as a class.

Open up the Alert component:

nano src/components/Alert/Alert.js

Next, add the following highlighted code:

styling-tutorial/src/components/Alert/Alert.js

import React from 'react';

import PropTypes from 'prop-types';

import './Alert.css';

...

export default function Alert({ children, type, title }) {

 return(

 <div className={`alert-wrapper ${type}`}>

 <h2>{title}</h2>

 {children}

 </div>

)

}

...

In this case, you’re combining alert-wrapper and the type variable into a

single string using a template literal.

Save and close the file. Now you have a unique class name that changes
dynamically based on the prop. The JSX in this code will resolve to a div

with the class names of alert-wrapper and error . The compiled mark up

would be this: <div class="alert-wrapper error"> .

Now add the styles. First, open the CSS for the Alert component:

nano src/components/Alert/Alert.css

Add the following CSS to the alert-wrapper , success , and error classes:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals

styling-tutorial/src/components/Alert/Alert.css

.alert-wrapper {

 padding: 15px;

 margin-bottom: 15px;

}

.alert-wrapper h2 {

 margin: 0 0 10px 0;

}

.alert-wrapper.success {

 border: #6DA06F solid 1px;

}

.success h2 {

 color: #6DA06F;

}

.alert-wrapper.error {

 border: #F56260 solid 1px;

}

.error h2 {

 color: #F56260;

}

This code adds some margins and padding to the alert-wrapper . It then

adds a border with a shade of red for the error class using the hexidecimal

color code #F56260 , and a shade of green (#6DA06F) for the success class.

It also updates the <h2> color to red or green depending on the parent.

Save and close the file. When you do, the browser will refresh and you’ll
see the new styles:

Styled error alert

Now that you have a styled Alert component, you can create a new

component that displays a list of items within the Alert component. Since

the children will be more complex, there will be greater possibilities for
style conflicts.

Creating a Success Message Component

First, create a directory for for the new component CartSuccess :

mkdir src/components/CartSuccess

https://developer.mozilla.org/en-US/docs/Learn/CSS/Building_blocks/Values_and_units#Color

Open CartSuccess.js :

nano src/components/CartSuccess/CartSuccess.js

Inside the component, import the Alert component and pass a <div>

containing a series of items that a user has added to the cart:

styling-tutorial/src/components/CartSuccess/Car
tSuccess.js

import React from 'react';

import Alert from '../Alert/Alert';

import './CartSuccess.css';

export default function CartSuccess() {

 return(

 <Alert title="Added to Cart" type="success">

 <div className="cart-success-wrapper">

 <h2>

 You have added 3 items:

 </h2>

 <div className="item">

 <div>Bananas</div>

 <div>Quantity: 2</div>

 </div>

 <div className="item">

 <div>Lettuce</div>

 <div>Quantity: 1</div>

 </div>

 </div>

 </Alert>

)

}

Notice how you needed to create a unique class name— cart-success-wrap

per—for the outer <div> . Save and close the file.

Next, add some CSS to the custom message. Open CartSuccess.css :

nano src/components/CartSuccess/CartSuccess.css

Add a display of flex to the wrapper. You’ll want most of the items to

wrap, except for the <h2> element, which should take up the whole width:

styling-tutorial/src/components/CartSuccess/Car
tSuccess.css

.cart-success-wrapper {

 border-top: black solid 1px;

 display: flex;

 flex-wrap: wrap;

}

.cart-success-wrapper h2 {

 width: 100%;

}

.item {

 margin-right: 20px;

}

https://developer.mozilla.org/en-US/docs/Web/CSS/display
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Flexible_Box_Layout

Here, you gave the <h2> a width of 100% . In addition to flexing the

element, you also added a small border to the top of the message, and added
a margin to the item class to provide some space between items.

Save and close the file.

Now that you have a styled component, add it to your App component.

Open App.js :

nano src/components/App/App.js

Import the component and add it after the current Alert component, as

shown in the highlighted code:

styling-tutorial/src/components/App/App.js

Save and close the file. When you do, the browser will refresh and you’ll
see your new component:

import React from 'react';

import './App.css';

import Alert from '../Alert/Alert';

import CartSuccess from '../CartSuccess/CartSuccess';

function App() {

 return(

 <div className="wrapper">

 <Alert title="Items Not Added" type="error">

 <div>Your items are out of stock.</div>

 </Alert>

 <CartSuccess />

 </div>

)

}

export default App;

Alerts in App

This shows the new color and the message as intended, but the nested
component received some unexpected styles. The rule for the <h2> in the A

lert component is being applied to the nested <h2> tag in the children

props.

Unexpected styles cascading to children are a common problem with CSS.
However, since React gives you the opportunity to bundle and share
components across projects, you have a greater potential for styles to
inadvertently flow down to children components.

To fix this with pure CSS, make the <h2> rule for the Alert component a

little more specific.

Open the Alert.css file:

nano src/components/Alert/Alert.css

Change the rules so that the <h2> styling only applies to the direct children

of the classes rather than all children using the CSS > child combinator:

https://developer.mozilla.org/en-US/docs/Web/CSS/Child_combinator

styling-tutorial/src/components/Alert/Alert.css

.alert-wrapper {

 padding: 15px;

 margin-bottom: 15px;

}

.alert-wrapper > h2 {

 margin: 0 0 10px 0;

}

.alert-wrapper.success {

 border: #6da06f solid 1px;

}

.success > h2 {

 color: #6da06f;

}

.alert-wrapper.error {

 border: #f56260 solid 1px;

}

.error > h2 {

 color: #f56260;

}

Save and close the file. When you do, the page will refresh and you’ll see
the <h2> element in CartSuccess retain the default color:

H2 with dark color

Now the styles for the Alert component will only affect the immediate

children and will not apply to other child nodes or components. This
method works well in this case, but in circumstances where components are
more complex, it can be difficult to write rules that apply to all cases
without leaking outside the component.

In this step, you styled a component using CSS stylesheets imported
directly into a component. Styling React elements with standard CSS is a
quick way to create components with associated styles using standard CSS
files. The ease of use makes it a good first step when you are working on
new or small projects, but as the projects grow it can cause problems.

As you built the components, you encountered two common styling
problems: class name conflicts and unintended style application. You can

work around them with standard CSS, but there are other styling
approaches that give you tools for handling these problems
programmatically instead of with naming conventions. In the next step, you
will explore solving these problems with style objects.

Step 3 — Styling with Style Objects

In this step, you’ll style your components using style objects, which are
JavaScript objects that use CSS properties as keys. As you work on your
components, you’ll update keys to match the JavaScript syntax and learn
how to dynamically set style properties based on component props.

Separate CSS is the most common way to style HTML. This method is fast,
and browsers are efficient at applying styles quickly and consistently. But
this is not the only option for styling HTML. In standard HTML, you can
set inline styles directly on an element using the style attribute with a string
containing the styles you wanted to apply.

One of the best uses of style objects is for calculating styles dynamically.
This is particularly useful if you need to know the element’s current
position, since this is not determined until the elements are rendered and
thus can only be handled dynamically.

Writing style strings manually is difficult to do and can introduce bugs. A
missing color or semicolon will break the entire string. Fortunately, in JSX,
you aren’t limited to just a string. The style attribute can also accept an
object containing the styles. These style names will need to be camelCase

rather than kebab-case .

https://www.digitalocean.com/community/tutorials/understanding-objects-in-javascript
https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes/style
https://en.wikipedia.org/wiki/Camel_case

The biggest advantage to using inline styles like this is that, since you are
building styles with JavaScript, you can dynamically set CSS properties
instead of dynamically setting classes. This means you can write code
without CSS classes at all, avoiding any potential name conflicts and
allowing you to calculate styles at runtime.

To use style objects, start by refactoring App.js . First, open the file:

nano src/components/App/App.js

Inside the component, remove the imported App.css file, and then create an

object that has a padding of 20 and pass the object to the <div> using the

style attribute:

styling-tutorial/src/components/App/App.js

Notice that you do not have to specify pixels as the unit for padding . React

will convert this to a string of pixels by default. If you want a specific unit,

import React from 'react';

import Alert from '../Alert/Alert';

import CartSuccess from '../CartSuccess/CartSuccess';

function App() {

 const wrapper = {

 padding: 20

 };

 return(

 <div style={wrapper}>

 <Alert title="Items Not Added" type="error">

 <div>Your items are out of stock.</div>

 </Alert>

 <CartSuccess />

 </div>

)

}

export default App;

pass it as a string. So if you wanted the padding to be a percentage for
example, it would be padding: '20%' .

Most numbers will be automatically converted to pixels. There are
exceptions, however. The property line-height can take plain numbers

without a unit. If you wanted to use the pixels unit in that case, you’d need
to specify pixels as a string.

Save and close the file. When you do, the browser will refresh and you’ll
see the page as it was before:

Page with style object

Next, refactor CartSuccess . First, open the file:

nano src/components/CartSuccess/CartSuccess.js

As with App.js , remove the imported CSS (CartSuccess.css) and create a

style object for each item that previously had a class:

https://developer.mozilla.org/en-US/docs/Web/CSS/line-height#Syntax

styling-tutorial/src/components/CartSuccess/Car
tSuccess.js

import React from 'react';

import Alert from '../Alert/Alert';

export default function CartSuccess() {

 const styles = {

 header: {

 width: '100%'

 },

 item: {

 marginRight: 20

 },

 wrapper: {

 borderTop: 'black solid 1px',

 display: 'flex',

 flexWrap: 'wrap'

 }

 }

 return(

 <Alert title="Added to Cart" type="success">

 <div style={styles.wrapper}>

 <h2 style={styles.header}>

 You have added 3 items:

 </h2>

In this case, you didn’t create multiple, separate objects; instead, you
created a single object that contains other objects. Notice also that you
needed to use camel case for the properties of margin-right , border-top ,

and flex-wrap .

Save and close the file. When you do, the page will refresh and you’ll see
the page with the same styles:

 <div style={styles.item}>

 <div>Bananas</div>

 <div>Quantity: 2</div>

 </div>

 <div style={styles.item}>

 <div>Lettuce</div>

 <div>Quantity: 1</div>

 </div>

 </div>

 </Alert>

)

}

Page with style object

Since you are not using classes, you don’t have to worry about any name
conflicts. Another advantage of creating styles with JavaScript is that you
can take advantage of any JavaScript syntax such as variables and template
literals. With modern CSS, you can use variables, which is a major
improvement, but may not be fully available depending on your browser
support requirements. In particular, they are not supported in any version of
Internet Explorer, although you can use a polyfill to add support.

Since style objects are created at runtime, they are more predictable and can
use any supported JavaScript.

To see how style objects can help in this situation, refactor Alert.js to use

style objects. First, open Alert.js :

nano src/components/Alert/Alert.js

https://developer.mozilla.org/en-US/docs/Web/CSS/Using_CSS_custom_properties
https://en.wikipedia.org/wiki/Polyfill_(programming)

Inside Alert.js , remove import './Alert.css'; and create an object

called colors that has a property for the error color and a property for the

success color. Then convert the CSS to a JavaScript object using the type

prop to dynamically set the color:

styling-tutorial/src/components/Alert/Alert.js

import React from 'react';

import PropTypes from 'prop-types';

export default function Alert({ children, type, title }) {

 const colors = {

 success: '#6da06f',

 error: '#f56260',

 }

 const style = {

 heading: {

 color: colors[type],

 margin: '0 0 10px 0',

 },

 wrapper: {

 border: `${colors[type]} solid 1px`,

 marginBottom: 15,

 padding: 15,

 position: 'relative',

 }

 }

 return(

 <div style={style.wrapper}>

 <h2 style={style.heading}>{title}</h2>

There are a few changes here. First, you use a single style declaration for wr

apper and then dynamically set the color based on the type. You are not

styling <h2> elements in general, but instead are styling these particular

elements, which happen to be <h2> elements. Since you are not applying

styles to an element type, there is no danger that the styles will flow down
to child elements.

Save and close the file. When you do, the browser will refresh and you’ll
see the applied styles.

 {children}

 </div>

)

}

...

Page with style object

Style objects solve many problems, but they do have disadvantages. First,
there is a performance cost for inline styles. Browsers were designed to
handle CSS efficiently, and styles objects that apply inline styles can not
take advantage of these optimizations. The other problem is that it’s more
difficult to apply styles to child elements with style objects. In this case,
you did not want a style to apply to children, but it is often the case that you
do want styles to cascade. For example, setting a custom font family on
every element or applying a custom size to every <h2> element would be

easier if you used a less specific styling strategy.

There is, however, a middle ground between these approaches. Several
third-party libraries are designed to find this middle ground. In the next
step, you’ll create styles using a hybrid approach called CSS-in-JS using a
library called JSS.

Step 4 — Styling with JSS

https://reactjs.org/docs/faq-styling.html#are-inline-styles-bad

In this step, you’ll style objects using the popular library JSS. You’ll install
the new library and convert your style objects to JSS objects. You’ll then
refactor your code to use dynamically generated class names that will
prevent conflicts between class names across modules. You’ll also build
JavaScript style objects that dynamically set styles and use nested
properties to create specific style rules.

JSS is a library for creating CSS-in-JS. This methodology has many
different use cases and options, but the main advantage in this tutorial is
that it will create dynamic class names that avoid conflicts between
components. You also will be able to take advantage of JavaScript syntax,
which means you will be able to use variables and create styles based off of
React props.

To begin, install the React specific version of JSS. This tutorial will use
version 10.1.1 :

npm install react-jss

The package will install several dependencies, including a number of JSS
plugins that will give you the ability to write concise style rules.

When the installation is complete, you’ll see a success message:

https://cssinjs.org/
https://cssinjs.org/from-sass-to-cssinjs
https://cssinjs.org/react-jss/?v=v10.1.1
https://cssinjs.org/plugins?v=v10.1.1

Output
+ react-jss@10.1.1

added 281 packages from 178 contributors, removed 142 package

s, updated 1392 packages and audited 1025251 packages in 144.8

72s

Your output will vary slightly depending on your Node version and other
dependencies.

Now that the library is installed, convert App.js to use JSS. First, open Ap

p.js :

nano src/components/App/App.js

There are two steps to use JSS. First, you have to import a function to create
a custom hook. Hooks are functions that React will run on every component
render. With JSS, you have to create a hook by passing in the style
definitions, outside of the component. This will prevent the code from
running on every re-render; since the style definitions are static, there’s no
reason to run the code more then once.

Create the hook and the style object by making the highlighted changes:

https://reactjs.org/docs/hooks-custom.html

styling-tutorial/src/components/App/App.js

import React from 'react';

import { createUseStyles } from 'react-jss';

import Alert from '../Alert/Alert';

import CartSuccess from '../CartSuccess/CartSuccess';

const useStyles = createUseStyles({

 wrapper: {

 padding: 20,

 }

});

function App() {

 return(

 <div>

 <Alert title="Items Not Added" type="error">

 <div>Your items are out of stock.</div>

 </Alert>

 <CartSuccess />

 </div>

)

}

export default App;

Notice in this case that your style object contains another object called wra

pper , which contains the styles using the same camel case format. The

name of the object— wrapper—is the basis for creating the dynamic class

name.

After you create the hook, you consume it by executing the function inside
the component. This registers the hook and creates the styles dynamically.
Make the following highlighted change:

styling-tutorial/src/components/App/App.js

import React from 'react';

import { createUseStyles } from 'react-jss'

import Alert from '../Alert/Alert';

import CartSuccess from '../CartSuccess/CartSuccess';

const useStyles = createUseStyles({

 wrapper: {

 padding: 20,

 }

});

function App() {

 const classes = useStyles()

 return(

 <div className={classes.wrapper}>

 <Alert title="Items Not Added" type="error">

 <div>Your items are out of stock.</div>

 </Alert>

 <CartSuccess />

 </div>

)

}

export default App;

In this code, you call the function and assign the results to a variable called
classes . The new variable classes will be an object that contains the

dynamic class names. You then apply the appropriate class name to your
element by using the same name that you defined on the object. Here you
used classes.wrapper .

Save and close the file. When you do the browser will refresh and you’ll see
the same styles as before. But if you look at the console, you’ll see that the
class name does not perfectly match the one you defined in your object:

Styles with applied class names

In this case, the class name is wrapper-0-2-1 , but your class name may be

different. You’ll also see that the styles are converted from an object to CSS
and placed in a <style> tag. Contrast this to the inline styles, which are not

converted to CSS and do not have any class names.

JSS creates the class names dynamically so they will not conflict with
similar names in other files. To see this at work, refactor CartSuccess.js to

use JSS styling.

Open the file:

nano src/components/CartSuccess/CartSuccess.js

Inside the file, create a custom hook using createUseStyles . Instead of

applying a class to the <h2> element, you’ll create a rule for the <h2>

elements inside of a wrapper. To do that with plain CSS, you add a space
between the class and the element— .wrapper h2 . This applies the style to

all <h2> elements that are children of the .wrapper class.

With JSS, you can create a similar rule by creating another object inside of
the containing element. To link them up, start the object name with the &

symbol:

styling-tutorial/src/components/CartSuccess/Car
tSuccess.js

import React from 'react';

import { createUseStyles } from 'react-jss';

import Alert from '../Alert/Alert';

const useStyles = createUseStyles({

 item: {

 marginRight: 20

 },

 wrapper: {

 borderTop: 'black solid 1px',

 display: 'flex',

 flexWrap: 'wrap',

 '& h2': {

 width: '100%'

 }

 }

})

export default function CartSuccess() {

 const classes = useStyles();

 return(

 <Alert title="Added to Cart" type="success">

 <div className={classes.wrapper}>

 <h2>

In addition to creating rules for the wrapper, you also created a rule for ite

m . After creating the custom hook, you passed the custom class names to the

className property.

Save the file. Notice that you are using the same name— wrapper—in both

this component and the App component. But when the browser reloads,

there will be no naming conflict; everything will look correct. If you inspect
the elements in your browser, you’ll see that even though they started with
the same name, they each have a unique class:

 You have added 3 items:

 </h2>

 <div className={classes.item}>

 <div>Bananas</div>

 <div>Quantity: 2</div>

 </div>

 <div className={classes.item}>

 <div>Lettuce</div>

 <div>Quantity: 1</div>

 </div>

 </div>

 </Alert>

)

}

Image with multiple wrapper classes

In this case, the class for the outer component is wrapper-0-2-1 , which was

generated in the App component. The class for CartSuccess is wrapper-0-2

-3 . Your component names may be slightly different, but they will be

unique.

In some situations, you may need to make a specific selector to override
other styles. For example, let’s say you only want the item styling to apply

when the element is a child of the wrapper class. To do this, first create the

class on the object with no properties. Then inside the wrapper class,

reference the new class with a $ symbol:

styling-tutorial/src/components/CartSuccess/Car
tSuccess.js

import React from 'react';

import { createUseStyles } from 'react-jss'

import Alert from '../Alert/Alert';

const useStyles = createUseStyles({

 item: {},

 wrapper: {

 borderTop: 'black solid 1px',

 display: 'flex',

 flexWrap: 'wrap',

 '& h2': {

 width: '100%'

 },

 '& $item': {

 marginRight: 20

 }

 }

})

export default function CartSuccess() {

 const classes = useStyles()

 return(

 <Alert title="Added to Cart" type="success">

 <div className={classes.wrapper}>

Save and close the file. When the browser reloads, the page will look the
same, but the item CSS will be applied more specifically to items under the

wrapper component:

 <h2>

 You have added 3 items:

 </h2>

 <div className={classes.item}>

 <div>Bananas</div>

 <div>Quantity: 2</div>

 </div>

 <div className={classes.item}>

 <div>Lettuce</div>

 <div>Quantity: 1</div>

 </div>

 </div>

 </Alert>

)

}

Item class applied

JSS gives you the ability to create rules with the same level of focus that
you’d create with regular CSS, but will do so while creating unique class
names that won’t clash.

One final advantage of JSS is that you have the ability to use variables and
other JavaScript language features. Since you are using react-jss , you can

pass props to the style object to create dynamic styles. To test this out,
refactor the Alert.js component to use props and variables to create

dynamic properties.

First, open the file:

nano src/components/Alert/Alert.js

Create a style object like you did in the last refactored code. Be sure to
move the object defining the colors outside of the component function so it
is in the same scope as the createUseStyles function:

https://www.digitalocean.com/community/tutorials/understanding-variables-scope-hoisting-in-javascript#variable-scope

styling-tutorial/src/components/Alert/Alert.js

import React from 'react';

import PropTypes from 'prop-types';

import { createUseStyles } from 'react-jss';

const colors = {

 success: '#6da06f',

 error: '#f56260',

};

const useStyles = createUseStyles({

 wrapper: {

 border: ({ type }) => `${colors[type]} solid 1px`,

 marginBottom: 15,

 padding: 15,

 position: 'relative',

 '& h2': {

 color: ({ type }) => colors[type],

 margin: [0, 0, 10, 0],

 }

 }

});

export default function Alert({ children, type, title }) {

 const classes = useStyles({ type })

 return(

To pass props, you make the style rule a function. The function accepts the
props as an argument then returns a rule. To create a dynamic border, you
add border as the property name and an arrow function that takes type and

returns a string: ({ type }) => `${colors[type]} solid 1px`, . Then after

you create your hook, you pass in the props you want to reference when
creating the classes object. As before, you style the <h2> tag by element

instead of creating a specific class. You also pass an array of values for mar

gin rather than a string such as 0px 0px 10px 10px .

Save the file. Notice that you don’t have to pass all the props into the
function. In this case, you only want to use type , so that’s all you need to

pass. However, you can pass more or even pass unknown props using the
rest operator to collect props and then pass them as a group. You do need to
pass it as an object; however, since that’s the standard way to pass props, it
will make extending the arguments easier in the future.

 <div className={classes.wrapper}>

 <h2>{title}</h2>

 {children}

 </div>

)

}

...

https://www.digitalocean.com/community/tutorials/how-to-define-functions-in-javascript#arrow-functions

When the page reloads, you’ll see the correct colors, but there will be a
slight problem: the green success color is now updating the <h2> element in

CartSuccess :

H2 is green

JSS solves many problems, but it still creates standard CSS. That means
that styles can apply to child elements if you are not careful. To fix this, add
the > symbol to make the CSS only apply to immediate children:

styling-tutorial/src/components/Alert/Alert.js

import React from 'react';

...

const useStyles = createUseStyles({

 wrapper: {

 border: ({ type }) => `${colors[type]} solid 1px`,

 marginBottom: 15,

 padding: 15,

 position: 'relative',

 '& > h2': {

 color: ({ type }) => colors[type],

 margin: [0, 0, 10, 0],

 }

 }

});

export default function Alert({ children, type, title }) {

...

}

...

Save and close the file. When you do the browser will reload and you’ll see
the correct styles:

H2 with dark color

There is much more to JSS beyond what is covered in this tutorial. One
important advantage that we haven’t touched on is theming. JSS gives you
the ability to create styles based off of pre-defined theme objects. That
means that instead of creating a color red from a hard coded value, you can
make the alert border the alert color, which will likely be a shade of red,

but could be different depending on the theme definition. This is useful
when creating white label products or creating reusable components that
need to work across projects.

In this step, you styled components using a third-party library called react-

jss . You also created style object and used JSS to convert those objects into

dynamic classes to avoid conflicting with other components. Using this
method, you can safely reuse simple class names without worrying about

https://cssinjs.org/react-jss/?v=v10.1.1#theming

conflicts later in the code. Finally, you learned how to create styles using
functions and props to build dynamic styles that reference component
props.

Conclusion

Throughout this tutorial, you have developed several reusable components
that use different style techniques. You’ve learned how style objects and
JSS create objects using names that closely mirror standard CSS properties,
and have created components that can dynamically set styles based on
incoming properties. You also learned how different approaches provide
different options for handling name conflicts and reusability.

As with most React techniques, there is no single best solution. Instead, you
can choose the styling option that is the best fit for your project. With these
options in hand, you can start with something simple and refactor as the
project grows or the requirements change, while remaining confident that
your components will continue to meet your style goals.

If you would like to look at more React tutorials, check out our React Topic
page, or return to the How To Code in React.js series page.

https://www.digitalocean.com/community/tags/react
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-react-js

How To Manage State on React Class
Components

Written by Joe Morgan

The author selected Creative Commons to receive a donation as part of the
Write for DOnations program.

In React, state refers to a structure that keeps track of how data changes
over time in your application. Managing state is a crucial skill in React
because it allows you to make interactive components and dynamic web
applications. State is used for everything from tracking form inputs to
capturing dynamic data from an API. In this tutorial, you’ll run through an
example of managing state on class-based components.

As of the writing of this tutorial, the official React documentation
encourages developers to adopt React Hooks to manage state with
functional components when writing new code, rather than using class-
based components. Although the use of React Hooks is considered a more
modern practice, it’s important to understand how to manage state on class-
based components as well. Learning the concepts behind state management
will help you navigate and troubleshoot class-based state management in
existing code bases and help you decide when class-based state
management is more appropriate. There’s also a class-based method called
componentDidCatch that is not available in Hooks and will require setting

state using class methods.

https://www.digitalocean.com/community/tutorials/how-to-manage-state-on-react-class-components
https://creativecommons.org/
https://do.co/w4do-cta
https://reactjs.org/
https://reactjs.org/docs/state-and-lifecycle.html
https://www.digitalocean.com/community/tutorials/how-to-create-custom-components-in-react
https://reactjs.org/docs/hooks-faq.html#should-i-use-hooks-classes-or-a-mix-of-both
https://reactjs.org/docs/hooks-state.html
https://www.digitalocean.com/community/tutorials/how-to-create-custom-components-in-react#step-4-%E2%80%94-building-a-functional-component
https://www.digitalocean.com/community/tutorials/how-to-create-custom-components-in-react#step-2-%E2%80%94-creating-an-independent-component-with-react-classes
https://reactjs.org/docs/error-boundaries.html

This tutorial will first show you how to set state using a static value, which
is useful for cases where the next state does not depend on the first state,
such as setting data from an API that overrides old values. Then it will run
through how to set a state as the current state, which is useful when the next
state depends on the current state, such as toggling a value. To explore these
different ways of setting state, you’ll create a product page component that
you’ll update by adding purchases from a list of options.

Prerequisites

You will need a development environment running Node.js; this
tutorial was tested on Node.js version 10.20.1 and npm version 6.14.4.
To install this on macOS or Ubuntu 18.04, follow the steps in How to
Install Node.js and Create a Local Development Environment on
macOS or the Installing Using a PPA section of How To Install
Node.js on Ubuntu 18.04.

In this tutorial, you will create apps with Create React App. You can
find instructions for installing an application with Create React App at
How To Set Up a React Project with Create React App.

You will also need a basic knowledge of JavaScript, which you can
find in How To Code in JavaScript, along with a basic knowledge of
HTML and CSS. A good resource for HTML and CSS is the Mozilla
Developer Network.

Step 1 — Creating an Empty Project

https://nodejs.org/en/about/
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-and-create-a-local-development-environment-on-macos
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-on-ubuntu-18-04
https://github.com/facebook/create-react-app
https://www.digitalocean.com/community/tutorials/how-to-set-up-a-react-project-with-create-react-app
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-javascript
https://developer.mozilla.org/en-US/docs/Learn/HTML/Introduction_to_HTML

In this step, you’ll create a new project using Create React App. Then you
will delete the sample project and related files that are installed when you
bootstrap the project. Finally, you will create a simple file structure to
organize your components. This will give you a solid basis on which to
build this tutorial’s sample application for managing state on class-based
components.

To start, make a new project. In your terminal, run the following script to
install a fresh project using create-react-app :

npx create-react-app state-class-tutorial

After the project is finished, change into the directory:

cd state-class-tutorial

In a new terminal tab or window, start the project using the Create React
App start script. The browser will auto-refresh on changes, so leave this
script running while you work:

npm start

You will get a running local server. If the project did not open in a browser
window, you can open it with http://localhost:3000/. If you are running

this from a remote server, the address will be http://your_domain:3000 .

Your browser will load with a simple React application included as part of
Create React App:

https://github.com/facebook/create-react-app
https://www.digitalocean.com/community/tutorials/how-to-set-up-a-react-project-with-create-react-app#step-3-%E2%80%94-starting-the-server
http://localhost:3000/

React template project

You will be building a completely new set of custom components, so you’ll
need to start by clearing out some boilerplate code so that you can have an
empty project.

To start, open src/App.js in a text editor. This is the root component that is

injected into the page. All components will start from here. You can find
more information about App.js at How To Set Up a React Project with

Create React App.

Open src/App.js with the following command:

nano src/App.js

You will see a file like this:

https://www.digitalocean.com/community/tutorials/how-to-set-up-a-react-project-with-create-react-app#step-5-%E2%80%94-modifying-the-heading-tag-and-styling

state-class-tutorial/src/App.js

import React from 'react';

import logo from './logo.svg';

import './App.css';

function App() {

 return (

 <div className="App">

 <header className="App-header">

 <p>

 Edit <code>src/App.js</code> and save to reload.

 </p>

 <a

 className="App-link"

 href="https://reactjs.org"

 target="_blank"

 rel="noopener noreferrer"

 >

 Learn React

 </header>

 </div>

);

}

Delete the line import logo from './logo.svg'; . Then replace everything

in the return statement to return a set of empty tags: <></> . This will give

you a valid page that returns nothing. The final code will look like this:

state-class-tutorial/src/App.js

Save and exit the text editor.

Finally, delete the logo. You won’t be using it in your application and you
should remove unused files as you work. It will save you from confusion in
the long run.

export default App;

import React from 'react';

import './App.css';

function App() {

 return <></>;

}

export default App;

In the terminal window type the following command:

rm src/logo.svg

If you look at your browser, you will see a blank screen.

blank screen in chrome

Now that you have cleared out the sample Create React App project, create
a simple file structure. This will help you keep your components isolated
and independent.

Create a directory called components in the src directory. This will hold all

of your custom components.

mkdir src/components

Each component will have its own directory to store the component file
along with the styles, images, and tests.

Create a directory for App :

mkdir src/components/App

Move all of the App files into that directory. Use the wildcard, * , to select

any files that start with App. regardless of file extension. Then use the mv

command to put them into the new directory:

mv src/App.* src/components/App

Next, update the relative import path in index.js , which is the root

component that bootstraps the whole process:

nano src/index.js

The import statement needs to point to the App.js file in the App directory,

so make the following highlighted change:

state-class-tutorial/src/index.js

Save and exit the file.

Now that the project is set up, you can create your first component.

Step 2 — Using State in a Component

import React from 'react';

import ReactDOM from 'react-dom';

import './index.css';

import App from './components/App/App';

import * as serviceWorker from './serviceWorker';

ReactDOM.render(

 <React.StrictMode>

 <App />

 </React.StrictMode>,

 document.getElementById('root')

);

// If you want your app to work offline and load faster, you ca

// unregister() to register() below. Note this comes with some

// Learn more about service workers: https://bit.ly/CRA-PWA

serviceWorker.unregister();

In this step, you’ll set the initial state of a component on its class and
reference the state to display a value. You’ll then make a product page with
a shopping cart that displays the total items in the cart using the state value.
By the end of the step, you’ll know the different ways to hold a value and
when you should use state rather than a prop or a static value.

Building the Components

Start by creating a directory for Product :

mkdir src/components/Product

Next, open up Product.js in that directory:

nano src/components/Product/Product.js

Start by creating a component with no state. The component will have two
parts: The cart, which has the number of items and the total price, and the
product, which has a button to add and remove an item. For now, the
buttons will have no actions.

Add the following code to Product.js :

state-class-tutorial/src/components/Product/Pro
duct.js

You have also included a couple of div elements that have JSX class names

so you can add some basic styling.

import React, { Component } from 'react';

import './Product.css';

export default class Product extends Component {

 render() {

 return(

 <div className="wrapper">

 <div>

 Shopping Cart: 0 total items.

 </div>

 <div>Total: 0</div>

 <div className="product"><span role="img" aria-label="i

 <button>Add</button> <button>Remove</button>

 </div>

)

 }

}

https://www.digitalocean.com/community/tutorials/how-to-create-react-elements-with-jsx

Save and close the file, then open Product.css :

nano src/components/Product/Product.css

Give some light styling to increase the font-size for the text and the

emoji:

state-class-tutorial/src/components/Product/Pro
duct.css

The emoji will need a much larger font size than the text, since it’s acting as
the product image in this example. In addition, you are removing the default

.product span {

 font-size: 100px;

}

.wrapper {

 padding: 20px;

 font-size: 20px;

}

.wrapper button {

 font-size: 20px;

 background: none;

}

gradient background on buttons by setting the background to none .

Save and close the file.

Now, render the Product component in the App component so you can see

the results in the browser. Open App.js :

nano src/components/App/App.js

Import the component and render it. You can also delete the CSS import
since you won’t be using it in this tutorial:

state-class-tutorial/src/components/App/App.js

Save and close the file. When you do, the browser will refresh and you’ll
see the Product component.

import React from 'react';

import Product from '../Product/Product';

function App() {

 return <Product />

}

export default App;

Product Page

Setting the Initial State on a Class Component

There are two values in your component values that are going to change in
your display: total number of items and total cost. Instead of hard coding
them, in this step you’ll move them into an object called state .

The state of a React class is a special property that controls the rendering

of a page. When you change the state, React knows that the component is
out-of-date and will automatically re-render. When a component re-renders,
it modifies the rendered output to include the most up-to-date information
in state . In this example, the component will re-render whenever you add

a product to the cart or remove it from the cart. You can add other properties
to a React class, but they won’t have the same ability to trigger re-
rendering.

https://www.digitalocean.com/community/tutorials/understanding-objects-in-javascript

Open Product.js :

nano src/components/Product/Product.js

Add a property called state to the Product class. Then add two values to

the state object: cart and total . The cart will be an array, since it may

eventually hold many items. The total will be a number. After assigning

these, replace references to the values with this.state.property :

https://www.digitalocean.com/community/tutorials/understanding-arrays-in-javascript

state-class-tutorial/src/components/Product/Pro
duct.js

import React, { Component } from 'react';

import './Product.css';

export default class Product extends Component {

 state = {

 cart: [],

 total: 0

 }

 render() {

 return(

 <div className="wrapper">

 <div>

 Shopping Cart: {this.state.cart.length} total items.

 </div>

 <div>Total {this.state.total}</div>

 <div className="product"><span role="img" aria-label="i

 <button>Add</button> <button>Remove</button>

 </div>

)

Notice that in both cases, since you are referencing JavaScript inside of
your JSX, you need to wrap the code in curly braces. You are also
displaying the length of the cart array to get a count of the number of

items in the array.

Save the file. When you do, the browser will refresh and you’ll see the same
page as before.

Product Page

 }

}

The state property is a standard class property, which means that it is

accessible in other methods, not just the render method.

Next, instead of displaying the price as a static value, convert it to a string
using the toLocaleString method, which will convert the number to a string

that matches the way numbers are displayed in the browser’s region.

Create a method called getTotal() that takes the state and converts it to a

localized string using an array of currencyOptions . Then, replace the

reference to state in the JSX with a method call:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/toLocaleString

state-class-tutorial/src/components/Product/Pro
duct.js

import React, { Component } from 'react';

import './Product.css';

export default class Product extends Component {

 state = {

 cart: [],

 total: 0

 }

 currencyOptions = {

 minimumFractionDigits: 2,

 maximumFractionDigits: 2,

 }

 getTotal = () => {

 return this.state.total.toLocaleString(undefined, this.curr

 }

 render() {

 return(

 <div className="wrapper">

 <div>

 Shopping Cart: {this.state.cart.length} total items.

Since total is a price for goods, you are passing currencyOptions that set

the maximum and minimum decimal places for your total to two. Note

that this is set as a separate property. Often, beginner React developers will
put information like this in the state object, but it is best to only add

information to state that you expect to change. This way, the information

in state will be easier to keep strack of as your application scales.

Another important change you made was to create the getTotal() method

by assigning an arrow function to a class property. Without using the arrow
function, this method would create a new this binding, which would

interfere with the current this binding and introduce a bug into our code.

You’ll see more on this in the next step.

Save the file. When you do, the page will refresh and you’ll see the value
converted to a decimal.

 </div>

 <div>Total {this.getTotal()}</div>

 <div className="product"><span role="img" aria-label="i

 <button>Add</button> <button>Remove</button>

 </div>

)

 }

}

https://www.digitalocean.com/community/tutorials/getting-started-with-es6-arrow-functions-in-javascript
https://www.digitalocean.com/community/conceptual_articles/understanding-this-bind-call-and-apply-in-javascript

Price converted to decimal

You’ve now added state to a component and referenced it in your class. You
also accessed values in the render method and in other class methods.

Next, you’ll create methods to update the state and show dynamic values.

Step 3 — Setting State from a Static Value

So far you’ve created a base state for the component and you’ve referenced
that state in your functions and your JSX code. In this step, you’ll update
your product page to modify the state on button clicks. You’ll learn how

to pass a new object containing updated values to a special method called s

etState , which will then set the state with the updated data.

To update state , React developers use a special method called setState

that is inherited from the base Component class. The setState method can

take either an object or a function as the first argument. If you have a static
value that doesn’t need to reference the state , it’s best to pass an object

containing the new value, since it’s easier to read. If you need to reference
the current state, you pass a function to avoid any references to out-of-date
state .

Start by adding an event to the buttons. If your user clicks Add, then the
program will add the item to the cart and update the total . If they click

Remove, it will reset the cart to an empty array and the total to 0 . For

example purposes, the program will not allow a user to add an item more
then once.

Open Product.js :

nano src/components/Product/Product.js

Inside the component, create a new method called add , then pass the

method to the onClick prop for the Add button:

state-class-tutorial/src/components/Product/Pro
duct.js

import React, { Component } from 'react';

import './Product.css';

export default class Product extends Component {

 state = {

 cart: [],

 total: 0

 }

 add = () => {

 this.setState({

 cart: ['ice cream'],

 total: 5

 })

 }

 currencyOptions = {

 minimumFractionDigits: 2,

 maximumFractionDigits: 2,

 }

 getTotal = () => {

 return this.state.total.toLocaleString(undefined, this.curr

Inside the add method, you call the setState method and pass an object

containing the updated cart with a single item ice cream and the updated

price of 5 . Notice that you again used an arrow function to create the add

method. As mentioned before, this will ensure the function has the proper t

his context when running the update. If you add the function as a method

without using the arrow function, the setState would not exist without

binding the function to the current context.

 }

 render() {

 return(

 <div className="wrapper">

 <div>

 Shopping Cart: {this.state.cart.length} total items.

 </div>

 <div>Total {this.getTotal()}</div>

 <div className="product"><span role="img" aria-label="i

 <button onClick={this.add}>Add</button>

 <button>Remove</button>

 </div>

)

 }

}

https://www.digitalocean.com/community/conceptual_articles/understanding-this-bind-call-and-apply-in-javascript

For example, if you created the add function this way:

The user would get an error when they click on the Add button.

Context Error

Using an arrow function ensures that you’ll have the proper context to
avoid this error.

export default class Product extends Component {

...

 add() {

 this.setState({

 cart: ['ice cream'],

 total: 5

 })

 }

...

}

Save the file. When you do, the browser will reload, and when you click on
the Add button the cart will update with the current amount.

Click on the button and see state updated

With the add method, you passed both properties of the state object: cart

and total . However, you do not always need to pass a complete object.

You only need to pass an object containing the properties that you want to
update, and everything else will stay the same.

To see how React can handle a smaller object, create a new function called
remove . Pass a new object containing just the cart with an empty array,

then add the method to the onClick property of the Remove button:

state-class-tutorial/src/components/Product/Pro
duct.js

import React, { Component } from 'react';

import './Product.css';

export default class Product extends Component {

 ...

 remove = () => {

 this.setState({

 cart: []

 })

 }

 render() {

 return(

 <div className="wrapper">

 <div>

 Shopping Cart: {this.state.cart.length} total items.

 </div>

 <div>Total {this.getTotal()}</div>

 <div className="product"><span role="img" aria-label="i

 <button onClick={this.add}>Add</button>

 <button onClick={this.remove}>Remove</button>

 </div>

Save the file. When the browser refreshes, click on the Add and Remove
buttons. You’ll see the cart update, but not the price. The total state value

is preserved during the update. This value is only preserved for example
purposes; with this application, you would want to update both properties of
the state object. But you will often have components with stateful

properties that have different responsibilities, and you can make them
persist by leaving them out of the updated object.

The change in this step was static. You knew exactly what the values would
be ahead of time, and they didn’t need to be recalculated from state . But if

the product page had many products and you wanted to be able to add them
multiple times, passing a static object would provide no guarantee of
referencing the most up-to-date state , even if your object used a this.sta

te value. In this case, you could instead use a function.

In the next step, you’ll update state using functions that reference the

current state.

Step 4 — Setting State Using Current State

There are many times when you’ll need to reference a previous state to
update a current state, such as updating an array, adding a number, or

)

 }

}

modifying an object. To be as accurate as possible, you need to reference
the most up-to-date state object. Unlike updating state with a predefined

value, in this step you’ll pass a function to the setState method, which

will take the current state as an argument. Using this method, you will
update a component’s state using the current state.

Another benefit of setting state with a function is increased reliability. To

improve performance, React may batch setState calls, which means that t

his.state.value may not be fully reliable. For example, if you update sta

te quickly in several places, it is possible that a value could be out of date.

This can happen during data fetches, form validations, or any situation
where several actions are occurring in parallel. But using a function with
the most up-to-date state as the argument ensures that this bug will not

enter your code.

To demonstrate this form of state management, add some more items to the
product page. First, open the Product.js file:

nano src/components/Product/Product.js

Next, create an array of objects for different products. The array will
contain the product emoji, name, and price. Then loop over the array to
display each product with an Add and Remove button:

state-class-tutorial/src/components/Product/Pro
duct.js

import React, { Component } from 'react';

import './Product.css';

const products = [

 {

 emoji: '🍦',

 name: 'ice cream',

 price: 5

 },

 {

 emoji: '🍩',

 name: 'donuts',

 price: 2.5,

 },

 {

 emoji: '🍉',

 name: 'watermelon',

 price: 4

 }

];

export default class Product extends Component {

 ...

 render() {

 return(

 <div className="wrapper">

 <div>

 Shopping Cart: {this.state.cart.length} total items.

 </div>

 <div>Total {this.getTotal()}</div>

 <div>

 {products.map(product => (

 <div key={product.name}>

 <div className="product">

 {pro

 </div>

 <button onClick={this.add}>Add</button>

 <button onClick={this.remove}>Remove</button>

 </div>

))}

 </div>

 </div>

)

 }

}

In this code, you are using the map() array method to loop over the product

s array and return the JSX that will display each element in your browser.

Save the file. When the browser reloads, you’ll see an updated product list:

https://www.digitalocean.com/community/tutorials/how-to-use-array-methods-in-javascript-iteration-methods#map()

Product list

Now you need to update your methods. First, change the add() method to

take the product as an argument. Then instead of passing an object to setS

tate() , pass a function that takes the state as an argument and returns an

object that has the cart updated with the new product and the total

updated with the new price:

state-class-tutorial/src/components/Product/Pro
duct.js

import React, { Component } from 'react';

import './Product.css';

...

export default class Product extends Component {

 state = {

 cart: [],

 total: 0

 }

 add = (product) => {

 this.setState(state => ({

 cart: [...state.cart, product.name],

 total: state.total + product.price

 }))

 }

 currencyOptions = {

 minimumFractionDigits: 2,

 maximumFractionDigits: 2,

 }

 getTotal = () => {

 return this.state.total.toLocaleString(undefined, this.curr

 }

 remove = () => {

 this.setState({

 cart: []

 })

 }

 render() {

 return(

 <div className="wrapper">

 <div>

 Shopping Cart: {this.state.cart.length} total items.

 </div>

 <div>Total {this.getTotal()}</div>

 <div>

 {products.map(product => (

 <div key={product.name}>

 <div className="product">

 {pro

 </div>

 <button onClick={() => this.add(product)}>Add</bu

 <button onClick={this.remove}>Remove</button>

 </div>

Inside the anonymous function that you pass to setState() , make sure you

reference the argument— state—and not the component’s state— this.st

ate . Otherwise, you still run a risk of getting an out-of-date state object.

The state in your function will be otherwise identical.

Take care not to directly mutate state. Instead, when adding a new value to
the cart , you can add the new product to the state by using the spread

syntax on the current value and adding the new value onto the end.

Finally, update the call to this.add by changing the onClick() prop to

take an anonymous function that calls this.add() with the relevant

product.

Save the file. When you do, the browser will reload and you’ll be able to
add multiple products.

))}

 </div>

 </div>

)

 }

}

https://www.digitalocean.com/community/tutorials/understanding-destructuring-rest-parameters-and-spread-syntax-in-javascript#spread

Adding products

Next, update the remove() method. Follow the same steps: convert setSta

te to take a function, update the values without mutating, and update the on

Change() prop:

state-class-tutorial/src/components/Product/Pro
duct.js

import React, { Component } from 'react';

import './Product.css';

...

export default class Product extends Component {

...

 remove = (product) => {

 this.setState(state => {

 const cart = [...state.cart];

 cart.splice(cart.indexOf(product.name))

 return ({

 cart,

 total: state.total - product.price

 })

 })

 }

 render() {

 return(

 <div className="wrapper">

 <div>

To avoid mutating the state object, you must first make a copy of it using
the spread operator. Then you can splice out the item you want from the

copy and return the copy in the new object. By copying state as the first

step, you can be sure that you will not mutate the state object.

 Shopping Cart: {this.state.cart.length} total items.

 </div>

 <div>Total {this.getTotal()}</div>

 <div>

 {products.map(product => (

 <div key={product.name}>

 <div className="product">

 {pro

 </div>

 <button onClick={() => this.add(product)}>Add</bu

 <button onClick={() => this.remove(product)}>Remo

 </div>

))}

 </div>

 </div>

)

 }

}

https://www.digitalocean.com/community/tutorials/how-to-use-array-methods-in-javascript-mutator-methods#splice()

Save the file. When you do, the browser will refresh and you’ll be able to
add and remove items:

Remove items

There is still a bug in this application: In the remove method, a user can

subtract from the total even if the item is not in the cart . If you click

Remove on the ice cream without adding it to your cart, your total will be
-5.00.

You can fix the bug by checking for an item’s existence before subtracting,
but an easier way is to keep your state object small by only keeping
references to the products and not separating references to products and
total cost. Try to avoid double references to the same data. Instead, store the
raw data in state— in this case the whole product object—then perform

the calculations outside of the state .

Refactor the component so that the add() method adds the whole object,

the remove() method removes the whole object, and the getTotal method

uses the cart :

state-class-tutorial/src/components/Product/Pro
duct.js

import React, { Component } from 'react';

import './Product.css';

...

export default class Product extends Component {

 state = {

 cart: [],

 }

 add = (product) => {

 this.setState(state => ({

 cart: [...state.cart, product],

 }))

 }

 currencyOptions = {

 minimumFractionDigits: 2,

 maximumFractionDigits: 2,

 }

 getTotal = () => {

The add() method is similar to what it was before, except that reference to

the total property has been removed. In the remove() method, you find

 const total = this.state.cart.reduce(
 (totalCost, item) => totalCost + item.price, 0);

 return total.toLocaleString(undefined, this.currencyOptions

 }

 remove = (product) => {

 this.setState(state => {

 const cart = [...state.cart];

 const productIndex = cart.findIndex(p => p.name === produ

 if(productIndex < 0) {

 return;

 }

 cart.splice(productIndex, 1)

 return ({

 cart

 })

 })

 }

 render() {

 ...

 }

}

the index of the product with findByIndex . If the index doesn’t exist,

you’ll get a -1 . In that case, you use a conditional statement toreturn

nothing. By returning nothing, React will know the state didn’t change

and won’t trigger a re-render. If you return state or an empty object, it will

still trigger a re-render.

When using the splice() method, you are now passing 1 as the second

argument, which will remove one value and keep the rest.

Finally, you calculate the total using the reduce() array method.

Save the file. When you do, the browser will refresh and you’ll have your
final cart :

https://www.digitalocean.com/community/tutorials/how-to-write-conditional-statements-in-javascript
https://www.digitalocean.com/community/tutorials/list-processing-with-map-filter-and-reduce

Add and remove

The setState function you pass can have an additional argument of the

current props, which can be helpful if you have state that needs to reference
the current props. You can also pass a callback function to setState as the

second argument, regardless of if you pass an object or function for the first

argument. This is particularly useful when you are setting state after

fetching data from an API and you need to perform a new action after the s

tate update is complete.

In this step, you learned how to update a new state based on the current
state. You passed a function to the setState function and calculated new

values without mutating the current state. You also learned how to exit a se

tState function if there is no update in a manner that will prevent a re-

render, adding a slight performance enhancement.

Conclusion

In this tutorial, you have developed a class-based component with a
dynamic state that you’ve updated statically and using the current state. You
now have the tools to make complex projects that respond to users and
dynamic information.

React does have a way to manage state with Hooks, but it is helpful to
understand how to use state on components if you need to work with
components that must be class-based, such as those that use the componentD

idCatch method.

Managing state is key to nearly all components and is necessary for creating
interactive applications. With this knowledge you can recreate many
common web components, such as sliders, accordions, forms, and more.
You will then use the same concepts as you build applications using hooks
or develop components that pull data dynamically from APIs.

If you would like to look at more React tutorials, check out our React Topic
page, or return to the How To Code in React.js series page.

https://www.digitalocean.com/community/tags/react
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-react-js

How To Manage State with Hooks on
React Components

Written by Joe Morgan

The author selected Creative Commons to receive a donation as part of the
Write for DOnations program.

In React development, keeping track of how your application data changes
over time is called state management. By managing the state of your
application, you will be able to make dynamic apps that respond to user
input. There are many methods of managing state in React, including class-
based state management and third-party libraries like Redux. In this tutorial,
you’ll manage state on functional components using a method encouraged
by the official React documentation: Hooks.

Hooks are a broad set of tools that run custom functions when a
component’s props change. Since this method of state management doesn’t
require you to use classes, developers can use Hooks to write shorter, more
readable code that is easy to share and maintain. One of the main
differences between Hooks and class-based state management is that there
is no single object that holds all of the state. Instead, you can break up state
into multiple pieces that you can update independently.

Throughout this tutorial, you’ll learn how to set state using the useState

and useReducer Hooks. The useState Hook is valuable when setting a

value without referencing the current state; the useReducer Hook is useful

when you need to reference a previous value or when you have different

https://www.digitalocean.com/community/tutorials/how-to-manage-state-with-hooks-on-react-components
https://creativecommons.org/
https://do.co/w4do-cta
https://reactjs.org/
https://www.digitalocean.com/community/tutorials/how-to-manage-state-on-react-class-components
https://redux.js.org/
https://reactjs.org/docs/hooks-faq.html#should-i-use-hooks-classes-or-a-mix-of-both
https://www.digitalocean.com/community/tutorials/how-to-customize-react-components-with-props
https://reactjs.org/docs/hooks-reference.html#usestate
https://reactjs.org/docs/hooks-reference.html#usereducer

actions the require complex data manipulations. To explore these different
ways of setting state, you’ll create a product page component with a
shopping cart that you’ll update by adding purchases from a list of options.
By the end of this tutorial, you’ll be comfortable managing state in a
functional component using Hooks, and you’ll have a foundation for more
advanced Hooks such as useEffect, useMemo, and useContext.

Prerequisites

You will need a development environment running Node.js; this
tutorial was tested on Node.js version 10.20.1 and npm version 6.14.4.
To install this on macOS or Ubuntu 18.04, follow the steps in How to
Install Node.js and Create a Local Development Environment on
macOS or the Installing Using a PPA section of How To Install
Node.js on Ubuntu 18.04.

A React development environment set up with Create React App, with
the non-essential boilerplate removed. To set this up, follow Step 1 —
Creating an Empty Project of the How To Manage State on React
Class Components tutorial. This tutorial will use hooks-tutorial as

the project name.

You will also need a basic knowledge of JavaScript, which you can
find in How To Code in JavaScript, along with a basic knowledge of
HTML and CSS. A useful resource for HTML and CSS is the Mozilla
Developer Network.

Step 1 – Setting Initial State in a Component

https://reactjs.org/docs/hooks-reference.html#useeffect
https://reactjs.org/docs/hooks-reference.html#usememo
https://reactjs.org/docs/hooks-reference.html#usecontext
https://nodejs.org/en/about/
https://www.npmjs.com/
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-and-create-a-local-development-environment-on-macos
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-on-ubuntu-18-04
https://github.com/facebook/create-react-app
https://www.digitalocean.com/community/tutorials/how-to-manage-state-on-react-class-components#step-1-%E2%80%94-creating-an-empty-project
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-javascript
https://developer.mozilla.org/en-US/docs/Learn/HTML/Introduction_to_HTML

In this step, you’ll set the initial state on a component by assigning the
initial state to a custom variable using the useState Hook. To explore

Hooks, you’ll make a product page with a shopping cart, then display the
initial values based on the state. By the end of the step, you’ll know the
different ways to hold a state value using Hooks and when to use state
rather than a prop or a static value.

Start by creating a directory for a Product component:

mkdir src/components/Product

Next, open up a file called Product.js in the Product directory:

nano src/components/Product/Product.js

Start by creating a component with no state. The component will consist of
two parts: the cart, which has the number of items and the total price, and
the product, which has a button to add or remove the item from the cart. For
now, these buttons will have no function.

Add the following code to the file:

https://www.digitalocean.com/community/tutorials/how-to-create-custom-components-in-react

hooks-tutorial/src/components/Product/Product.j
s

In this code, you used JSX to create the HTML elements for the Product

component, with an ice cream emoji to represent the product. In addition,
two of the <div> elements have class names so you can add some basic

CSS styling.

import React from 'react';

import './Product.css';

export default function Product() {

 return(

 <div className="wrapper">

 <div>

 Shopping Cart: 0 total items.

 </div>

 <div>Total: 0</div>

 <div className="product"><span role="img" aria-label="ice

 <button>Add</button> <button>Remove</button>

 </div>

)

}

https://www.digitalocean.com/community/tutorials/how-to-create-react-elements-with-jsx

Save and close the file, then create a new file called Product.css in the Pro

duct directory:

nano src/components/Product/Product.css

Add some styling to increase the font size for the text and the emoji:

hooks-tutorial/src/components/Product/Product.c
ss

.product span {

 font-size: 100px;

}

.wrapper {

 padding: 20px;

 font-size: 20px;

}

.wrapper button {

 font-size: 20px;

 background: none;

 border: black solid 1px;

}

The emoji will need a much larger font-size , since it’s acting as the

product image. In addition, you are removing the default gradient
background on the button by setting background to none .

Save and close the file. Now, add the component into the App component to

render the Product component in the browser. Open App.js :

nano src/components/App/App.js

Import the component and render it. Also, delete the CSS import since you
won’t be using it in this tutorial:

hooks-tutorial/src/components/App/App.js

Save and close the file. When you do, the browser will refresh and you’ll
see the Product component:

import React from 'react';

import Product from '../Product/Product';

function App() {

 return <Product />

}

export default App;

Product Page

Now that you have a working component, you can replace the hard-coded
data with dynamic values.

React exports several Hooks that you can import directly from the main Re

act package. By convention, React Hooks start with the word use , such as

useState , useContext , and useReducer . Most third-party libraries follow

the same convention. For example, Redux has a useSelector and a useStor

e Hook.

Hooks are functions that let you run actions as part of the React lifecycle.
Hooks are triggered either by other actions or by changes in a component’s
props and are used to either create data or to trigger further changes. For
example, the useState Hook generates a stateful piece of data along with a

function for changing that piece of data and triggering a re-render. It will

https://reactjs.org/docs/hooks-reference.html
https://react-redux.js.org/
https://react-redux.js.org/api/hooks
https://reactjs.org/docs/react-component.html#the-component-lifecycle

create a dynamic piece of code and hook into the lifecycle by triggering re-
renders when the data changes. In practice, that means you can store
dynamic pieces of data in variables using the useState Hook.

For example, in this component, you have two pieces of data that will
change based on user actions: the cart and the total cost. Each of these can
be stored in state using the above Hook.

To try this out, open up Product.js :

nano src/components/Product/Product.js

Next, import the useState Hook from React by adding the highlighted

code:

hooks-tutorial/src/components/Product/Product.j
s

useState is a function that takes the initial state as an argument and returns

an array with two items. The first item is a variable containing the state,
which you will often use in your JSX. The second item in the array is a
function that will update the state. Since React returns the data as an array,
you can use destructuring to assign the values to any variable names you

import React, { useState } from 'react';

import './Product.css';

export default function Product() {

 return(

 <div className="wrapper">

 <div>

 Shopping Cart: 0 total items.

 </div>

 <div>Total: 0</div>

 <div className="product"><span role="img" aria-label="ice

 <button>Add</button> <button>Remove</button>

 </div>

)

}

https://www.digitalocean.com/community/tutorials/understanding-arrays-in-javascript
https://www.digitalocean.com/community/tutorials/understanding-destructuring-rest-parameters-and-spread-syntax-in-javascript

want. That means you can call useState many times and never have to

worry about name conflicts, since you can assign every piece of state and
update function to a clearly named variable.

Create your first Hook by invoking the useState Hook with an empty

array. Add in the following highlighted code:

hooks-tutorial/src/components/Product/Product.j
s

Here you assigned the first value, the state, to a variable called cart . cart

will be an array that contains the products in the cart. By passing an empty
array as an argument to useState , you set the initial empty state as the first

value of cart .

import React, { useState } from 'react';

import './Product.css';

export default function Product() {

 const [cart, setCart] = useState([]);

 return(

 <div className="wrapper">

 <div>

 Shopping Cart: {cart.length} total items.

 </div>

 <div>Total: 0</div>

 <div className="product"><span role="img" aria-label="ice

 <button>Add</button> <button>Remove</button>

 </div>

)

}

In addition to the cart variable, you assigned the update function to a

variable called setCart . At this point, you aren’t using the setCart

function, and you may see a warning about having an unused variable.
Ignore this warning for now; in the next step, you’ll use setCart to update

the cart state.

Save the file. When the browser reloads, you’ll see the page without
changes:

Product Page

One important difference between Hooks and class-based state management
is that, in class-based state management, there is a single state object. With
Hooks, state objects are completely independent of each other, so you can
have as many state objects as you want. That means that if you want a new

piece of stateful data, all you need to do is call useState with a new default

and assign the result to new variables.

Inside Product.js , try this out by creating a new piece of state to hold the

total . Set the default value to 0 and assign the value and function to tota

l and setTotal :

hooks-tutorial/src/components/Product/Product.j
s

Now that you have some stateful data, you can standardize the displayed
data to make a more predictable experience. For example, since the total in
this example is a price, it will always have two decimal places. You can use

import React, { useState } from 'react';

import './Product.css';

export default function Product() {

 const [cart, setCart] = useState([]);

 const [total, setTotal] = useState(0);

 return(

 <div className="wrapper">

 <div>

 Shopping Cart: {cart.length} total items.

 </div>

 <div>Total: {total}</div>

 <div className="product"><span role="img" aria-label="ice

 <button>Add</button> <button>Remove</button>

 </div>

)

}

the toLocaleString method to convert total from a number to a string

with two decimal places. It will also convert the number to a string
according to the numerical conventions that match the browser’s locale.
You’ll set the options minimumFractionDigits and maximumFractionDigits

to give a consistent number of decimal places.

Create a function called getTotal . This function will use the in-scope

variable total and return a localized string that you will use to display the

total. Use undefined as the first argument to toLocaleString to use the

system locale rather than specifying a locale:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/toLocaleString

hooks-tutorial/src/components/Product/Product.j
s

import React, { useState } from 'react';

import './Product.css';

const currencyOptions = {

 minimumFractionDigits: 2,

 maximumFractionDigits: 2,

}

export default function Product() {

 const [cart, setCart] = useState([]);

 const [total, setTotal] = useState(0);

 function getTotal() {

 return total.toLocaleString(undefined, currencyOptions)

 }

 return(

 <div className="wrapper">

 <div>

 Shopping Cart: {cart.length} total items.

 </div>

 <div>Total: {getTotal()}</div>

 <div className="product"><span role="img" aria-label="ice

You now have added some string processing to the displayed total. Even
though getTotal is a separate function, it shares the same scope as the

surrounding function, which means it can reference the variables of the
component.

Save the file. The page will reload and you’ll see the updated total with two
decimal places:

Price converted to decimal

 <button>Add</button> <button>Remove</button>

 </div>

)

}

This function works, but as of now, getTotal can only operate in this piece

of code. In this case, you can convert it to a pure function, which gives the
same outputs when given the same inputs and does not rely on a specific
environment to operate. By converting the function to a pure function, you
make it more reusable. You can, for example, extract it to a separate file and
use it in multiple components.

Update getTotal to take total as an argument. Then move the function

outside of the component:

hooks-tutorial/src/components/Product/Product.j
s

import React, { useState } from 'react';

import './Product.css';

const currencyOptions = {

 minimumFractionDigits: 2,

 maximumFractionDigits: 2,

}

function getTotal(total) {

 return total.toLocaleString(undefined, currencyOptions)

}

export default function Product() {

 const [cart, setCart] = useState([]);

 const [total, setTotal] = useState(0);

 return(

 <div className="wrapper">

 <div>

 Shopping Cart: {cart.length} total items.

Save the file. When you do, the page will reload and you’ll see the
component as it was before.

Functional components like this make it easier to move functions around.
As long as there are no scope conflicts, you can move these conversion
functions anywhere you want.

In this step, you set the default value for a stateful piece of data using useS

tate . You then saved the stateful data and a function for updating the state

to variables using array destructuring. In the next step, you’ll use the update
function to change the state value to re-render the page with updated
information.

Step 2 — Setting State with useState

In this step, you’ll update your product page by setting a new state with a
static value. You have already created the function to update a piece of
state, so now you’ll create an event to update both stateful variables with
predefined values. By the end of this step, you’ll have a page with state that
a user will be able to update at the click of a button.

 </div>

 <div>Total: {getTotal(total)}</div>

 <div className="product"><span role="img" aria-label="ice
 <button>Add</button> <button>Remove</button>
 </div>
)
}

Unlike class-based components, you cannot update several pieces of state
with a single function call. Instead, you must call each function
individually. This means there is a greater separation of concerns, which
helps keep stateful objects focused.

Create a function to add an item to the cart and update the total with the
price of the item, then add that functionality to the Add button:

hooks-tutorial/src/components/Product/Product.j
s

import React, { useState } from 'react';

...

export default function Product() {

 const [cart, setCart] = useState([]);

 const [total, setTotal] = useState(0);

 function add() {

 setCart(['ice cream']);

 setTotal(5);

 }

 return(

 <div className="wrapper">

 <div>

 Shopping Cart: {cart.length} total items.

 </div>

 <div>Total: {getTotal(total)}</div>

 <div className="product"><span role="img" aria-label="ice

 <button onClick={add}>Add</button>

 <button>Remove</button>

 </div>

In this snippet, you called setCart with an array containing the word “ice

cream” and called setTotal with 5 . You then added this function to the on

Click event handler for the Add button.

Notice that the function must have the same scope as the functions to set
state, so it must be defined inside the component function.

Save the file. When you do, the browser will reload, and when you click on
the Add button the cart will update with the current amount:

Click on the button and see state updated

Since you are not referencing a this context, you can use either an arrow

function or a function declaration. They both work equally well here, and

)

}

https://www.digitalocean.com/community/tutorials/how-to-define-functions-in-javascript#arrow-functions

each developer or team can decide which style to use. You can even skip
defining an extra function and pass the function directly into the onClick

property.

To try this out, create a function to remove the values by setting the cart to
an empty object and the total to 0 . Create the function in the onClick prop

of the Remove button:

hooks-tutorial/src/component/Product/Product.js

import React, { useState } from 'react';

...

export default function Product() {

 const [cart, setCart] = useState([]);

 const [total, setTotal] = useState(0);

 function add() {

 setCart(['ice cream']);

 setTotal(5);

 }

 return(

 <div className="wrapper">

 <div>

 Shopping Cart: {cart.length} total items.

 </div>

 <div>Total: {getTotal(total)}</div>

 <div className="product"><span role="img" aria-label="ice

 <button onClick={add}>Add</button>

 <button

 onClick={() => {

 setCart([]);

 setTotal(0);

 }}

Save the file. When you do, you will be able to add and remove an item:

Add and Remove

Both strategies for assigning the function work, but there are some slight
performance implications to creating an arrow function directly in a prop.
In every re-render, React will create a new function, which would trigger a

 >

 Remove

 </button>

 </div>

)

}

prop change and cause the component to re-render. When you define a
function outside of a prop, you can take advantage of another Hook called u

seCallback. This will memoize the function, meaning that it will only create

a new function if certain values change. If nothing changes, the program
will use the cached memory of the function instead of recalculating it. Some
components may not need that level of optimization, but as a rule, the
higher a component is likely to be in a tree, the greater the need for
memoization.

In this step, you updated state data with functions created by the useState

Hook. You created wrapping functions to call both functions to update the
state of several pieces of data at the same time. But these functions are
limited because they add static, pre-defined values instead of using the
previous state to create the new state. In the next step, you’ll update the
state using the current state with both the useState Hook and a new Hook

called useReducer .

Step 3 — Setting State Using Current State

In the previous step, you updated state with a static value. It didn’t matter
what was in the previous state—you always passed the same value. But a
typical product page will have many items that you can add to a cart, and
you’ll want to be able to update the cart while preserving the previous
items.

In this step, you’ll update the state using the current state. You’ll expand
your product page to include several products and you’ll create functions
that update the cart and the total based on the current values. To update the

https://reactjs.org/docs/hooks-reference.html#usecallback

values, you’ll use both the useState Hook and a new Hook called useRedu

cer .

Since React may optimize code by calling actions asynchronously, you’ll
want to make sure that your function has access to the most up-to-date state.
The most basic way to solve this problem is to pass a function to the state-
setting function instead of a value. In other words, instead of calling setSta

te(5) , you’d call setState(previous => previous +5) .

To start implementing this, add some more items to the product page by
making a products array of objects, then remove the event handlers from

the Add and Remove buttons to make room for the refactoring:

https://www.digitalocean.com/community/tutorials/understanding-objects-in-javascript

hooks-tutorial/src/component/Product/Product.js

import React, { useState } from 'react';

import './Product.css';

...

const products = [

 {

 emoji: '🍦',

 name: 'ice cream',

 price: 5

 },

 {

 emoji: '🍩',

 name: 'donuts',

 price: 2.5,

 },

 {

 emoji: '🍉',

 name: 'watermelon',

 price: 4

 }

];

export default function Product() {

 const [cart, setCart] = useState([]);

 const [total, setTotal] = useState(0);

 function add() {

 setCart(['ice cream']);

 setTotal(5);

 }

 return(

 <div className="wrapper">

 <div>

 Shopping Cart: {cart.length} total items.

 </div>

 <div>Total: {getTotal(total)}</div>

 <div>

 {products.map(product => (

 <div key={product.name}>

 <div className="product">

 {produ

 </div>

 <button>Add</button>

 <button>Remove</button>

 </div>

))}

 </div>
 </div>
)
}

You now have some JSX that uses the .map method to iterate over the array

and display the products.

Save the file. When you do, the page will reload and you’ll see multiple
products:

https://www.digitalocean.com/community/tutorials/how-to-use-array-methods-in-javascript-iteration-methods#map()

Product list

Currently, the buttons have no actions. Since you only want to add the
specific product on click, you’ll need to pass the product as an argument to
the add function. In the add function, instead of passing the new item

directly to the setCart and setTotal functions, you’ll pass an anonymous

function that takes the current state and returns a new updated value:

hooks-tutorial/src/component/Product/Product.js

import React, { useState } from 'react';

import './Product.css';

...

export default function Product() {

 const [cart, setCart] = useState([]);

 const [total, setTotal] = useState(0);

 function add(product) {

 setCart(current => [...current, product.name]);

 setTotal(current => current + product.price);

 }

 return(

 <div className="wrapper">

 <div>

 Shopping Cart: {cart.length} total items.

 </div>

 <div>Total: {getTotal(total)}</div>

 <div>

 {products.map(product => (

 <div key={product.name}>

 <div className="product">

 {produ

 </div>

The anonymous function uses the most recent state—either cart or total

—as an argument that you can use to create a new value. Take care, though,
not to directly mutate state. Instead, when adding a new value to the cart
you can add the new product to the state by spreading the current value and
adding the new value onto the end.

Save the file. When you do, the browser will reload and you’ll be able to
add multiple products:

 <button onClick={() => add(product)}>Add</button>

 <button>Remove</button>

 </div>

))}

 </div>

 </div>

)

}

https://www.digitalocean.com/community/tutorials/js-spread-operator

Adding products

There’s another Hook called useReducer that is specially designed to update

the state based on the current state, in a manner similar to the .reduce array

method. The useReducer Hook is similar to useState , but when you

initialize the Hook, you pass in a function the Hook will run when you

https://reactjs.org/docs/hooks-reference.html#usereducer
https://www.digitalocean.com/community/tutorials/how-to-use-array-methods-in-javascript-iteration-methods#reduce()

change the state along with the initial data. The function—referred to as the
reducer—takes two arguments: the state and another argument. The other

argument is what you will supply when you call the update function.

Refactor the cart state to use the useReducer Hook. Create a funciton called

cartReducer that takes the state and the product as arguments. Replace u

seState with useReducer , then pass the cartReducer function as the first

argument and an empty array as the second argument, which will be the
initial data:

hooks-tutorial/src/component/Product/Product.js

import React, { useReducer, useState } from 'react';

...

function cartReducer(state, product) {

 return [...state, product]

}

export default function Product() {

 const [cart, setCart] = useReducer(cartReducer, []);

 const [total, setTotal] = useState(0);

 function add(product) {

 setCart(product.name);

 setTotal(current => current + product.price);

 }

 return(

...

)

}

Now when you call setCart , pass in the product name instead of a

function. When you call setCart , you will call the reducer function, and

the product will be the second argument. You can make a similar change
with the total state.

Create a function called totalReducer that takes the current state and adds

the new amount. Then replace useState with useReducer and pass the new

value setCart instead of a function:

hooks-tutorial/src/component/Product/Product.js

Since you are no longer using the useState Hook, you removed it from the

import.

import React, { useReducer } from 'react';

...

function totalReducer(state, price) {

 return state + price;

}

export default function Product() {

 const [cart, setCart] = useReducer(cartReducer, []);

 const [total, setTotal] = useReducer(totalReducer, 0);

 function add(product) {

 setCart(product.name);

 setTotal(product.price);

 }

 return(

 ...

)

}

Save the file. When you do, the page will reload and you’ll be able to add
items to the cart:

Adding products

Now it’s time to add the remove function. But this leads to a problem: The

reducer functions can handle adding items and updating totals, but it’s not
clear how it will be able to handle removing items from the state. A
common pattern in reducer functions is to pass an object as the second
argument that contains the name of the action and the data for the action.
Inside the reducer, you can then update the total based on the action. In this
case, you will add items to the cart on an add action and remove them on a

remove action.

Start with the totalReducer . Update the function to take an action as the

second argument, then add a conditional to update the state based on the ac

tion.type :

https://www.digitalocean.com/community/tutorials/how-to-write-conditional-statements-in-javascript

hooks-tutorial/src/component/Product/Product.js

import React, { useReducer } from 'react';

import './Product.css';

...

function totalReducer(state, action) {

 if(action.type === 'add') {

 return state + action.price;

 }

 return state - action.price

}

export default function Product() {

 const [cart, setCart] = useReducer(cartReducer, []);

 const [total, setTotal] = useReducer(totalReducer, 0);

 function add(product) {

 const { name, price } = product;

 setCart(name);

 setTotal({ price, type: 'add' });

 }

 return(

 ...

The action is an object with two properites: type and price . The type can

be either add or remove , and the price is a number. If the type is add , it

increases the total. If it is remove , it lowers the total. After updating the tot

alReducer , you call setTotal with a type of add and the price , which

you set using destructuring assignment.

Next, you will update the cartReducer . This one is a little more

complicated: You can use if/then conditionals, but it’s more common to

use a switch statement. Switch statements are particularly useful if you

have a reducer that can handle many different actions because it makes
those actions more readable in your code.

As with the totalReducer , you’ll pass an object as the second item type

and name properties. If the action is remove , update the state by splicing out

the first instance of a product.

After updating the cartReducer , create a remove function that calls setCar

t and setTotal with objects containing type: 'remove' and either the pri

ce or the name . Then use a switch statement to update the data based on the

action type. Be sure to return the final state:

)

}

https://www.digitalocean.com/community/tutorials/how-to-use-the-switch-statement-in-javascript

hooks-tutorial/src/complicated/Product/Product.
js

import React, { useReducer } from 'react';

import './Product.css';

...

function cartReducer(state, action) {

 switch(action.type) {

 case 'add':

 return [...state, action.name];

 case 'remove':

 const update = [...state];

 update.splice(update.indexOf(action.name), 1);

 return update;

 default:

 return state;

 }

}

function totalReducer(state, action) {

 if(action.type === 'add') {

 return state + action.price;

 }

 return state - action.price

}

export default function Product() {

 const [cart, setCart] = useReducer(cartReducer, []);

 const [total, setTotal] = useReducer(totalReducer, 0);

 function add(product) {

 const { name, price } = product;

 setCart({ name, type: 'add' });

 setTotal({ price, type: 'add' });

 }

 function remove(product) {

 const { name, price } = product;

 setCart({ name, type: 'remove' });

 setTotal({ price, type: 'remove' });

 }

 return(

 <div className="wrapper">

 <div>

 Shopping Cart: {cart.length} total items.

 </div>

 <div>Total: {getTotal(total)}</div>

 <div>

 {products.map(product => (

 <div key={product.name}>

As you work on your code, take care not to directly mutate the state in the
reducer functions. Instead, make a copy before splicing out the object.

Also note it is a best practice to add a default action on a switch statement

in order to account for unforeseen edge cases. In this, case just return the
object. Other options for the default are throwing an error or falling back

to an action such as add or remove.

After making the changes, save the file. When the browser refreshes, you’ll
be able to add and remove items:

 <div className="product">

 {produ

 </div>

 <button onClick={() => add(product)}>Add</button>

 <button onClick={() => remove(product)}>Remove</but

 </div>

))}

 </div>

 </div>

)

}

Remove items

There is still a subtle bug left in this product. In the remove method, you

can subtract from a price even if the item is not in the cart. If you click
Remove on the ice cream without adding it to your cart, your displayed
total will be -5.00.

You can fix this bug by checking that an item exists before you subtract it,
but a more efficient way is to minimize the different pieces of state by only
saving related data in one place. In other words, try to avoid double
references to the same data, in this case, the product. Instead, store the raw
data in one state variable—the whole product object—then perform the
calculations using that data.

Refactor the component so that the add() function passes the whole

product to the reducer and the remove() function removes the whole object.

The getTotal method will use the cart, and so you can delete the totalRed

ucer function. Then you can pass the cart to getTotal() , which you can

refactor to reduce the array to a single value:

hooks-tutorial/src/component/Product/Product.js

import React, { useReducer } from 'react';

import './Product.css';

const currencyOptions = {

 minimumFractionDigits: 2,

 maximumFractionDigits: 2,

}

function getTotal(cart) {

 const total = cart.reduce((totalCost, item) => totalCost + it

 return total.toLocaleString(undefined, currencyOptions)

}

...

function cartReducer(state, action) {

 switch(action.type) {

 case 'add':

 return [...state, action.product];

 case 'remove':

 const productIndex = state.findIndex(item => item.name ==

 if(productIndex < 0) {

 return state;

 }

 const update = [...state];

 update.splice(productIndex, 1)

 return update

 default:

 return state;

 }

}

export default function Product() {

 const [cart, setCart] = useReducer(cartReducer, []);

 function add(product) {

 setCart({ product, type: 'add' });

 }

 function remove(product) {

 setCart({ product, type: 'remove' });

 }

 return(

 <div className="wrapper">

 <div>

 Shopping Cart: {cart.length} total items.

 </div>

 <div>Total: {getTotal(cart)}</div>

 <div>

 {products.map(product => (

Save the file. When you do, the browser will refresh and you’ll have your
final cart:

 <div key={product.name}>

 <div className="product">

 {produ

 </div>

 <button onClick={() => add(product)}>Add</button>

 <button onClick={() => remove(product)}>Remove</but

 </div>

))}

 </div>

 </div>

)

}

Add and remove products

By using the useReducer Hook, you kept your main component body well-

organized and legible, since the complex logic for parsing and splicing the
array is outside of the component. You also could move the reducer outside
the componet if you wanted to reuse it, or you can create a custom Hook to

use across multiple components. You can make custom Hooks as functions
surrounding basic Hooks, such as useState , useReducer , or useEffect .

Hooks give you the chance to move the stateful logic in and out of the
component, as opposed to classes, where you are generally bound to the
component. This advantage can extend to other components as well. Since
Hooks are functions, you can import them into multiple components rather
then using inheritance or other complex forms of class composition.

In this step, you learned to set state using the current state. You created a
component that updated state using both the useState and the useReducer

Hooks, and you refactored the component to different Hooks to prevent
bugs and improve reusability.

Conclusion

Hooks were a major change to React that created a new way to share logic
and update components without using classes. Now that you can create
components using useState and useReducer , you have the tools to make

complex projects that respond to users and dynamic information. You also
have a foundation of knowledge that you can use to explore more complex
Hooks or to create custom Hooks.

If you would like to look at more React tutorials, check out our React Topic
page, or return to the How To Code in React.js series page.

https://www.digitalocean.com/community/tags/react
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-react-js

How To Share State Across React
Components with Context

Written by Joe Morgan

The author selected Creative Commons to receive a donation as part of the
Write for DOnations program.

In this tutorial, you’ll share state across multiple components using React
context. React context is an interface for sharing information with other
components without explicitly passing the data as props. This means that
you can share information between a parent component and a deeply nested
child component, or store site-wide data in a single place and access them
anywhere in the application. You can even update data from nested
components by providing update functions along with the data.

React context is flexible enough to use as a centralized state management
system for your project, or you can scope it to smaller sections of your
application. With context, you can share data across the application without
any additional third-party tools and with a small amount of configuration.
This provides a lighter weight alternative to tools like Redux, which can
help with larger applications but may require too much setup for medium-
sized projects.

Throughout this tutorial, you’ll use context to build an application that use
common data sets across different components. To illustrate this, you’ll
create a website where users can build custom salads. The website will use
context to store customer information, favorite items, and custom salads.

https://www.digitalocean.com/community/tutorials/how-to-share-state-across-react-components-with-context
https://creativecommons.org/
https://do.co/w4do-cta
https://reactjs.org/docs/context.html
https://www.digitalocean.com/community/tutorials/how-to-create-custom-components-in-react
https://www.digitalocean.com/community/tutorials/how-to-customize-react-components-with-props
https://redux.js.org/

You’ll then access that data and update it throughout the application without
passing the data via props. By the end of this tutorial, you’ll learn how to
use context to store data at different levels of the project and how to access
and update the data in nested components.

Prerequisites

You will need a development environment running Node.js; this
tutorial was tested on Node.js version 10.20.1 and npm version 6.14.4.
To install this on macOS or Ubuntu 18.04, follow the steps in How to
Install Node.js and Create a Local Development Environment on
macOS or the Installing Using a PPA section of How To Install
Node.js on Ubuntu 18.04.

A React development environment set up with Create React App, with
the non-essential boilerplate removed. To set this up, follow Step 1 —
Creating an Empty Project of the How To Manage State on React
Class Components tutorial. This tutorial will use state-context-tutor

ial as the project name.

You will also need a basic knowledge of JavaScript, which you can
find in How To Code in JavaScript, along with a basic knowledge of
HTML and CSS. A useful resource for HTML and CSS is the Mozilla
Developer Network.

You will be using React components, the useState Hook, and the use

Reducer Hook, which you can learn about in our tutorials How To

https://nodejs.org/en/about/
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-and-create-a-local-development-environment-on-macos
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-on-ubuntu-18-04
https://github.com/facebook/create-react-app
https://www.digitalocean.com/community/tutorials/how-to-manage-state-on-react-class-components#step-1-%E2%80%94-creating-an-empty-project
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-javascript
https://developer.mozilla.org/en-US/docs/Learn/HTML/Introduction_to_HTML
https://www.digitalocean.com/community/tutorials/how-to-create-custom-components-in-react

Create Custom Components in React and How To Manage State with
Hooks on React Components.

Step 1 — Building the Basis for Your Application

In this step, you’ll build the general structure of your custom salad builder.
You’ll create components to display possible toppings, a list of selected
toppings, and customer information. As you build the application with static
data, you’ll find how different pieces of information are used in a variety of
components and how to identify pieces of data that would be helpful in a
context.

Here’s an example of the application you will build:

Salad Builder Site

https://www.digitalocean.com/community/tutorials/how-to-create-custom-components-in-react
https://www.digitalocean.com/community/tutorials/how-to-manage-state-with-hooks-on-react-components

Notice how there is information that you might need to use across
components. For example, the username (which for this sample is Kwame)
displays user data in a navigation area, but you may also need user
information to identify favorite items or for a checkout page. The user
information will need to be accessible by any component in the application.
Looking at the salad builder itself, each salad ingredient will need to be able
to update the Your Salad list at the bottom of the screen, so you’ll need to
store and update that data from a location that is accessible to each
component as well.

Start by hard-coding all the data so that you can work out the structure of
your app. Later, you’ll add in the context starting in the next step. Context
provides the most value as applications start to grow, so in this step you’ll
build several components to show how context works across a component
tree. For smaller components or libraries, you can often use wrapping
components and lower level state management techniques, like React
Hooks and class-based management.

Since you are building a small app with multiple components, install JSS to
make sure there won’t be any class name conflicts and so that you can add
styles in the same file as a component. For more on JSS, see Styling React
Components.

Run the following command:

npm install react-jss

https://www.digitalocean.com/community/tutorials/how-to-manage-state-with-hooks-on-react-components
https://www.digitalocean.com/community/tutorials/how-to-manage-state-on-react-class-components
https://cssinjs.org/
https://www.digitalocean.com/community/tutorials/how-to-style-react-components

npm will install the component, and when it completes you’ll see a message
like this:

Output
+ react-jss@10.3.0

added 27 packages from 10 contributors, removed 10 packages an

daudited 1973 packages in 15.507s

Now that you have JSS installed, consider the different components you’ll
need. At the top of the page, you’ll have a Navigation component to store

the welcome message. The next component will be the SaladMaker itself.

This will hold the title along with the builder and the Your Salad list at the
bottom. The section with ingredients will be a separate component called
the SaladBuilder , nested inside SaladMaker . Each ingredient will be an

instance of a SaladItem component. Finally, the bottom list will be a

component called SaladSummary .

Note: The components do not need to be divided this way. As you
work on your applications, your structure will change and evolve as
you add more functionality. This example is meant to give you a
structure to explore how context affects different components in the
tree.

Now that you have an idea of the components you’ll need, make a directory
for each one:

mkdir src/components/Navigation

mkdir src/components/SaladMaker

mkdir src/components/SaladItem

mkdir src/components/SaladBuilder

mkdir src/components/SaladSummary

Next, build the components from the top down starting with Navigation .

First, open the component file in a text editor:

nano src/components/Navigation/Navigation.js

Create a component called Navigation and add some styling to give the Na

vigation a border and padding:

state-context-tutorial/src/components/Navigatio
n/Navigation.js

Since you are using JSS, you can create style objects directly in the
component rather than a CSS file. The wrapper div will have a padding, a

import React from 'react';

import { createUseStyles } from 'react-jss';

const useStyles = createUseStyles({

 wrapper: {

 borderBottom: 'black solid 1px',

 padding: [15, 10],

 textAlign: 'right',

 }

});

export default function Navigation() {

 const classes = useStyles();

 return(

 <div className={classes.wrapper}>

 Welcome, Kwame

 </div>

)

}

solid black border, and align the text to the right with textAlign .

Save and close the file. Next, open App.js , which is the root of the project:

nano src/components/App/App.js

Import the Navigation component and render it inside empty tags by

adding the highlighted lines:

state-context-tutorial/src/components/App/App.j
s

import React from 'react';

import Navigation from '../Navigation/Navigation';

function App() {

 return (

 <>

 <Navigation />

 </>

);

}

export default App;

Save and close the file. When you do, the browser will refresh and you’ll
see the navigation bar:

Navigation Bar

Think of the navigation bar as a global component, since in this example
it’s serving as a template component that will be reused on every page.

The next component will be the SaladMaker itself. This is a component that

will only render on certain pages or in certain states.

Open SaladMaker.js in your text editor:

nano src/components/SaladMaker/SaladMaker.js

Create a component that has an <h1> tag with the heading:

state-context-tutorial/src/components/SaladMake
r/SaladMaker.js

import React from 'react';

import { createUseStyles } from 'react-jss';

const useStyles = createUseStyles({

 wrapper: {

 textAlign: 'center',

 }

});

export default function SaladMaker() {

 const classes = useStyles();

 return(

 <>

 <h1 className={classes.wrapper}>

 🥗

 Build Your Custom Salad!

 🥗

 </h1>

 </>

)

}

In this code, you are using textAlign to center the component on the page.

The role and aria-label attributes of the span element will help with

accessibility using Accessible Rich Internet Applications (ARIA).

Save and close the file. Open App.js to render the component:

nano src/components/App/App.js

Import SaladMaker and render after the Navigation component:

https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA

state-context-tutorial/src/components/App/App.j
s

Save and close the file. When you do, the page will reload and you’ll see
the heading:

import React from 'react';

import Navigation from '../Navigation/Navigation';

import SaladMaker from '../SaladMaker/SaladMaker';

function App() {

 return (

 <>

 <Navigation />

 <SaladMaker />

 </>

);

}

export default App;

Salad Maker Page

Next, create a component called SaladItem . This will be a card for each

individual ingredient.

Open the file in your text editor:

nano src/components/SaladItem/SaladItem.js

This component will have three parts: the name of the item, an icon
showing if the item is a favorite of the user, and an emoji placed inside a
button that will add the item to the salad on click. Add the following lines to
SaladItem.js :

state-context-tutorial/src/components/SaladIte
m/SaladItem.js

import React from 'react';

import PropTypes from 'prop-types';

import { createUseStyles } from 'react-jss';

const useStyles = createUseStyles({

 add: {

 background: 'none',

 border: 'none',

 cursor: 'pointer',

 },

 favorite: {

 fontSize: 20,

 position: 'absolute',

 top: 10,

 right: 10,

 },

 image: {

 fontSize: 80

 },

 wrapper: {

 border: 'lightgrey solid 1px',

 margin: 20,

 padding: 25,

 position: 'relative',

 textAlign: 'center',

 textTransform: 'capitalize',

 width: 200,

 }

});

export default function SaladItem({ image, name }) {

 const classes = useStyles();

 const favorite = true;

 return(

 <div className={classes.wrapper}>

 <h3>

 {name}

 </h3>

 <span className={classes.favorite}
 aria-label={favorite ? 'Favorite' : 'Not Favorite'}>

 {favorite ? '😋' : ''}

 <button className={classes.add}>

 <span className={classes.image} role="img"
 aria-label={name}>{image}

 </button>

 </div>

)

}

SaladItem.propTypes = {

 image: PropTypes.string.isRequired,

The image and name will be props. The code uses the favorite variable

and ternary operators to conditionally determine if the favorite icon

appears or not. The favorite variable will later be determined with context

as part of the user’s profile. For now, set it to true . The styling will place

the favorite icon in the upper right corner of the card and remove the default
border and background on the button. The wrapper class will add a small

border and transform some of the text. Finally, PropTypes adds a weak

typing system to provide some enforcement to make sure the wrong prop
type is not passed.

Save and close the file. Now, you’ll need to render the different items.
You’ll do that with a component called SaladBuilder , which will contain a

list of items that it will convert to a series of SaladItem components:

Open SaladBuilder :

nano src/components/SaladBuilder/SaladBuilder.js

If this were a production app, this data would often come from an
Application Programming Interface (API). But for now, use a hard-coded
list of ingredients:

 name: PropTypes.string.isRequired,

}

https://www.digitalocean.com/community/tutorials/how-to-write-conditional-statements-in-javascript#ternary-operator
https://www.digitalocean.com/community/tutorials/how-to-customize-react-components-with-props#step-3-%E2%80%94-creating-predictable-props-with-proptypes-and-defaultprops

state-context-tutorial/src/components/SaladBuil
der/SaladBuilder.js

import React from 'react';

import SaladItem from '../SaladItem/SaladItem';

import { createUseStyles } from 'react-jss';

const useStyles = createUseStyles({

 wrapper: {

 display: 'flex',

 flexWrap: 'wrap',

 padding: [10, 50],

 justifyContent: 'center',

 }

});

const ingredients = [

 {

 image: '🍎',

 name: 'apple',

 },

 {

 image: '🥑',

 name: 'avocado',

 },

 {

 image: '🥦',

 name: 'broccoli',

 },

 {

 image: '🥕',

 name: 'carrot',

 },

 {

 image: '🍷',

 name: 'red wine dressing',

 },

 {

 image: '🍚',

 name: 'seasoned rice',

 },

];

export default function SaladBuilder() {

 const classes = useStyles();

 return(

 <div className={classes.wrapper}>

 {

 ingredients.map(ingredient => (

 <SaladItem

 key={ingredient.name}

 image={ingredient.image}

 name={ingredient.name}

This snippet uses the map() array method to map over each item in the list,

passing the name and image as props to a SaladItem component. Be sure to

add a key to each item as you map. The styling for this component adds a

display of flex for the flexbox layout, wraps the components, and centers

them.

Save and close the file.

Finally, render the component in SaladMaker so it will appear in the page.

Open SaladMaker :

nano src/components/SaladMaker/SaladMaker.js

Then import SaladBuilder and render after the heading:

 />

))

 }

 </div>

)

}

https://www.digitalocean.com/community/tutorials/how-to-use-array-methods-in-javascript-iteration-methods#map()
https://www.digitalocean.com/community/tutorials/how-to-create-react-elements-with-jsx#step-4-%E2%80%94-mapping-over-data-to-create-elements
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Flexbox

state-context-tutorial/src/components/SaladMake
r/SaladMaker.js

import React from 'react';

import { createUseStyles } from 'react-jss';

import SaladBuilder from '../SaladBuilder/SaladBuilder';

const useStyles = createUseStyles({

 wrapper: {

 textAlign: 'center',

 }

});

export default function SaladMaker() {

 const classes = useStyles();

 return(

 <>

 <h1 className={classes.wrapper}>

 🥗

 Build Your Custom Salad!

 🥗

 </h1>

 <SaladBuilder />

 </>

)

}

Save and close the file. When you do the page will reload and you’ll find
the content:

Salad Builder with Items

The last step is to add the summary of the salad in progress. This
component will show a list of items a user has selected. For now, you’ll
hard-code the items. You’ll update them with context in Step 3.

Open SaladSummary in your text editor:

nano src/components/SaladSummary/SaladSummary.js

The component will be a heading and an unsorted list of items. You’ll use
flexbox to make them wrap:

state-context-tutorial/src/components/SaladSumm
ary/SaladSummary.jss

import React from 'react';

import { createUseStyles } from 'react-jss';

const useStyles = createUseStyles({

 list: {

 display: 'flex',

 flexDirection: 'column',

 flexWrap: 'wrap',

 maxHeight: 50,

 '& li': {

 width: 100

 }

 },

 wrapper: {

 borderTop: 'black solid 1px',

 display: 'flex',

 padding: 25,

 }

});

export default function SaladSummary() {

 const classes = useStyles();

 return(

 <div className={classes.wrapper}>

Save the file. Then open SaladMaker to render the item:

nano src/components/SaladMaker/SaladMaker.js

Import and add SaladSummary after the SaladBuilder :

 <h2>Your Salad</h2>

 <ul className={classes.list}>

 Apple

 Avocado

 Carrots

 </div>

)

}

state-context-tutorial/src/components/SaladMake
r/SaladMaker.js

import React from 'react';

import { createUseStyles } from 'react-jss';

import SaladBuilder from '../SaladBuilder/SaladBuilder';

import SaladSummary from '../SaladSummary/SaladSummary';

const useStyles = createUseStyles({

 wrapper: {

 textAlign: 'center',

 }

});

export default function SaladMaker() {

 const classes = useStyles();

 return(

 <>

 <h1 className={classes.wrapper}>

 🥗

 Build Your Custom Salad!

 🥗

 </h1>

 <SaladBuilder />

 <SaladSummary />

 </>

Save and close the file. When you do, the page will refresh and you’ll find
the full application:

Salad Builder Site

There is shared data throughout the application. The Navigation

component and the SaladItem component both need to know something

about the user: their name and their list of favorites. The SaladItem also

needs to update data that is accessible in the SaladSummary component. The

)

}

components share common ancestors, but passing the data down through
the tree would be difficult and error prone.

That’s where context comes in. You can declare the data in a common
parent and then access later without explicitly passing it down the hierarchy
of components.

In this step, you created an application to allow the user to build a salad
from a list of options. You created a set of components that need to access
or update data that is controlled by other components. In the next step,
you’ll use context to store data and access it in child components.

Step 2 — Providing Data from a Root Component

In this step, you’ll use context to store the customer information at the root
of the component. You’ll create a custom context, then use a special
wrapping component called a Provider that will store the information at the

root of the project. You’ll then use the useContext Hook to connect with the

provider in nested components so you can display the static information. By
the end of this step, you’ll be able to provide centralized stores of
information and use information stored in a context in many different
components.

Context at its most basic is an interface for sharing information. Many
applications have some universal information they need to share across the
application, such as user preferences, theming information, and site-wide
application changes. With context, you can store that information at the root

https://reactjs.org/docs/context.html#contextprovider
https://reactjs.org/docs/hooks-reference.html#usecontext

level then access it anywhere. Since you set the information in a parent, you
know it will always be available and it will always be up-to-date.

To add a context, create a new directory called User :

mkdir src/components/User

User isn’t going to be a traditional component, in that you are going to use

it both as a component and as a piece of data for a special Hook called useC

ontext . For now, keep the flat file structure, but if you use a lot of contexts,

it might be worth moving them to a different directory structure.

Next, open up User.js in your text editor:

nano src/components/User/User.js

Inside the file, import the createContext function from React, then execute

the function and export the result:

state-context-tutorial/src/components/User/Use
r.js

import { createContext } from 'react';

const UserContext = createContext();

export default UserContext;

By executing the function, you have registered the context. The result, User

Context , is what you will use in your components.

Save and close the file.

The next step is to apply the context to a set of elements. To do that, you
will use a component called a Provider . The Provider is a component that

sets the data and then wraps some child components. Any wrapped child
components will have access to data from the Provider with the useContex

t Hook.

Since the user data will be constant across the project, put it as high up the
component tree as you can. In this application, you will put it at the root
level in the App component:

Open up App :

nano src/components/App/App.js

Add in the following highlighted lines of code to import the context and
pass along the data:

state-context-tutorial/src/components/App/App.j
s

import React from 'react';

import Navigation from '../Navigation/Navigation';

import SaladMaker from '../SaladMaker/SaladMaker';

import UserContext from '../User/User';

const user = {

 name: 'Kwame',

 favorites: [

 'avocado',

 'carrot'

]

}

function App() {

 return (

 <UserContext.Provider value={user}>

 <Navigation />

 <SaladMaker />

 </UserContext.Provider>

);

}

export default App;

In a typical application, you would fetch the user data or have it stored
during a server-side render. In this case, you hard-coded some data that you
might receive from an API. You created an object called user that holds the

username as a string and an array of favorite ingredients.

Next, you imported the UserContext , then wrapped Navigation and Salad

Maker with a component called the UserContext.Provider . Notice how in

this case UserContext is acting as a standard React component. This

component will take a single prop called value . That prop will be the data

you want to share, which in this case is the user object.

Save and close the file. Now the data is available throughout the
application. However, to use the data, you’ll need to once again import and
access the context.

Now that you have set context, you can start replacing hard-coded data in
your component with dynamic values. Start by replacing the hard-coded
name in Navigation with the user data you set with

UserContext.Provider .

Open Navigation.js :

nano src/components/Navigation/Navigation.js

Inside of Navigation , import the useContext Hook from React and UserCo

ntext from the component directory. Then call useContext using UserCont

ext as an argument. Unlike the UserContext.Provider , you do not need to

render UserContext in the JSX. The Hook will return the data that you

https://www.digitalocean.com/community/tutorials/understanding-objects-in-javascript
https://www.digitalocean.com/community/tutorials/understanding-arrays-in-javascript
https://www.digitalocean.com/community/tutorials/how-to-create-react-elements-with-jsx

provided in the value prop. Save the data to a new variable called user ,

which is an object containing name and favorites . You can then replace

the hard-coded name with user.name :

state-context-tutorial/src/components/Navigatio
n/Navigation.js

import React, { useContext } from 'react';

import { createUseStyles } from 'react-jss';

import UserContext from '../User/User';

const useStyles = createUseStyles({

 wrapper: {

 outline: 'black solid 1px',

 padding: [15, 10],

 textAlign: 'right',

 }

});

export default function Navigation() {

 const user = useContext(UserContext);

 const classes = useStyles();

 return(

 <div className={classes.wrapper}>

 Welcome, {user.name}

 </div>

)

}

UserContext worked as a component in App.js , but here you are using it

more as a piece of data. However, it can still act as a component if you
would like. You can access the same data by using a Consumer that is part

of the UserContext . You retrieve the data by adding UserContext.Consumer

to your JSX, then use a function as a child to access the data.

While it’s possible to use the Consumer component, using Hooks can often

be shorter and easier to read, while still providing the same up-to-date
information. This is why this tutorial uses the Hooks approach.

Save and close the file. When you do, the page will refresh and you’ll see
the same name. But this time it has updated dynamically:

Salad Builder Site

https://reactjs.org/docs/context.html#contextconsumer

In this case the data didn’t travel across many components. The component
tree that represents the path that the data traveled would look like this:
| UserContext.Provider

 | Navigation

You could pass this username as a prop, and at this scale that could be an
effective strategy. But as the application grows, there’s a chance that the Na

vigation component will move. There may be a component called Header

that wraps the Navigation component and another component such as a Ti

tleBar , or maybe you’ll create a Template component and then nest the Na

vigation in there. By using context, you won’t have to refactor Navigation

as long as the Provider is up the tree, making refactoring easier.

The next component that needs user data is the SaladItem component. In

the SaladItem component, you’ll need the user’s array of favorites. You’ll

conditionally display the emoji if the ingredient is a favorite of the user.

Open SaladItem.js :

nano src/components/SaladItem/SaladItem.js

Import useContext and UserContext , then call useContext with UserCont

ext . After that, check to see if the ingredient is in the favorites array

using the includes method:

state-context-tutorial/src/components/SaladIte
m/SaladItem.js

import React, { useContext } from 'react';

import PropTypes from 'prop-types';

import { createUseStyles } from 'react-jss';

import UserContext from '../User/User';

const useStyles = createUseStyles({

...

});

export default function SaladItem({ image, name }) {

 const classes = useStyles();

 const user = useContext(UserContext);

 const favorite = user.favorites.includes(name);

 return(

 <div className={classes.wrapper}>

 <h3>

 {name}

 </h3>

 <span className={classes.favorite}
 aria-label={favorite ? 'Favorite' : 'Not Favorite'}>

 {favorite ? '😋' : ''}

 <button className={classes.add}>

Save and close the file. When you do, the browser will refresh and you’ll
see that only the favorite items have the emoji:

 <span className={classes.image} role="img"
 aria-label={name}>{image}

 </button>

 </div>

)

}

SaladItem.propTypes = {

 image: PropTypes.string.isRequired,

 name: PropTypes.string.isRequired,

}

Salad Maker with Avocado and Carrot favorited

Unlike Navigation , the context is traveling much farther. The component

tree would look something like this:
| User.Provider

 | SaladMaker

 | SaladBuilder

 | SaladItem

The information skipped over two intermediary components without any
props. If you had to pass the data as a prop all the way through the tree, it
would be a lot of work and you’d risk having a future developer refactor the
code and forget to pass the prop down. With context, you can be confident
the code will work as the application grows and evolves.

In this step, you created a context and used a Provider to set the data in the

component tree. You also accessed context with the useContext Hook and

used context across multiple components. This data was static and thus
never changed after the initial set up, but there are going to be times when
you need to share data and also modify the data across multiple
components. In the next step, you’ll update nested data using context.

Step 3 — Updating Data from Nested Components

In this step, you’ll use context and the useReducer Hook to create dynamic

data that nested components can consume and update. You’ll update your S

aladItem components to set data that the SaladSummary will use and

display. You’ll also set context providers outside of the root component. By
the end of this step, you’ll have an application that can use and update data
across several components and you’ll be able to add multiple context
providers at different levels of an application.

At this point, your application is displaying user data across multiple
components, but it lacks any user interaction. In the previous step, you used
context to share a single piece of data, but you can also share a collection of
data, including functions. That means you can share data and also share the
function to update the data.

In your application, each SaladItem needs to update a shared list. Then

your SaladSummary component will display the items the user has selected

and add it to the list. The problem is that these components are not direct

descendants, so you can’t pass the data and the update functions as props.
But they do share a common parent: SaladMaker .

One of the big differences between context and other state management
solutions such as Redux is that context is not intended to be a central store.
You can use it multiple times throughout an application and initiate it at the
root level or deep in a component tree. In other words, you can spread your
contexts throughout the application, creating focused data collections
without worrying about conflicts.

To keep context focused, create Providers that wrap the nearest shared

parent when possible. In this case, that means, rather than adding another
context in App , you will add the context in the SaladMaker component.

Open SaladMaker :

nano src/components/SaladMaker/SaladMaker.js

Then create and export a new context called SaladContext :

state-context-tutorial/src/components/SaladMake
r/SaladMaker.js

import React, { createContext } from 'react';

import { createUseStyles } from 'react-jss';

import SaladBuilder from '../SaladBuilder/SaladBuilder';

import SaladSummary from '../SaladSummary/SaladSummary';

const useStyles = createUseStyles({

 wrapper: {

 textAlign: 'center',

 }

});

export const SaladContext = createContext();

export default function SaladMaker() {

 const classes = useStyles();

 return(

 <>

 <h1 className={classes.wrapper}>

 🥗

 Build Your Custom Salad!

 🥗

 </h1>

 <SaladBuilder />

 <SaladSummary />

In the previous step, you made a separate component for your context, but
in this case you are creating it in the same file that you are using it. Since U

ser does not seem related directly to the App , it might make more sense to

keep them separate. However, since the SaladContext is tied closely to the

SaladMaker component, keeping them together will create more readable

code.

In addition, you could create a more generic context called OrderContext ,

which you could reuse across multiple components. In that case, you’d want
to make a separate component. For now, keep them together. You can
always refactor later if you decide to shift to another pattern.

Before you add the Provider think about the data that you want to share.

You’ll need an array of items and a function for adding the items. Unlike
other centralized state management tools, context does not handle updates
to your data. It merely holds the data for use later. To update data, you’ll
need to use other state management tools such as Hooks. If you were
collecting data for the same component, you’d use either the useState or u

seReducer Hooks. If you are new to these Hooks, check out How To

Manage State with Hooks on React Components.

 </>

)

}

https://www.digitalocean.com/community/tutorials/how-to-manage-state-with-hooks-on-react-components

The useReducer Hook is a good fit since you’ll need to update the most

recent state on every action.

Create a reducer function that adds a new item to a state array, then use

the useReducer Hook to create a salad array and a setSalad function:

state-context-tutorial/src/components/SaladMake
r/SaladMaker.js

import React, { useReducer, createContext } from 'react';

import { createUseStyles } from 'react-jss';

import SaladBuilder from '../SaladBuilder/SaladBuilder';

import SaladSummary from '../SaladSummary/SaladSummary';

const useStyles = createUseStyles({

 wrapper: {

 textAlign: 'center',

 }

});

export const SaladContext = createContext();

function reducer(state, item) {

 return [...state, item]

}

export default function SaladMaker() {

 const classes = useStyles();

 const [salad, setSalad] = useReducer(reducer, []);

 return(

 <>

 <h1 className={classes.wrapper}>

 🥗

Now you have a component that contains the salad data you want to share,

a function called setSalad to update the data, and the SaladContext to

share the data in the same component. At this point, you need to combine
them together.

To combine, you’ll need to create a Provider . The problem is that the Prov

ider takes a single value as a prop. Since you can’t pass salad and setSa

lad individually, you’ll need to combine them into an object and pass the

object as the value :

 Build Your Custom Salad!

 🥗

 </h1>

 <SaladBuilder />

 <SaladSummary />

 </>

)

}

state-context-tutorial/src/components/SaladMake
r/SaladMaker.js

import React, { useReducer, createContext } from 'react';

import { createUseStyles } from 'react-jss';

import SaladBuilder from '../SaladBuilder/SaladBuilder';

import SaladSummary from '../SaladSummary/SaladSummary';

const useStyles = createUseStyles({

 wrapper: {

 textAlign: 'center',

 }

});

export const SaladContext = createContext();

function reducer(state, item) {

 return [...state, item]

}

export default function SaladMaker() {

 const classes = useStyles();

 const [salad, setSalad] = useReducer(reducer, []);

 return(

 <SaladContext.Provider value={{ salad, setSalad }}>

 <h1 className={classes.wrapper}>

 🥗

Save and close the file. As with Navigation , it may seem unnecessary to

create a context when the SaladSummary is in the same component as the

context. Passing salad as a prop is perfectly reasonable, but you may end

up refactoring it later. Using context here keeps the information together in
a single place.

Next, go into the SaladItem component and pull the setSalad function out

of the context.

Open the component in a text editor:

nano src/components/SaladItem/SaladItem.js

Inside SaladItem , import the context from SaladMaker , then pull out the se

tSalad function using destructuring. Add a click event to the button that

will call the setSalad function. Since you want a user to be able to add an

 Build Your Custom Salad!

 🥗

 </h1>

 <SaladBuilder />

 <SaladSummary />

 </SaladContext.Provider>

)

}

item multiple times, you’ll also need to create a unique id for each item so
that the map function will be able to assign a unique key :

state-context-tutorial/src/components/SaladIte
m/SaladItem.js

import React, { useReducer, useContext } from 'react';

import PropTypes from 'prop-types';

import { createUseStyles } from 'react-jss';

import UserContext from '../User/User';

import { SaladContext } from '../SaladMaker/SaladMaker';

const useStyles = createUseStyles({

...

});

const reducer = key => key + 1;

export default function SaladItem({ image, name }) {

 const classes = useStyles();

 const { setSalad } = useContext(SaladContext)

 const user = useContext(UserContext);

 const favorite = user.favorites.includes(name);

 const [id, updateId] = useReducer(reducer, 0);

 function update() {

 setSalad({

 name,

 id: `${name}-${id}`

 })

 updateId();

To make the unique id, you’ll use the useReducer Hook to increment a

value on every click. For the first click, the id will be 0 ; the second will be

1 , and so on. You’ll never display this value to the user; this will just create

a unique value for the mapping function later.

After creating the unique id, you created a function called update to

increment the id and to call setSalad . Finally, you attached the function to

the button with the onClick prop.

 };

 return(

 <div className={classes.wrapper}>

 <h3>

 {name}

 </h3>

 <span className={classes.favorite}
 aria-label={favorite ? 'Favorite' : 'Not Favorite'}>

 {favorite ? '😋' : ''}

 <button className={classes.add} onClick={update}>

 <span className={classes.image} role="img"
 aria-label={name}>{image}

 </button>

 </div>

)

}

...

Save and close the file. The last step is to pull the dynamic data from the
context in the SaladSummary .

Open SaladSummary :

nano src/components/SaladSummary/SaladSummary.js

Import the SaladContext component, then pull out the salad data using

destructuring. Replace the hard-coded list items with a function that maps
over salad , converting the objects to elements. Be sure to use the id

as the key :

https://www.digitalocean.com/community/tutorials/understanding-destructuring-rest-parameters-and-spread-syntax-in-javascript

state-context-tutorial/src/components/SaladSumm
ary/SaladSummary.js

import React, { useContext } from 'react';

import { createUseStyles } from 'react-jss';

import { SaladContext } from '../SaladMaker/SaladMaker';

const useStyles = createUseStyles({

...

});

export default function SaladSummary() {

 const classes = useStyles();

 const { salad } = useContext(SaladContext);

 return(

 <div className={classes.wrapper}>

 <h2>Your Salad</h2>

 <ul className={classes.list}>

 {salad.map(({ name, id }) => (<li key={id}>{name})

 </div>

)

}

Save and close the file. When you do, you will be able to click on items and
it will update the summary:

Adding salad items

Notice how the context gave you the ability to share and update data in
different components. The context didn’t update the items itself, but it gave
you a way to use the useReducer Hook across multiple components. In

addition, you also had the freedom to put the context lower in the tree. It
may seem like it’s best to always keep the context at the root, but by
keeping the context lower, you don’t have to worry about unused state
sticking around in a central store. As soon as you unmount a component, the
data disappears. That can be a problem if you ever want to save the data,
but in that case, you just need to raise the context up to a higher parent.

Another advantage of using context lower in your application tree is that
you can reuse a context without worrying about conflicts. Suppose you had
a larger app that had a sandwich maker and a salad maker. You could create
a generic context called OrderContext and then you could use it at multiple

points in your component without worrying about data or name conflicts. If
you had a SaladMaker and a SandwichMaker , the tree would look something

like this:
| App

 | Salads

 | OrderContext

 | SaladMaker

 | Sandwiches

 | OrderContext

 | SandwichMaker

Notice that OrderContext is there twice. That’s fine, since the useContext

Hook will look for the nearest provider.

In this step you shared and updated data using context. You also placed the
context outside the root element so it’s close to the components that need
the information without cluttering a root component. Finally, you combined
context with state management Hooks to create data that is dynamic and
accessible across several components.

Conclusion

Context is a powerful and flexible tool that gives you the ability to store and
use data across an application. It gives you the ability to handle distributed

data with built-in tools that do not require any additional third party
installation or configuration.

Creating reusable contexts is important across a variety of common
components such as forms that need to access data across elements or tab
views that need a common context for both the tab and the display. You can
store many types of information in contexts including themes, form data,
alert messages, and more. Context gives you the freedom to build
components that can access data without worrying about how to pass data
through intermediary components or how to store data in a centralized store
without making the store too large.

If you would like to look at more React tutorials, check out our React Topic
page, or return to the How To Code in React.js series page.

https://www.digitalocean.com/community/tags/react
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-react-js

How To Debug React Components Using
React Developer Tools

Written by Joe Morgan

The author selected Creative Commons to receive a donation as part of the
Write for DOnations program.

Since React apps are made to scale and grow quickly, it’s easy for subtle
bugs to infiltrate your code. The React Developer Tools browser extension
can help you track down these bugs by giving you more insight into the
current state for each component. React Developer Tools gives you an
interface for exploring the React component tree along with the current
props, state, and context for individual components. React Developer Tools
also lets you determine which components are re-rendering and can
generate graphs to show how long individual components take to render.
You can use this information to track down inefficient code or to optimize
data-heavy components.

This tutorial begins by installing the React Developer Tools browser
extension. You’ll then build a text analyzer as a test application, which will
take a block of text and display information such as word count, character
count, and character usage. Finally, you will use React Developer Tools to
explore the text analyzer’s components and keep track of the changing
props and context. The examples will use the Chrome browser, but you can
also use the plugin for Firefox.

https://www.digitalocean.com/community/tutorials/how-to-debug-react-components-using-react-developer-tools
https://creativecommons.org/
https://do.co/w4do-cta
https://reactjs.org/blog/2019/08/15/new-react-devtools.html
https://www.digitalocean.com/community/tutorials/how-to-manage-state-on-react-class-components
https://www.digitalocean.com/community/tutorials/how-to-create-custom-components-in-react
https://www.digitalocean.com/community/tutorials/how-to-customize-react-components-with-props
https://www.digitalocean.com/community/tutorials/how-to-share-state-across-react-components-with-context
https://www.google.com/chrome/
https://addons.mozilla.org/en-US/firefox/addon/react-devtools/

By the end of this tutorial, you’ll be able to start using the React Developer
Tools to debug and explore any React project.

Prerequisites

To use the Chrome React Developer Tools extension, you will need to
download and install the Google Chrome web browser or the open-
source Chromium web browser. You can also following along using
the React Developer Tools FireFox plugin for the FireFox web
browser.

You will need a development environment running Node.js; this
tutorial was tested on Node.js version 10.22.0 and npm version 6.14.6.
To install this on macOS or Ubuntu 18.04, follow the steps in How to
Install Node.js and Create a Local Development Environment on
macOS or the Installing Using a PPA section of How To Install
Node.js on Ubuntu 18.04.

A React development environment set up with Create React App. To
set this up, follow Step 1 — Creating an Empty Project of the How
To Manage State on React Class Components tutorial, which will
remove the non-essential boilerplate. This tutorial will use debug-tuto

rial as the project name.

You will be using React components and Hooks in this tutorial,
including the useState and context Hooks. You can learn about

components and Hooks in our tutorials How To Create Custom
Components in React, How To Manage State with Hooks on React

https://www.google.com/chrome/
https://www.chromium.org/
https://addons.mozilla.org/en-US/firefox/addon/react-devtools/
https://www.mozilla.org/en-US/firefox/new/
https://nodejs.org/en/about/
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-and-create-a-local-development-environment-on-macos
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-on-ubuntu-18-04
https://github.com/facebook/create-react-app
https://www.digitalocean.com/community/tutorials/how-to-manage-state-on-react-class-components#step-1-%E2%80%94-creating-an-empty-project
https://www.digitalocean.com/community/tutorials/how-to-create-custom-components-in-react
https://www.digitalocean.com/community/tutorials/how-to-manage-state-with-hooks-on-react-components

Components, and How To Share State Across React Components with
Context.

You will also need a basic knowledge of JavaScript and HTML, which
you can find in our How To Build a Website with HTML series and in
How To Code in JavaScript. Basic knowledge of CSS would also be
useful, which you can find at the Mozilla Developer Network.

Step 1 — Installing the React Developer Tools Extension

In this step, you’ll install the React Developer Tools broswer extension in
Chrome. You’ll use the developer tools in the Chrome JavaScript console to
explore the component tree of the debug-tutorial project you made in the

Prerequisites. This step will use Chrome, but the steps will be nearly
identical for installing the React Developer Tools as an add-on in Firefox.

By the end of this step, you’ll have the React Developer Tools installed in
your browser and you’ll be able to explore and filter components by name.

The React Developer Tools is a plugin for the Chrome and Firefox browser.
When you add the extension, you are adding additional tools to the
developer console. Visit the Chrome plugin page for React Developer Tools
to install the extension.

Click on the Add to Chrome button. Then click on the Add extension
button to confirm:

https://www.digitalocean.com/community/tutorials/how-to-manage-state-with-hooks-on-react-components
https://www.digitalocean.com/community/tutorials/how-to-share-state-across-react-components-with-context
https://www.digitalocean.com/community/tutorial_series/how-to-build-a-website-with-html
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-javascript
https://developer.mozilla.org/en-US/docs/Web/CSS
https://www.digitalocean.com/community/tutorials/how-to-use-the-javascript-developer-console#working-with-the-console-in-a-browser
https://addons.mozilla.org/en-US/firefox/addon/react-devtools/
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi

Chrome add extension button

Chrome will install the extension, and a success message and a new icon
will appear in the upper right corner of your browser next to the address
bar:

Chrome success message

If the icon does not appear, you can add it by clicking on the puzzle piece,
then clicking on the pushpin icon by the React Developer Tools:

Pin extension

When you are on a page that does not have any React components, the icon
will appear gray. However, if you are on a page with React components, the
icon will appear blue and green. If you click on the icon, it will indicate that
the application is running a production version of React.

Visit digitalocean.com, to find that the homepage is running a production

version of React:

https://www.digitalocean.com/

DigitalOcean React Production Build information

Now that you are on a website that uses React, open the console to access
the React Developer Tools. Open the console by either right-clicking and
inspecting an element or by opening the toolbar by clicking View >
Developer > JavaScript console.

When you open the console, you’ll find two new tabs: Components and
Profiler:

Console Open

The Components tab will show the current React component tree, along
with any props, state, or context. The Profiler tab lets you record
interactions and measure component rendering. You’ll explore the Profiler
tab in Step 3.

Click on the Components tab to see the current component tree.

Since this is a production build, the code will be minified and the
components will not have descriptive names:

https://en.wikipedia.org/wiki/Minification_(programming)

Components for digitalocean.com in the console

Now that you’ve tried out React Developer Tools on a working website,
you can use it on your test application. If you haven’t started your debug-tu

torial application yet, go to a terminal window and run npm start from

the root of the project.

Open a browser to http://localhost:3000.

Notice that the icon for React Developer Tools is now red and white. If you
click on the React Developer Tools icon, you’ll see a warning that the page
is in development mode. Since you are still working on the sample
application, this is expected.

Open the console and you’ll find the name of the App component in the

Components tab.

http://localhost:3000/

Base Component

There’s not a lot of information yet, but as you build out the project in the
next step, you’ll see all of your components forming a navigable tree.

In this step, you added the React Developer Tools extension to Chrome.
You activated the tools on both a production and a development page, and
you briefly explored your debug-tutorial project in the Components tab.

In the next step, you’ll build the text analyzer that you’ll use to try out the
features of the React Developer Tools.

Step 2 — Identifying Real-Time Component Props and
Context

In this step, you’ll build a small application to analyze a block of text. The
app will determine and report the word count, character count, and
character frequency of the text in the input field. As you build the
application, you’ll use React Developer Tools to explore the current state
and props of each component. You’ll also use React Developer Tools to
view the current context in deeply nested components. Finally, you’ll use
the tools to identify components that re-render as state changes.

By the end of this step, you’ll be able to use the React Developer Tools to
explore a live application and to observe the current props and state without
console statements or debuggers.

To start, you will create an input component that will take a large amount of
text.

Open the App.js file:

nano src/components/App/App.js

Inside the component, add a div with a class of wrapper , then create a <lab

el> element surrounding a <textarea> element:

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/label
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/textarea

debug-tutorial/src/components/App/App.js

import React from 'react';

import './App.css';

function App() {

 return(

 <div className="wrapper">

 <label htmlFor="text">

 Add Your Text Here:

 <textarea

 id="text"

 name="text"

 rows="10"

 cols="100"

 >

 </textarea>

 </label>

 </div>

)

}

export default App;

This will be the input area for your user. The htmlFor attribute links the la

bel element to elements with an id of text using JSX. You also give the <

textarea> component 10 rows and 100 columns to provide room for a

large amount of text.

Save and close the file. Next, open App.css :

nano src/components/App/App.css

Add some styling to the application by replacing the contents with the
following:

https://www.digitalocean.com/community/tutorials/how-to-create-react-elements-with-jsx

debug-tutorial/src/components/App.App.css

Here you add some padding to the wrapper class, then simplify child <butt

on> elements by removing the background color and adding some margin.

Finally, you add a small margin to child <div> elements. These styles will

apply to components you will build to display information about the text.

Save the file. When you do, the browser will refresh and you’ll see the
input:

.wrapper {

 padding: 20px;

}

.wrapper button {

 background: none;

 border: black solid 1px;

 cursor: pointer;

 margin-right: 10px;

}

.wrapper div {

 margin: 20px 0;

}

Text area

Open App.js :

nano src/components/App/App.js

Next, create a context to hold the value from the <textarea> element.

Capture the data using the useState Hook:

https://www.digitalocean.com/community/tutorials/how-to-share-state-across-react-components-with-context
https://www.digitalocean.com/community/tutorials/how-to-manage-state-with-hooks-on-react-components#step-2-%E2%80%94-setting-state-with-usestate

debug-tutorial/src/components/App/App.js

import React, { createContext, useState } from 'react';

import './App.css';

export const TextContext = createContext();

function App() {

 const [text, setText] = useState('');

 return(

 <TextContext.Provider value={text}>

 <div className="wrapper">

 <label htmlFor="text">

 Add Your Text Here:

 <textarea

 id="text"

 name="text"

 rows="10"

 cols="100"

 onChange={e => setText(e.target.value)}

 >

 </textarea>

 </label>

 </div>

 </TextContext.Provider>

Be sure to export TextContext , then wrap the whole component with the Te

xtContext.Provider . Capture the data by adding an onChange prop to your

<textarea> element.

Save the file. The browser will reload. Be sure that you have React
Developer Tools open and notice that App component now shows the Conte

xt.Provider as a child component.

Component context in React Developer Tools

)

}

export default App;

The component by default has a generic name— Context—but you can

change that by adding a displayName property to the generated context.

Inside App.js , add a line where you set the displayName to TextContext :

debug-tutorial/src/components/App/App.js

It is not necessary to add a displayName , but it does help to navigate

components when analyzing the component tree in the console. You will
also see the value of the useState Hook in the side bar. Type some text in

the input and you’ll see the updated value in React Developer Tools under
the hooks section on the App component.

import React, { createContext, useState } from 'react';

import './App.css';

export const TextContext = createContext();

TextContext.displayName = 'TextContext';

function App() {

 ...

}

export default App;

Update Value in Developer Tools

The Hook also has a generic name of State , but this is not as easy to

update as the context. There is a useDebugValue Hook, but it only works on

custom Hooks and is not recommended for all custom Hooks.

In this case, the state for the App component is the prop to TextContext.Pro

vider . Click on the TextContext.Provider in the React Developer Tools

and you’ll see that the value also reflects the input value that you set with

the state:

https://reactjs.org/docs/hooks-reference.html#usedebugvalue

Updated value for the context

React Developer Tools is showing you real time prop and context
information, and the value will grow as you add components.

Next, add a component called TextInformation . This component will be a

container for the components with specific data analysis, such as the word
count.

First, make the directory:

mkdir src/components/TextInformation

Then open TextInformation.js in your text editor.

nano src/components/TextInformation/TextInformation.js

Inside the component, you will have three separate components: Character

Count , WordCount , and CharacterMap . You’ll make these components in

just a moment.

The TextInformation component will use the useReducer Hook to toggle

the display of each component. Create a reducer function that toggles the

display value of each component and a button to toggle each component
with an onClick action:

debug-tutorial/src/components/TextInformation/T
extInformation.js

import React, { useReducer } from 'react';

const reducer = (state, action) => {

 return {

 ...state,

 [action]: !state[action]

 }

}

export default function TextInformation() {

 const [tabs, toggleTabs] = useReducer(reducer, {

 characterCount: true,

 wordCount: true,

 characterMap: true

 });

 return(

 <div>

 <button onClick={() => toggleTabs('characterCount')}>Char

 <button onClick={() => toggleTabs('wordCount')}>Word Coun

 <button onClick={() => toggleTabs('characterMap')}>Charac

 </div>

)

}

Notice that your useReducer Hook starts with an object that maps each key

to a boolean. The reducer function uses the spread operator to preserve the
previous value while setting a new value using the action parameter.

Save and close the file. Then open App.js :

nano src/components/App/App.js

Add in your new component:

https://www.digitalocean.com/community/tutorials/js-spread-operator

debug-tutorial/src/components/App/App.js

import React, { createContext, useState } from 'react';

import './App.css';

import TextInformation from '../TextInformation/TextInformation

...

function App() {

 const [text, setText] = useState('');

 return(

 <TextContext.Provider value={text}>

 <div className="wrapper">

 <label htmlFor="text">

 Add Your Text Here:

 <textarea

 id="text"

 name="text"

 rows="10"

 cols="100"

 onChange={e => setText(e.target.value)}

 >

 </textarea>

 </label>

 <TextInformation />

Save and close the file. When you do, the browser will reload, and you’ll
see the updated component. If you click on TextInformation in React

Developer Tools, you’ll see the value update on each button click:

Update Reducer on Click

 </div>

 </TextContext.Provider>

)

}

export default App;

Now that you have the container component, you’ll need to create each
informational component. Each component will take a prop called show . If

show is falsy, the component will return null . The components will

consume the TextContext , analyze the data, and display the result.

To start, create the CharacterCount component.

First, make a new directory:

mkdir src/components/CharacterCount

Then, open CharacterCount.js in your text editor:

nano src/components/CharacterCount/CharacterCount.js

Inside the component, create a function that uses the show prop and

displays null if show is falsy:

debug-tutorial/src/components/CharacterCount/Ch
aracterCount.js

import React, { useContext } from 'react';

import PropTypes from 'prop-types';

import { TextContext } from '../App/App';

export default function CharacterCount({ show }) {

 const text = useContext(TextContext);

 if(!show) {

 return null;

 }

 return(

 <div>

 Character Count: {text.length}

 </div>

)

}

CharacterCount.proTypes = {

 show: PropTypes.bool.isRequired

}

Inside the CharacterCount function, you assign the value of TextContext

to a variable using the useContext Hook. You then return a <div> that

shows the character count using the length method. Finally, PropTypes

adds a weak typing system to provide some enforcement to make sure the
wrong prop type is not passed.

Save and close the file. Open TextInformation.js :

nano src/components/TextInformation/TextInformation.js

Import CharacterCount and add the component after the buttons, passing t

abs.characterCount as the show prop:

https://www.digitalocean.com/community/tutorials/how-to-customize-react-components-with-props#step-3-%E2%80%94-creating-predictable-props-with-proptypes-and-defaultprops

debug-tutorial/src/components/TextInformation/T
extInformation.js

import React, { useReducer } from 'react';

import CharacterCount from '../CharacterCount/CharacterCount';

const reducer = (state, action) => {

 return {

 ...state,

 [action]: !state[action]

 }

}

export default function TextInformation() {

 const [tabs, toggleTabs] = useReducer(reducer, {

 characterCount: true,

 wordCount: true,

 characterMap: true

 });

 return(

 <div>

 <button onClick={() => toggleTabs('characterCount')}>Char

 <button onClick={() => toggleTabs('wordCount')}>Word Coun

 <button onClick={() => toggleTabs('characterMap')}>Charac

 <CharacterCount show={tabs.characterCount} />

 </div>

Save the file. The browser will reload and you’ll see the component in the
React Developer Tools. Notice that as you add words in the input, the
context will update. If you toggle the component, you’ll see the props
update after each click:

Adding text and toggling

You can also manually add or change a prop by clicking on the property and
updating the value:

)

}

Manually Changing Props

Next, add a WordCount component.

Create the directory:

mkdir src/components/WordCount

Open the file in a text editor:

nano src/components/WordCount/WordCount.js

Make a component that is similar to CharacterCount , but use the split

method on spaces to create an array of words before showing the length:

https://www.digitalocean.com/community/tutorials/how-to-index-split-and-manipulate-strings-in-javascript#splitting-strings
https://www.digitalocean.com/community/tutorials/understanding-arrays-in-javascript

debug-tutorial/src/components/WordCount/WordCou
nt.js

Save and close the file.

import React, { useContext } from 'react';

import PropTypes from 'prop-types';

import { TextContext } from '../App/App';

export default function WordCount({ show }) {

 const text = useContext(TextContext);

 if(!show) {

 return null;

 }

 return(

 <div>

 Word Count: {text.split(' ').length}

 </div>

)

}

WordCount.proTypes = {

 show: PropTypes.bool.isRequired

}

Finally, create a CharacterMap component. This component will show how

often a specific character is used in a block of text. It will then sort the
characters by frequency in the passage and display the results.

First, make the directory:

mkdir src/components/CharacterMap

Next, open CharacterMap.js in a text editor:

nano src/components/CharacterMap/CharacterMap.js

Import and use the TextContext component and use the show prop to

display results as you did in the previous components:

debug-tutorial/src/components/CharacterMap/Char
acterMap.js

import React, { useContext } from 'react';

import PropTypes from 'prop-types';

import { TextContext } from '../App/App';

export default function CharacterMap({ show }) {

 const text = useContext(TextContext);

 if(!show) {

 return null;

 }

 return(

 <div>

 Character Map: {text.length}

 </div>

)

}

CharacterMap.proTypes = {

 show: PropTypes.bool.isRequired

}

This component will need a slightly more complicated function to create the
frequency map for each letter. You’ll need to go through each character and
increment a value anytime there is a repeat. Then you’ll need to take that
data and sort it so that the most frequent letters are at the top of the list.

To do this, add the following highlighted code:

debug-tutorial/src/components/CharacterMap/Char
acterMap.js

import React, { useContext } from 'react';

import PropTypes from 'prop-types';

import { TextContext } from '../App/App';

function itemize(text){

const letters = text.split('')

 .filter(l => l !== ' ')

 .reduce((collection, item) => {

 const letter = item.toLowerCase();

 return {

 ...collection,

 [letter]: (collection[letter] || 0) + 1

 }

 }, {})

return Object.entries(letters)

 .sort((a, b) => b[1] - a[1]);

}

export default function CharacterMap({ show }) {

 const text = useContext(TextContext);

 if(!show) {

 return null;

In this code, you create a function called itemize that splits the text into an

array of characters using the split() string method. Then you reduce the

array to an object by adding the character and then incrementing the count
for each subsequent character. Finally, you convert the object to an array of
pairs using Object.entries and sort to put the most used characters at the

top.

 }

 return(

 <div>

 Character Map:

 {itemize(text).map(character => (

 <div key={character[0]}>

 {character[0]}: {character[1]}
 </div>

))}

 </div>

)

}

CharacterMap.proTypes = {

 show: PropTypes.bool.isRequired

}

https://www.digitalocean.com/community/tutorials/understanding-arrays-in-javascript
https://www.digitalocean.com/community/tutorials/how-to-use-array-methods-in-javascript-iteration-methods#reduce()
https://www.digitalocean.com/community/tutorials/js-object-entries-values#objectentries
https://www.digitalocean.com/community/tutorials/how-to-use-array-methods-in-javascript-mutator-methods#sort()

After you create the function, you pass the text to the function in the rende

r method and map over the results to display the character—array value

[0]—and the count—array value [1]—inside a <div> .

Save and close the file. This function will give you an opportunity to
explore some performance features of the React Developer Tools in the next
section.

Next, add the new components to TextInformation and look at the values

in React Developer Tools.

Open TextInformation.js :

nano src/components/TextInformation/TextInformation.js

Import and render the new components:

debug-tutorial/src/components/TextInformation/T
extInformation.js

import React, { useReducer } from 'react';

import CharacterCount from '../CharacterCount/CharacterCount';

import CharacterMap from '../CharacterMap/CharacterMap';

import WordCount from '../WordCount/WordCount';

const reducer = (state, action) => {

 return {

 ...state,

 [action]: !state[action]

 }

}

export default function TextInformation() {

 const [tabs, toggleTabs] = useReducer(reducer, {

 characterCount: true,

 wordCount: true,

 characterMap: true

 });

 return(

 <div>

 <button onClick={() => toggleTabs('characterCount')}>Char

 <button onClick={() => toggleTabs('wordCount')}>Word Coun

 <button onClick={() => toggleTabs('characterMap')}>Charac

Save and close the file. When you do, the browser will refresh, and if you
add in some data, you’ll find the character frequency analysis in the new
components:

CharacterMap Component in React Developer Tools

 <CharacterCount show={tabs.characterCount} />

 <WordCount show={tabs.wordCount} />

 <CharacterMap show={tabs.characterMap} />

 </div>

)

}

In this section, you used React Developer Tools to explore the component
tree. You also learned how to see the real-time props for each component
and how to manually change the props using the developer tools. Finally,
you viewed the context for the component change with input.

In the next section, you’ll use the React Developer Tools Profiler tab to
identify components that have long render times.

Step 3 — Tracking Component Rendering Across
Interactions

In this step, you’ll use the React Developer Tools profiler to track
component rendering and re-rendering as you use the sample application.
You’ll navigate flamegraphs, or visualizations of your app’s relevant
optimization metrics, and use the information to identify inefficient
components, reduce rendering time, and increase application speed.

By the end of this step, you’ll know how to identify components that render
during user interactions and how to compose components to reduce
inefficient rendering.

A quick way to see how components change each other is to enable
highlighting when a component is re-rendered. This will give you a visual
overview of how the components respond to changing data.

In React Developer Tools, click on the Settings icon. It will look like a
gear:

Settings icon

Then select the option under General that says Highlight updates when
components render.

Highlight changes

When you make any changes, React Developer Tools will highlight
components that re-render. For example, when you change input, every
component re-renders because the data is stored on a Hook at the root level
and every change will re-render the whole component tree.

Notice the highlighting around the components, including the top of the
screen around the root component:

Highlighting Text

Compare that to how the components re-render when you click on one of
the buttons to toggle the data. If you click one of the buttons, the
components under TextInformation will re-render, but not the root

component:

Rerendering lower components only

Showing the re-renders will give you a quick idea of how the components
are related, but it doesn’t give you a lot of data to analyze specific
components. To gain more insight, let’s look at the profiler tools.

The profiler tools are designed to help you measure precisely how long
each component takes to render. This can help you identify components that
may be slow or process intense.

Re-open the settings and uncheck the box for Highlight updates when
components render. Then click on the Profiler tab in the console.

To use the profiler, click the blue circle on the left of the screen to begin
recording and click it again when you are finished:

Start profiling

When you stop recording, you’ll find a graph of the component changes
including, how long each item took to render.

To get a good sense of the relative efficiency of the components, paste in
the Wikipedia page for Creative Commons. This text is long enough to give
interesting results, but not so big that it will crash the application.

After pasting in the text, start the profiler, then make a small change to the
input. Stop profiling after the component has finished re-rendering. There
will be a long pause, because the application is handling a long re-
rendering:

https://en.wikipedia.org/wiki/Creative_Commons

Adding a change with a lot of text

When you end the recording, React Developer Tools will create a
flamegraph that shows every component that re-rendered and how long it
took to re-render each component.

In this case, every keypress from the word “Change” causes a re-render.
More importantly, it shows how long each render takes and why there was a
long delay. The components App , TextContext.Provider , and TextInforma

tion take about .2 milliseconds to rerender. But the CharacterMap

component takes around 1 second per keystroke to re-render because of the
complicated data parsing in the itemize function.

In the display, each yellow bar is a new keystroke. You can replay the
sequence one at a time by clicking on each bar. Notice that there is slight
variation in the render times, but the CharacterMap is consistently slow:

Looking at the flamegraph

You can get more information by selecting the option Record why each
component rendered while profiling. under the Profiler section of the
settings.

“Record why” Option of the Profiler Tab

Try toggling the Word Count component and notice how long the changes
take. The application still lags even though you haven’t changed the text
content:

Word Count toggle flamegraph

Now when you hover your cursor over a component, you’ll find that it
includes a reason the component re-rendered. In this case, the reason the
component changed is The parent component rendered. That’s a problem
for the CharacterMap component. CharacterMap is doing an expensive

calculation every time the parent changes, even if the props and the context
do not change. That is, it’s recalculating data even though the data is
identical to the previous render.

Click on the Ranked tab and you’ll find how much more time CharacterMa

p takes when compared to all other components:

Ranked Tab

React Developer Tools have helped isolate a problem: the CharacterMap

component re-renders and performs an expensive calculation anytime any
parent component changes.

There are multiple ways to solve the problem, but they all involve some sort
of caching via memoization, a process by which already calculated data is
remembered rather than recalculated. You can either use a library like
lodash/memoize or memoize-one to cache the results of the itemize

function, or you can use the built in React memo function to memoize the

whole component.

If you use the React memo , the function will only re-render if the props or

context change. In this case, you’ll use React memo . In general, you should

memoize the data itself first since it’s a more isolated case, but there are

https://lodash.com/docs/4.17.15#memoize
https://www.npmjs.com/package/memoize-one
https://reactjs.org/docs/react-api.html#reactmemo

some interesting changes in the React Developer Tools if you memoize the
whole component, so you’ll use that approach in this tutorial.

Open CharacterMap.js :

nano src/components/CharacterMap/CharacterMap.js

Import memo from React, then pass the entire function into the memo

function:

debug-tutorial/src/components/CharacterMap/Char
acterMap.js

import React, { memo, useContext } from 'react';

import PropTypes from 'prop-types';

import { TextContext } from '../App/App';

...

function CharacterMap({ show }) {

 const text = useContext(TextContext);

 if(!show) {

 return null;

 }

 return(

 <div>

 Character Map:

 {itemize(text).map(character => (

 <div key={character[0]}>

 {character[0]}: {character[1]}

 </div>

))}

 </div>

)

}

You move the export default line to the end of the code in order to pass

the component to memo right before exporting. After that, React will

compare the props before re-rendering.

Save and close the file. The browser will reload, and when you toggle the W

ordCount , the component will update much faster. This time, CharacterMap

does not re-render. Instead, in React Developer Tools, you’ll see a gray
rectangle showing re-rendering was prevented.

CharacterMap.proTypes = {

 show: PropTypes.bool.isRequired

}

export default memo(CharacterMap);

React Developer Tools showing that CharacterMap
did not re-render

If you look at the Ranked tab, you’ll find that both the CharacterCount and

the WordCount re-rendered, but for different reasons. Since CharacterCount

is not memoized, it re-rendered because the parent changed. The WordCount

re-rendered because the props changed. Even if it was wrapped in memo , it

would still rerender.

Ranked view of memoized app

Note: Memoizing is helpful, but you should only use it when you have
a clear performance problem, as you did in this case. Otherwise, it can
create a performance problem: React will have to check props every
time it re-renders, which can cause a delay on smaller components.

In this step, you used the profiler to identify re-renders and componenent
re-rendering. You also used flamegraphs and ranked graphs to identify
components that are slow to re-render and then used the memo function to

prevent re-rendering when there are no changes to the props or context.

Conclusion

The React Developer Tools browser extension gives you a powerful set of
utilities to explore your components in their applications. With these tools,
you’ll be able to explore a component’s state and identify bugs using real
data without console statements or debuggers. You can also use the profiler
to explore how components interact with each other, allowing you to
identify and optimize components that have slow rendering in your full
application. These tools are a crucial part of the development process and
give you an opportunity to explore the components as part of an application
and not just as static code.

If you would like to learn more about debugging JavaScript, see our article
on How To Debug Node.js with the Built-In Debugger and Chrome
DevTools. For more React tutorials, check out our React Topic page, or
return to the How To Code in React.js series page.

https://www.digitalocean.com/community/tutorials/how-to-debug-node-js-with-the-built-in-debugger-and-chrome-devtools
https://www.digitalocean.com/community/tags/react
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-react-js

How To Handle DOM and Window
Events with React

Written by Joe Morgan

The author selected Creative Commons to receive a donation as part of the
Write for DOnations program.

In web development, events represent actions that happen in the web
browser. By responding to events with event handlers, you can create
dynamic JavaScript applications that respond to any user action, including
clicking with a mouse, scrolling along a webpage, touching a touch screen,
and more.

In React apps, you can use event handlers to update state data, trigger prop
changes, or prevent default browser actions. To do this, React uses a Synthe

ticEvent wrapper instead of the native Event interface. SyntheticEvent

closely emulates the standard browser event, but provides more consistent
behavior for different web browsers. React also gives you tools to safely
add and remove a Window event listener when a component mounts and

unmounts from the Document Object Model (DOM), giving you control
over Window events while preventing memory leaks from improperly

removed listeners.

In this tutorial, you’ll learn how to handle events in React. You’ll build
several sample components that handle user events, including a self-
validating input component and an informative tooltip for the input form.
Throughout the tutorial, you’ll learn how to add event handlers to

https://www.digitalocean.com/community/tutorials/how-to-handle-dom-and-window-events-with-react
https://creativecommons.org/
https://do.co/w4do-cta
https://www.digitalocean.com/community/tutorials/understanding-events-in-javascript
https://www.digitalocean.com/community/tutorials/understanding-events-in-javascript#event-handlers-and-event-listeners
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-javascript
https://reactjs.org/
https://www.digitalocean.com/community/tutorials/how-to-manage-state-on-react-class-components
https://www.digitalocean.com/community/tutorials/how-to-customize-react-components-with-props
https://developer.mozilla.org/en-US/docs/Web/API/Event
https://developer.mozilla.org/en-US/docs/Web/API/Window
https://www.digitalocean.com/community/tutorials/introduction-to-the-dom
https://en.wikipedia.org/wiki/Memory_leak

components, pull information from the SyntheticEvent , and add and

remove Window event listeners. By the end of this tutorial, you’ll be able to

work with a variety of event handlers and apply the catalog of events
supported by React.

Prerequisites

You will need a development environment running Node.js; this
tutorial was tested on Node.js version 10.22.0 and npm version 6.14.6.
To install this on macOS or Ubuntu 18.04, follow the steps in How to
Install Node.js and Create a Local Development Environment on
macOS or the Installing Using a PPA section of How To Install
Node.js on Ubuntu 18.04.

A React development environment set up with Create React App, with
the non-essential boilerplate removed. To set this up, follow Step 1 —
Creating an Empty Project of the How To Manage State on React
Class Components tutorial. This tutorial will use events-tutorial as

the project name.

You will also need a basic knowledge of JavaScript and HTML, which
you can find in our How To Build a Website with HTML series and in
How To Code in JavaScript. Basic knowledge of CSS would also be
useful, which you can find at the Mozilla Developer Network.

You will be using React components, the useState Hook, and the use

Reducer Hook, which you can learn about in our tutorials How To

https://reactjs.org/docs/events.html#supported-events
https://nodejs.org/en/about/
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-and-create-a-local-development-environment-on-macos
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-on-ubuntu-18-04
https://github.com/facebook/create-react-app
https://www.digitalocean.com/community/tutorials/how-to-manage-state-on-react-class-components#step-1-%E2%80%94-creating-an-empty-project
https://www.digitalocean.com/community/tutorial_series/how-to-build-a-website-with-html
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-javascript
https://developer.mozilla.org/en-US/docs/Web/CSS
https://www.digitalocean.com/community/tutorials/how-to-create-custom-components-in-react

Create Custom Components in React and How To Manage State with
Hooks on React Components.

Step 1 — Extracting Event Data with SyntheticEvent

In this step, you’ll create a validating component using an <input> HTML

element and the onChange event handler. This component will accept input

and validate it, or make sure that the content adheres to a specific text
pattern. You’ll use the SyntheticEvent wrapper to pass event data into the

callback function and update the component using the data from the <input

> . You will also call functions from the SyntheticEvent , such as preventDe

fault to prevent standard browser actions.

In React, you don’t need to select elements before adding event listeners.
Instead, you add event handlers directly to your JSX using props. There are
a large number of supported events in React, including common events such
as onClick or onChange and less common events such as onWheel .

Unlike native DOM onevent handlers, React passes a special wrapper called

SyntheticEvent to the event handler rather than the native browser Event .

The abstraction helps reduce cross-browser inconsistencies and gives your
components a standard interface for working with events. The API for Synt

heticEvent is similar to the native Event , so most tasks are accomplished

in the same manner.

To demonstrate this, you will start by making your validating input. First,
you will create a component called FileNamer . This will be a <form>

https://www.digitalocean.com/community/tutorials/how-to-create-custom-components-in-react
https://www.digitalocean.com/community/tutorials/how-to-manage-state-with-hooks-on-react-components
https://www.digitalocean.com/community/tutorials/how-to-write-asynchronous-code-in-node-js#asynchronous-programming-with-callbacks
https://www.digitalocean.com/community/tutorials/how-to-define-functions-in-javascript
https://www.digitalocean.com/community/tutorials/how-to-create-react-elements-with-jsx
https://reactjs.org/docs/events.html#supported-events
https://developer.mozilla.org/en-US/docs/Web/Guide/Events/Event_handlers

element with an input for naming a file. As you fill in the input, you’ll see
the information update a preview box above the component. The
component will also include a submit button to run the validation, but for
this example the form will not actually submit anything.

First, create the directory:

mkdir src/components/FileNamer

Then open FileNamer.js in your text editor:

nano src/components/FileNamer/FileNamer.js

Inside FileNamer.js , create a wrapper <div> , then add another <div> with

a class name of preview and a <form> element inside the wrapper by

writing the following lines of code:

events-tutorial/src/components/FileNamer/FileNa
mer.js

Next, add an input element for the name to display in the preview box and a
Save button. Add the following highlighted lines:

import React from 'react';

export default function FileNamer() {

 return(

 <div className="wrapper">

 <div className="preview">

 </div>

 <form>

 </form>

 </div>

)

}

events-tutorial/src/components/FileNamer/FileNa
mer.js

import React from 'react';

export default function FileNamer() {

 return(

 <div className="wrapper">

 <div className="preview">

 <h2>Preview:</h2>

 </div>

 <form>

 <label>

 <p>Name:</p>

 <input name="name"/>

 </label>

 <div>

 <button>Save</button>

 </div>

 </form>

 </div>

)

}

In the preview <div> , you added an <h2> element with the text Preview .

This will be your preview box. Inside your form, you added an <input>

surrounded by a <label> element with Name: as its text. Then you added a

button called Save directly before the closing <form> tag.

Save and close the file.

Next, open App.js :

nano src/components/App/App.js

Import FileNamer , then render inside the App function by adding the

following highlighted lines:

events-tutorial/src/components/App/App.js

import React from 'react';

import FileNamer from '../FileNamer/FileNamer';

function App() {

 return <FileNamer />

}

export default App;

Save and close the file. When you do the browser will refresh and you’ll see
your component.

Name element

Next, add some light styling to help define the sections and to add some
padding and margins to the elements.

Open FileNamer.css in your text editor:

nano src/components/FileNamer/FileNamer.css

Give the .preview class a gray border and padding, then give the .wrapper

class a small amount of padding. Display the items in a column using flex

and flex-direction , and make all the text align left. Finally, remove the

default button styles by removing the border and adding a black border:

https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Flexbox

events-tutorial/src/components/FileNamer/FileNa
mer.css

Save and close the file. Then open FileNamer.js :

nano src/components/FileNamer/FileNamer.js

Import the styles to apply them to your component:

.preview {

 border: 1px darkgray solid;

 padding: 10px;

}

.wrapper {

 display: flex;

 flex-direction: column;

 padding: 20px;

 text-align: left;

}

.wrapper button {

 background: none;

 border: 1px black solid;

 margin-top: 10px;

}

events-tutorial/src/components/FileNamer/FileNa
mer.js

import React from 'react';

import'./FileNamer.css';

export default function FileNamer() {

 return(

 <div className="wrapper">

 <div className="preview">

 <h2>Preview:</h2>

 </div>

 <form>

 <label>

 <p>Name:</p>

 <input name="name" />

 </label>

 <div>

 <button>Save</button>

 </div>

 </form>

 </div>

)

}

Save the file. When you do, the browser will refresh and you’ll find the
component has the new styles.

Styled component

Now that you have a basic component, you can add event handlers to the <i

nput> element. But first, you’ll need a place to store the data in the input

field. Add the useState Hook to hold the input:

https://www.digitalocean.com/community/tutorials/how-to-manage-state-with-hooks-on-react-components#step-2-%E2%80%94-setting-state-with-usestate

events-tutorial/src/components/FileNamer/FileNa
mer.js

import React, { useState } from 'react';

import './FileNamer.css';

export default function FileNamer() {

 const [name, setName] =useState('');

 return(

 <div className="wrapper">

 <div className="preview">

 <h2>Preview: {name}.js</h2>

 </div>

 <form>

 <label>

 <p>Name:</p>

 <input name="name" />

 </label>

 <div>

 <button>Save</button>

 </div>

 </form>

 </div>

)

}

In this code, you destructured useState into a variable name to hold the

input and a function called setName to update the data. Then you displayed

the name in the preview section followed by the .js extension, as if the

user were naming a file.

Now that you can store the input data, you can add an event handler to the <

input> component. There are often several different event handlers you can

use for a given task. In this case, your app needs to capture the data the user
types into the element. The most common handler for this situation is onCh

ange , which fires every time the component changes. However, you could

also use keyboard events, such as onKeyDown , onKeyPress , and onKeyUp .

The difference primarily has to do with when the event fires and the
information passed to the SyntheticEvent object. For example, onBlur , an

event for when an element becomes unfocused, fires before onClick . If you

want to handle user information before another event fires, you can pick an
earlier event.

Your choice of event is also determined by the type of data you want to pass
to the SyntheticEvent . The onKeyPress event, for example, will include

the charCode of the key that the user pressed, while onChange will not

include the specific character code, but will include the full input. This is
important if you want to perform different actions depending on which key
the user pressed.

For this tutorial, use onChange to capture the entire input value and not just

the most recent key. This will save you the effort of storing and
concatenating the value on every change.

https://developer.mozilla.org/en-US/docs/Web/API/KeyboardEvent

Create a function that takes the event as an argument and pass it to the <in

put> element using the onChange prop:

events-tutorial/src/components/FileNamer/FileNa
mer.js

import React, { useState } from 'react';

import './FileNamer.css';

export default function FileNamer() {

 const [name, setName] = useState('');

 return(

 <div className="wrapper">

 <div className="preview">

 <h2>Preview: {name}.js</h2>

 </div>

 <form>

 <label>

 <p>Name:</p>

 <input name="name" onChange={event=> {}}/>

 </label>

 <div>

 <button>Save</button>

 </div>

 </form>

 </div>

)

}

As mentioned earlier, the event here is not the native browser event. It’s

the SyntheticEvent provided by React, which is often treated the same. In

the rare case you need the native event, you can use the nativeEvent

attribute on the SyntheticEvent .

Now that you have the event, pull out the current value from the target.va

lue property of the event. Pass the value to setName to update the preview:

events-tutorial/src/components/FileNamer/FileNa
mer.js

import React, { useState } from 'react';

import './FileNamer.css';

export default function FileNamer() {

 const [name, setName] = useState('');

 return(

 <div className="wrapper">

 <div className="preview">

 <h2>Preview: {name}.js</h2>

 </div>

 <form>

 <label>

 <p>Name:</p>

 <input

 autoComplete="off"

 name="name"

 onChange={event => setName(event.target.value) }

 />

 </label>

 <div>

 <button>Save</button>

 </div>

 </form>

 </div>

In addition, you set the attribute autoComplete to "off" to turn off browser

suggestions.

Save the file. When you do, the page will reload, and when you type in the
<input> you’ll see an update in the preview.

Typing into the input element

)

}

https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes/autocomplete

Note: You could also access the name of the input using event.targe

t.name . This would be useful if you were using the same event handler

across multiple inputs, since the name would automatically match the

name attribute of the component.

At this point, you have a working event handler. You are taking the user
information, saving it to state, and updating another component with the
data. But in addition to pulling information from an event, there are
situations where you’ll need to halt an event, such as if you wanted to
prevent a form submission or prevent a keypress action.

To stop an event, call the preventDefault action on the event. This will

stop the browser from performing the default behavior.

In the case of the FileNamer component, there are certain characters that

could break the process of choosing a file that your app should forbid. For
example, you wouldn’t want a user to add a * to a filename since it

conflicts with the wildcard character, which could be interpreted to refer to
a different set of files. Before a user can submit the form, you’ll want to
check to make sure there are no invalid characters. If there is an invalid
character, you’ll stop the browser from submitting the form and display a
message for the user.

First, create a Hook that will generate an alert boolean and a setAlert

function. Then add a <div> to display the message if alert is true:

https://www.digitalocean.com/community/tutorials/understanding-data-types-in-javascript#booleans

events-tutorial/src/components/FileNamer/FileNa
mer.js

import React, { useState } from 'react';

import './FileNamer.css';

export default function FileNamer() {

 const [name, setName] = useState('');

 const [alert, setAlert] =useState(false);

 return(

 <div className="wrapper">

 <div className="preview">

 <h2>Preview: {name}.js</h2>

 </div>

 <form>

 <label>

 <p>Name:</p>

 <input

 autoComplete="off"

 name="name"

 onChange={event => setName(event.target.value) }

 />

 </label>

 {alert >&&<div> Forbidden Character:*</div>}

 <div>

 <button>Save</button>

In this code, you used the && operator to only show the new <div> if aler

t is set equal to true first. The message in the <div> will tell the user that

the * character is not allowed in the input.

Next, create a function called validate . Use the regular expression .test

method to find out if the string contains a * . If it does, you will prevent the

form submission:

 </div>

 </form>

 </div>

)

}

https://www.digitalocean.com/community/tutorials/an-introduction-to-regular-expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp/test

events-tutorial/src/components/FileNamer/FileNa
mer.js

import React, { useState } from 'react';

import './FileNamer.css';

export default function FileNamer() {

 const [name, setName] = useState('');

 const [alert, setAlert] = useState(false);

 const validate =event=> {

 if(/*/.test(name)) {

 >event.preventDefault();

 setAlert(true);

 return;

 }

 setAlert(false);

};

 return(

 <div className="wrapper">

 <div className="preview">

 <h2>Preview: {name}.js</h2>

 </div>

 <form>

 <label>

 <p>Name:</p>

 <input

When the validate function is called and the test returns true , it will use

event.preventDefault then call setAlert(true) . Otherwise, it will call se

tAlert(false) . In the last part of the code, you added the event handler to

the <button> element with onClick .

Save the file. As before, you could have also used onMouseDown , but onClic

k is more common and thus allows you to avoid any unexpected side

effects. This form doesn’t have any submit actions, but by preventing the
default action, you prevent the page from reloading:

 autoComplete="off"

 name="name"

 onChange={event => setName(event.target.value) }

 />

 </label>

 {alert && <div> Forbidden Character: *</div>}

 <div>

 <button onClick={validate}>Save</button>

 </div>

 </form>

 </div>

)

}

Prevent Default and trigger a warning

Now you have a form that uses two event handlers: onChange and onClick .

You are using the event handlers to connect user actions to the component
and the application, making it interactive. In doing so, you learned to add
events to DOM elements, and how there are several events that fire on the
same action, but that provide different information in the SyntheticEvent .

You also learned how to extract information from the SyntheticEvent ,

update other components by saving that data to state, and halt an event
using preventDefault .

In the next step, you’ll add multiple events to a single DOM element to
handle a variety of user actions.

Step 2 — Adding Multiple Event Handlers to the Same
Element

There are situations when a single component will fire multiple events, and
you’ll need to be able to connect to the different events on a single
component. For example, in this step you’ll use the onFocus and onBlur

event handlers to give the user just-in-time information about the
component. By the end of this step, you’ll know more about the different
supported events in React and how to add them to your components.

The validate function is helpful for preventing your form from submitting

bad data, but it’s not very helpful for user experience: The user only
receives information about the valid characters after they’ve filled out the
entire form. If there were multiple fields, it wouldn’t give the user any
feedback until the last step. To make this component more user friendly,
display the allowed and disallowed characters when the user enters the field
by adding an onFocus event handler.

First, update the alert <div> to include information about what characters

are allowed. Tell the user alphanumeric characters are allowed and the * is

not allowed:

events-tutorial/src/components/FileNamer/FileNa
mer.js

import React, { useState } from 'react';

import './FileNamer.css';

export default function FileNamer() {

...

 return(

 <div className="wrapper">

 <div className="preview">

 <h2>Preview: {name}.js</h2>

 </div>

 <form>

 <label>

 <p>Name:</p>

 <input

 autocomplete="off"

 name="name"

 onChange={event => setName(event.target.value) }

 />

 </label>

 {alert &&

 <div>

 ✅ Alpha

 ⛔ *

In this code, you used Accessible Rich Internet Applications (ARIA)
standards to make the component more accessible to screen readers.

Next, add another event handler to the <input> element. You will alert the

user about the allowed and disallowed characters when they activate the
component by either clicking or tabbing into the input. Add in the following
highlighted line:

 </div>

 }

 <div>

 <button onClick={validate}>Save</button>

 </div>

 </form>

 </div>

)

}

https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA

events-tutorial/src/components/FileNamer/FileNa
mer.js

import React, { useState } from 'react';

import './FileNamer.css';

export default function FileNamer() {

...

 return(

 <div className="wrapper">

 <div className="preview">

 <h2>Preview: {name}.js</h2>

 </div>

 <form>

 <label>

 <p>Name:</p>

 <input

 autocomplete="off"

 name="name"

 onChange={event => setName(event.target.value) }

 onFocus={() =>setAlert(true)}

 />

 </label>

 {alert &&

 <div>

 ✅ Alph

You added the onFocus event handler to the <input> element. This event

triggers when the user selects the field. After adding the event handler, you
passed an anonymous function to onFocus that will call setAlert(true)

and display the data. In this case, you don’t need any information from the
SyntheticEvent ; you only need to trigger an event when the user acts.

React is still sending the SyntheticEvent to the function, but in the current

situation you don’t need to use the information in it.

Note: You could trigger the data display with onClick or even onMous

eDown , but that wouldn’t be accessible for users that use the keyboard

to tab into the form fields. In this case, the onFocus event will handle

both cases.

 ⛔

 </div>

 }

 <div>

 <button onClick={validate}>Save</button>

 </div>

 </form>

 </div>

)

}

Save the file. When you do, the browser will refresh and the information
will remain hidden until the user clicks on the input.

Trigger the event when clicking on the input

The user information now appears when the field is focused, but now the
data is present for the duration of the component. There’s no way to make it
go away. Fortunately, there’s another event called onBlur that fires when

the user leaves an input. Add the onBlur event handler with an anonymous

function that will set the alert to false . Like onFocus , this will work both

when a user clicks away or when a user tabs away:

events-tutorial/src/components/FileNamer/FileNa
mer.js

import React, { useState } from 'react';

import './FileNamer.css';

export default function FileNamer() {

...

 return(

 <div className="wrapper">

 <div className="preview">

 <h2>Preview: {name}.js</h2>

 </div>

 <form>

 <label>

 <p>Name:</p>

 <input

 autocomplete="off"

 name="name"

 onBlur={() =>setAlert(false)}

 onChange={event => setName(event.target.value) }

 onFocus={() => setAlert(true)}

 />

 </label>

 {alert &&

 <div>

 ✅ Alph

Save the file. When you do, the browser will refresh and the information
will display when the user clicks on the element and disappear when the
user clicks away:

 ⛔

 </div>

 }

 <div>

 <button onClick={validate}>Save</button>

 </div>

 </form>

 </div>

)

}

Show information on focus and hide on blur

You can add as many event handlers as you need to an element. If you have
an idea of an event you need, but aren’t sure of the name, scroll through the
supported events and you may find what you need.

In this step you added multiple event handlers to a single DOM element.
You learned how different event handlers can handle a broad range of
events—such as both click and tab—or a narrow range of events.

In the next step, you’ll add global event listeners to the Window object to

capture events that occur outside the immediate component.

Step 3 — Adding Window Events

In this step, you’ll put the user information in a pop-up component that will
activate when the user focuses an input and will close when the user clicks

https://reactjs.org/docs/events.html#supported-events

anywhere else on the page. To achieve this effect, you’ll add a global event
listener to the Window object using the useEffect Hook. You’ll also remove

the event listener when the component unmounts to prevent memory leaks,
when your app take up more memory than it needs to.

By the end of this step, you’ll be able to safely add and remove event
listeners on individual components. You’ll also learn how to use the useEff

ect Hook to perform actions when a component mounts and unmounts.

In most cases, you’ll add event handlers directly to DOM elements in your
JSX. This keeps your code focused and prevents confusing situations where
a component is controlling another component’s behavior through the Wind

ow object. But there are times in which you’ll need to add global event

listeners. For example, you may want a scroll listener to load new content,
or you may want to capture click events outside of a component.

In this tutorial, you only want to show the user the information about the
input if they specifically ask for it. After you display the information, you’ll
want to hide it whenever the user clicks the page outside the component.

To start, move the alert display into a new <div> with a className of in

formation-wrapper . Then add a new button with a className of informati

on and an onClick event that will call setAlert(true) :

https://developer.mozilla.org/en-US/docs/Web/API/Window/event
https://reactjs.org/docs/hooks-reference.html#useeffect

events-tutorial/src/components/FileNamer/FileNa
mer.js

import React, { useState } from 'react';

import './FileNamer.css';

export default function FileNamer() {

...

 return(

 <div className="wrapper">

 <div className="preview">

 <h2>Preview: {name}.js</h2>

 </div>

 <form>

 <label>

 <p>Name:</p>

 <input

 autocomplete="off"

 name="name"

 onChange={event => setName(event.target.value) }

 />

 </label>

 <div className="information-wrapper">

 <button

 className="information"

 onClick={() =>setAlert(true)}

 type="button"

You also removed the onFocus and onBlur handlers from the <input>

element to remove the behavior from the last step.

Save and close the file. Then open FileNamer.css :

nano src/components/FileNamer/FileNamer.css

Add some styling to absolutely position the popup information above the

button. Then change the <button> with a class of information to be blue

 >
 more information
 </button>
 {alert &&
 <div className="popup">

 ✅ Alp

 ⛔

 </div>

 }

 </div>

 <div>

 <button onClick={validate}>Save</button>

 </div>

 </form>

 </div>

)

}

with no border.

events-tutorial/src/components/FileNamer/FileNa
mer.css

.information {
 font-size: .75em;
 color: blue;
 cursor: pointer;
}

.wrapper button.information {
 border: none;
}

.information-wrapper {
 position: relative;
}

.popup {
 position: absolute;
 background: white;
 border: 1px darkgray solid;
 padding: 10px;
 top: -70px;
 left: 0;
}

.preview {

 border: 1px darkgray solid;

 padding: 10px;

}

.wrapper {

 display: flex;

 flex-direction: column;

 padding: 20px;

Save and close the file. When you do, the browser will reload, and when
you click on more information , the information about the component will

appear:

Trigger information pop-up

 text-align: left;

}

.wrapper button {

 background: none;

 border: 1px black solid;

 margin-top: 10px;

}

Now you can trigger the pop-up, but there’s no way to clear it. To fix that
problem, add a global event listener that calls setAlert(false) on any

click outside of the pop-up.

The event listener would look something like this:

However, you have to be mindful about when you set the event listener in
your code. You can’t, for example, add an event listener at the top of your
component code, because then every time something changed, the
component would re-render and add a new event listener. Since your
component will likely re-render many times, that would create a lot of
unused event listeners that take up memory.

To solve this, React has a special Hook called useEffect that will run only

when specific properties change. The basic structure is this:

In the simplified example, React will run the code in the anonymous
function whenever someProp or someOtherProp changes. The items in the

array are called dependencies. This Hook listens for changes to the
dependencies and then runs the function after the change.

window.addEventListener('click', () => setAlert(false))

useEffect(() => {

 // run code when anything in the array changes

}, [someProp, someOtherProp])

Now you have the tools to add and remove a global event listener safely by
using useEffect to add the event listener whenever alert is true and

remove it whenever alert is false .

There is one more step. When the component unmounts, it will run any
function that you return from inside of your useEffect Hook. Because of

this, you’ll also need to return a function that removes the event listener
when the component unmounts.

The basic structure would be like this:

Now that you know the shape of your useEffect Hook, use it in your

application. Open up FileNamer.js :

nano src/components/FileNamer/FileNamer.js

Inside, import useEffect , then add an empty anonymous function with a

dependency of alert and setAlert in the array after the function:

useEffect(() => {

 // run code when anything in the array changes

 return () => {} // run code when the component unmounts

}, [someProp, someOtherProp])

events-tutorial/src/components/FileNamer/FileNa
mer.js

In this code, you added both alert and setAlert . To be complete, React

recommends you add all external dependencies to the useEffect function.

Since you will be calling the setAlert function, it can be considered a

dependency. setAlert will not change after the first render, but it’s a good

practice to include anything that could be considered a dependency.

Next, inside the anonymous function, create a new function called handleWi

ndowClick that calls setAlert(false) :

import React, { useEffect, useState } from 'react';

import './FileNamer.css';

export default function FileNamer() {

 const [name, setName] = useState('');

 const [alert, setAlert] = useState(false);

 useEffect(() => {

 }, [alert, setAlert]);

...

events-tutorial/src/components/FileNamer/FileNa
mer.js

Then add a conditional that will call window.addEventListener('click', h

andleWindowClick) when alert is true and will call window.removeEventL

istener('click', handleWindowClick) when alert is false . This will

add the event listener every time you trigger the pop-up and remove it
everytime the pop-up is closed:

import React, { useEffect, useState } from 'react';

import './FileNamer.css';

export default function FileNamer() {

 const [name, setName] = useState('');

 const [alert, setAlert] = useState(false);

 useEffect(() => {

 const handleWindowClick = () =>setAlert(false)

 }, [alert, setAlert]);

 ...

}

https://www.digitalocean.com/community/tutorials/how-to-write-conditional-statements-in-javascript

events-tutorial/src/components/FileNamer/FileNa
mer.js

Finally, return a function that will remove the event listener. Once again,
this will run when the component unmounts. There may not be a live event
listener, but it’s still worth cleaning up in situations where the listener still
exists:

import React, { useEffect, useState } from 'react';

import './FileNamer.css';

export default function FileNamer() {

 const [name, setName] = useState('');

 const [alert, setAlert] = useState(false);

 useEffect(() => {

 const handleWindowClick = () => setAlert(false)

 if(alert) {

 window.addEventListener('click', handleWindowClick);

 } else {

 window.removeEventListener('click', handleWindowClick);

 }

 }, [alert, setAlert]);

 ...

}

events-tutorial/src/components/FileNamer/FileNa
mer.js

Save the file. When you do, the browser will refresh. If you click on the
more information button, the message will appear. If you look at the global

import React, { useEffect, useState } from 'react';

import './FileNamer.css';

export default function FileNamer() {

 const [name, setName] = useState('');

 const [alert, setAlert] = useState(false);

 useEffect(() => {

 const handleWindowClick = () => setAlert(false)

 if(alert) {

 window.addEventListener('click', handleWindowClick);

 } else {

 window.removeEventListener('click', handleWindowClick)

 }

 return () =>window.removeEventListener('click', handleWindo

 }, [alert, setAlert]);

 ...

}

event listeners in the developer tools, you’ll see there is a click listener:

Click event listener

Click anywhere outside the component. The message will disappear and
you’ll no longer see the global click event listener.

No click event listener

Your useEffect Hook successfully added and removed a global event

listener based on a user interaction. It wasn’t tied to a specific DOM
element, but was instead triggered by a change in the component state.

Note: From an accessibility standpoint, this component is not
complete. If a user is not able to use the mouse, they will be stuck with
an open pop-up because they would never be able to click outside the
component. The solution would be to add another event listener for ke

ydown that would also remove the message. The code would be nearly

identical except the method would be keydown instead of click .

In this step you added global event listeners inside a component. You also
learned how to use the useEffect Hook to properly add and remove the

event listener as the state changes and how to clean up event listeners when
the component unmounts.

Conclusion

Event handlers give you the opportunity to align your components with user
actions. These will give your applications a rich experience and will
increase the interactive possibilities of your app. They will also give you the
ability to capture and respond to user actions.

React’s event handlers let you keep your event callbacks integrated with the
HTML so that you can share functionality and design across an application.
In most cases, you should focus on adding event handlers directly to DOM
elements, but in situations where you need to capture events outside of the
component, you can add event listeners and clean them up when they are no
longer in use to prevent memory leaks and create performative applications.

If you would like to look at more React tutorials, check out our React Topic
page, or return to the How To Code in React.js series page. To learn more
about events in JavaScript, read our Understanding Events in JavaScript and
Using Event Emitters in Node.js tutorials.

https://www.digitalocean.com/community/tags/react
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-react-js
https://www.digitalocean.com/community/tutorials/understanding-events-in-javascript
https://www.digitalocean.com/community/tutorials/using-event-emitters-in-node-js

How To Build Forms in React

Written by Joe Morgan

The author selected Creative Commons to receive a donation as part of the
Write for DOnations program.

Forms are a crucial component of React web applications. They allow users
to directly input and submit data in components ranging from a login screen
to a checkout page. Since most React applications are single page
applications (SPAs), or web applications that load a single page through
which new data is displayed dynamically, you won’t submit the information
directly from the form to a server. Instead, you’ll capture the form
information on the client-side and send or display it using additional
JavaScript code.

React forms present a unique challenge because you can either allow the
browser to handle most of the form elements and collect data through React
change events, or you can use React to fully control the element by setting
and updating the input value directly. The first approach is called an
uncontrolled component because React is not setting the value. The second
approach is called a controlled component because React is actively
updating the input.

In this tutorial, you’ll build forms using React and handle form submissions
with an example app that submits requests to buy apples. You’ll also learn
the advantages and disadvantages of controlled and uncontrolled
components. Finally, you’ll dynamically set form properties to enable and

https://www.digitalocean.com/community/tutorials/how-to-build-forms-in-react
https://creativecommons.org/
https://do.co/w4do-cta
https://reactjs.org/
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-javascript
https://www.digitalocean.com/community/tutorials/how-to-handle-dom-and-window-events-with-react

disable fields depending on the form state. By the end of this tutorial, you’ll
be able to make a variety of forms using text inputs, checkboxes, select
lists, and more.

Prerequisites

You will need a development environment running Node.js; this
tutorial was tested on Node.js version 10.20.1 and npm version 6.14.4.
To install this on macOS or Ubuntu 18.04, follow the steps in How to
Install Node.js and Create a Local Development Environment on
macOS or the Installing Using a PPA section of How To Install
Node.js on Ubuntu 18.04.

A React development environment set up with Create React App, with
the non-essential boilerplate removed. To set this up, follow Step 1 —
Creating an Empty Project of the How To Manage State on React
Class Components tutorial. This tutorial will use form-tutorial as the

project name.

You will be using React events and Hooks, including the useState and

the useReducer Hooks. You can learn about events in our How To

Handle DOM and Window Events with React tutorial, and Hooks at
How to Manage State with Hooks on React Components.

You will also need a basic knowledge of JavaScript and HTML, which
you can find in our How To Build a Website with HTML series and in
How To Code in JavaScript. Basic knowledge of CSS would also be
useful, which you can find at the Mozilla Developer Network.

https://nodejs.org/en/about/
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-and-create-a-local-development-environment-on-macos
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-on-ubuntu-18-04
https://github.com/facebook/create-react-app
https://www.digitalocean.com/community/tutorials/how-to-manage-state-on-react-class-components#step-1-%E2%80%94-creating-an-empty-project
https://www.digitalocean.com/community/tutorials/how-to-handle-dom-and-window-events-with-react
https://www.digitalocean.com/community/tutorials/how-to-manage-state-on-react-class-components
https://www.digitalocean.com/community/tutorial_series/how-to-build-a-website-with-html
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-javascript
https://developer.mozilla.org/en-US/docs/Web/CSS

Step 1 — Creating a Basic Form with JSX

In this step, you’ll create an empty form with a single element and a submit
button using JSX. You’ll handle the form submit event and pass the data to
another service. By the end of this step, you’ll have a basic form that will
submit data to an asynchronous function.

To begin, open App.js :

nano src/components/App/App.js

You are going to build a form for purchasing apples. Create a <div> with a

className of <wrapper> . Then add an <h1> tag with the text “How About

Them Apples” and an empty form element by adding the following

highlighted code:

https://www.digitalocean.com/community/tutorials/how-to-create-react-elements-with-jsx
https://www.digitalocean.com/community/tutorials/understanding-the-event-loop-callbacks-promises-and-async-await-in-javascript
https://www.digitalocean.com/community/tutorial_series/how-to-build-a-website-with-html#how-to-use-a-%3Cdiv%3E,-the-html-content-division-element

form-tutorial/src/components/App/App.js

Next, inside the <form> tag, add a <fieldset> element with an <input>

element surrounded by a <label> tag. By wrapping the <input> element

with a <label> tag, you are aiding screen readers by associating the label

with the input. This will increase the accessibility of your application.

Finally, add a submit <button> at the bottom of the form:

import React from 'react';

import './App.css';

function App() {

 return (

 <div className="wrapper">

 <h1>How About Them Apples</h1>

 <form>

 </form>

 </div>

)

}

export default App;

form-tutorial/src/components/App/App.js

Save and close the file. Then open App.css to set the styling:

import React from 'react';

import './App.css';

function App() {

 return(

 <div className="wrapper">

 <h1>How About Them Apples</h1>

 <form>

 <fieldset>

 <label>

 <p>Name</p>

 <input name="name" />

 </label>

 </fieldset>

 <button type="submit">Submit</button>

 </form>

 </div>

)

}

export default App;

nano src/components/App/App.css

Add padding to the .wrapper and margin to the fieldset to give some

space between elements:

form-tutorial/src/components/App/App.css

Save and close the file. When you do, the browser will reload and you’ll see
a basic form.

.wrapper {

 padding: 5px 20px;

}

.wrapper fieldset {

 margin: 20px 0;

}

Basic form with a field for “name” and a submit
button

If you click on the Submit button, the page will reload. Since you are
building a single page application, you will prevent this standard behavior
for a button with a type="submit" . Instead, you’ll handle the submit event

inside the component.

Open App.js :

nano src/components/App/App.js

To handle the event, you’ll add an event handler to the <form> element, not

the <button> . Create a function called handleSubmit that will take the Synt

heticEvent as an argument. The SyntheticEvent is a wrapper around the

standard Event object and contains the same interface. Call .preventDefau

lt to stop the page from submitting the form then trigger an alert to show

that the form was submitted:

https://www.digitalocean.com/community/tutorials/how-to-handle-dom-and-window-events-with-react#step-1-%E2%80%94-extracting-event-data-with-syntheticevent

form-tutorial/src/components/App/App.js

import React from 'react';

import './App.css';

function App() {

 const handleSubmit = event => {

 event.preventDefault();

 alert('You have submitted the form.')

}

 return(

 <div className="wrapper">

 <h1>How About Them Apples</h1>

 <form onSubmit={handleSubmit}>

 <fieldset>

 <label>

 <p>Name</p>

 <input name="name" />

 </label>

 </fieldset>

 <button type="submit">Submit</button>

 </form>

 </div>

)

}

Save the file. When you do the browser will reload. If you click the submit
button, the alert will pop up, but the window will not reload.

Form submit alert

In many React applications, you’ll send the data to an external service, like
a Web API. When the service resolves, you’ll often show a success
message, redirect the user, or do both.

To simulate an API, add a setTimeout function in the handleSubmit

function. This will create an asynchronous operation that waits a certain
amount of time before completing, which behaves similarly to a request for
external data. Then use the useState Hook to create a submitting variable

export default App;

https://developer.mozilla.org/en-US/docs/Glossary/API
https://developer.mozilla.org/en-US/docs/Web/API/WindowOrWorkerGlobalScope/setTimeout
https://www.digitalocean.com/community/tutorials/understanding-the-event-loop-callbacks-promises-and-async-await-in-javascript

and a setSubmitting function. Call setSubmitting(true) when the data is

submitted and call setSubmitting(false) when the timeout is resolved:

form-tutorial/src/components/App/App.js

import React, { useState } from 'react';

import './App.css';

function App() {

 const [submitting, setSubmitting] = useState(false);

 const handleSubmit = event => {

 event.preventDefault();

 setSubmitting(true);

 setTimeout(() => {

 setSubmitting(false);

 },3000)

}

 return(

 <div className="wrapper">

 <h1>How About Them Apples</h1>

 {submitting &&

 <div>Submtting Form...</div>

 }

 <form onSubmit={handleSubmit}>

 <fieldset>

 <label>

 <p>Name</p>

In addition, you will alert the user that their form is submitting by
displaying a short message in the HTML that will display when submitting

is true .

Save the file. When you do, the browser will reload and you’ll receive the
message on submit:

 <input name="name" />

 </label>

 </fieldset>

 <button type="submit">Submit</button>

 </form>

 </div>

)

}

export default App;

Form submitting shows message for 3 seconds

Now you have a basic form that handles the submit event inside the React
component. You’ve connected it to your JSX using the onSubmit event

handler and you are using Hooks to conditionally display an alert while the
handleSubmit event is running.

In the next step, you’ll add more user inputs and save the data to state as the
user fills out the form.

Step 2 — Collecting Form Data Using Uncontrolled
Components

In this step, you’ll collect form data using uncontrolled components. An
uncontrolled component is a component that does not have a value set by

React. Instead of setting the data on the component, you’ll connect to the on

Change event to collect the user input. As you build the components, you’ll

https://www.digitalocean.com/community/tutorials/how-to-write-conditional-statements-in-javascript

learn how React handles different input types and how to create a reusable
function to collect form data into a single object.

By the end of this step, you’ll be able to build a form using different form
elements, including dropdowns and checkboxes. You’ll also be able to
collect, submit, and display form data.

Note: In most cases, you’ll use controlled components for your React
application. But it’s a good idea to start with uncontrolled components
so that you can avoid subtle bugs or accidental loops that you might
introduce when incorrectly setting a value.

Currently, you have a form that can submit information, but there is nothing
to submit. The form has a single <input> element, but you are not

collecting or storing the data anywhere in the component. In order to be
able to store and process the data when the user submits a form, you’ll need
to create a way to manage state. You’ll then need to connect to each input
using an event handler.

Inside App.js , use the useReducer Hook to create a formData object and a

setFormData function. For the reducer function, pull the name and value

from the event.target object and update the state by spreading the

current state while adding the name and value at the end. This will create a

state object that preserves the current state while overwriting specific values
as they change:

https://www.digitalocean.com/community/tutorials/understanding-objects-in-javascript
https://www.digitalocean.com/community/tutorials/how-to-manage-state-on-react-class-components
https://www.digitalocean.com/community/tutorials/understanding-destructuring-rest-parameters-and-spread-syntax-in-javascript#spread

form-tutorial/src/components/App/App.js

import React, { useReducer, useState } from 'react';

import './App.css';

const formReducer = (state, event) => {

return {

 ...state,

 [event.target.name]: event.target.value

}

}

function App() {

 const [formData, setFormData]= useReducer(formReducer, {});

 const [submitting, setSubmitting] = useState(false);

 const handleSubmit = event => {

 event.preventDefault();

 setSubmitting(true);

 setTimeout(() => {

 setSubmitting(false);

 }, 3000)

 }

 return(

 <div className="wrapper">

After making the reducer, add setFormData to the onChange event handler

on the input. Save the file. When you do, the browser will reload. However,
if you try and type in the input, you’ll get an error:

 <h1>How About Them Apples</h1>

 {submitting &&

 <div>Submtting Form...</div>

 }

 <form onSubmit={handleSubmit}>

 <fieldset>

 <label>

 <p>Name</p>

 <input name="name" onChange={setFormData}/>

 </label>

 </fieldset>

 <button type="submit">Submit</button>

 </form>

 </div>

)

}

export default App;

Error with SyntheticEvent

The problem is that the SyntheticEvent is reused and cannot be passed to

an asynchronous function. In other words, you can’t pass the event directly.
To fix this, you’ll need to pull out the data you need before calling the
reducer function.

Update the reducer function to take an object with a property of name and v

alue . Then create a function called handleChange that pulls the data from

the event.target and passes the object to setFormData . Finally, update the

onChange event handler to use the new function:

https://reactjs.org/docs/events.html#event-pooling

form-tutorial/src/components/App/App.js

import React, { useReducer, useState } from 'react';

import './App.css';

const formReducer = (state, event) => {
return {
 ...state,
 [event.name]: event.value
}
}

function App() {
 const [formData, setFormData] = useReducer(formReducer, {});
 const [submitting, setSubmitting] = useState(false);

 const handleSubmit = event => {
 event.preventDefault();
 setSubmitting(true);

 setTimeout(() => {
 setSubmitting(false);
 }, 3000);
 }

 const handleChange = event => {
 setFormData({
 name: event.target.name,
 value: event.target.value,
 });
 }

 return(
 <div className="wrapper">
 <h1>How About Them Apples</h1>
 {submitting &&
 <div>Submtting Form...</div>
 }
 <form onSubmit={handleSubmit}>
 <fieldset>
 <label>
 <p>Name</p>
 <input name="name" onChange={handleChange}/>
 </label>
 </fieldset>
 <button type="submit">Submit</button>
 </form>
 </div>
)
}

export default App;

Save the file. When you do the page will refresh and you’ll be able to enter
data.

Now that you are collecting the form state, update the user display message
to show the data in an unordered list () element.

Convert the data to an array using Object.entries , then map over the data

converting each member of the array to an element with the name and

the value. Be sure to use the name as the key prop for the element:

https://www.digitalocean.com/community/tutorials/understanding-arrays-in-javascript
https://www.digitalocean.com/community/tutorials/how-to-use-array-methods-in-javascript-iteration-methods#map()

form-tutorial/src/components/App/App.js

...

 return(

 <div className="wrapper">

 <h1>How About Them Apples</h1>

 {submitting &&

 <div>

 You are submitting the following:

 {Object.entries(formData).map(([name, value]) => (

 <li key={name}>{name}:{value.toSt

))}

 </div>

 }

 <form onSubmit={handleSubmit}>

 <fieldset>

 <label>

 <p>Name</p>

 <input name="name" onChange={handleChange}/>

 </label>

 </fieldset>

 <button type="submit">Submit</button>

 </form>

 </div>

)

Save the file. When you do the page will reload and you’ll be able to enter
and submit data:

Fill out the form and submit

Now that you have a basic form, you can add more elements. Create
another <fieldset> element and add in a <select> element with different

apple varieties for each <option> , an <input> with a type="number" and a

step="1" to get a count that increments by 1, and an <input> with a type

="checkbox" for a gift wrapping option.

}

export default App;

For each element, add the handleChange function to the onChange event

handler:

form-tutorial/src/components/App/App.js

...

 return(

 <div className="wrapper">

 <h1>How About Them Apples</h1>

 {submitting &&

 <div>

 You are submitting the following:

 {Object.entries(formData).map(([name, value]) => (

 <li key={name}>{name}: {value.to

))}

 </div>

 }

 <form onSubmit={handleSubmit}>

 <fieldset>

 <label>

 <p>Name</p>

 <input name="name" onChange={handleChange}/>

 </label>

 </fieldset>

Save the file. When you do, the page will reload and you’ll have a variety
of input types for your form:

 <fieldset>
 <label>
 <p>Apples</p>
 <select name="apple" onChange={handleChange}>
 <option value="">--Please choose an option--</op
 <option value="fuji">Fuji</option>
 <option value="jonathan">Jonathan</option>

 <option value="honey-crisp">Honey Crisp</option>
 </select>
 </label>

 <label>

 <p>Count</p>

 <input type="number" name="count" onChange={handleCh

 </label>

 <label>

 <p>Gift Wrap</p>

 <input type="checkbox" name="gift-wrap" onChange={ha

 </label>

 </fieldset>

 <button type="submit">Submit</button>

 </form>

 </div>

)

}

export default App;

Form with all input types

There is one special case here to take into consideration. The value for the

gift wrapping checkbox will always be "on" , regardless of whether the item

is checked or not. Instead of using the event’s value , you’ll need to use the

checked property.

Update the handleChange function to see if the event.target.type is chec

kbox . If it is, pass the event.target.checked property as the value instead

of event.target.value :

form-tutorial/src/components/App/App.js

import React, { useReducer, useState } from 'react';

import './App.css';

...

function App() {

 const [formData, setFormData] = useReducer(formReducer, {});

 const [submitting, setSubmitting] = useState(false);

 const handleSubmit = event => {

 event.preventDefault();

 setSubmitting(true);

 setTimeout(() => {

 setSubmitting(false);

 }, 3000);

 }

 const handleChange = event => {

 const isCheckbox = event.target.type === 'checkbox';

 setFormData({

 name: event.target.name,

 value: isCheckbox ? event.target.checked : event.target.va

 })

In this code, you use the ? ternary operator to make the conditional

statement.

Save the file. After the browser refreshes, fill out the form and click submit.
You’ll find that the alert matches the data in the form:

Form elements submitting correct data

In this step, you learned how to create uncontrolled form components. You
saved the form data to a state using the useReducer Hook and reused that

data in different components. You also added different types of form

}

...

https://www.digitalocean.com/community/tutorials/how-to-write-conditional-statements-in-javascript#ternary-operator

components and adjusted your function to save the correct data depending
on the element type.

In the next step, you’ll convert the components to controlled components by
dynamically setting the component value.

Step 3 — Updating Form Data Using Controlled
Components

In this step, you’ll dynamically set and update data using controlled
components. You’ll add a value prop to each component to set or update

the form data. You’ll also reset the form data on submit.

By the end of this step, you’ll be able to dynamically control form data
using React state and props.

With uncontrolled components, you don’t have to worry about
synchronizing data. Your application will always hold on to the most recent
changes. But there are many situations where you’ll need to both read from
and write to an input component. To do this, you’ll need the component’s
value to be dynamic.

In the previous step, you submitted a form. But after the form submission
was successful, the form still contained the old stale data. To erase the data
from each input, you’ll need to change the components from uncontrolled
components to controlled components.

A controlled component is similar to an uncontrolled component, but React
updates the value prop. The downside is that if you are not careful and do

https://www.digitalocean.com/community/tutorials/how-to-customize-react-components-with-props

not properly update the value prop the component will appear broken and

won’t seem to update.

In this form, you are already storing the data, so to convert the components,
you’ll update the value prop with data from the formData state. There is

one problem, though: the value cannot be undefined . If your value is unde

fined , you’ll receive an error in your console.

Since your initial state is an empty object, you’ll need to set the value to be
either the value from formData or a default value such as an empty string.

For example, the value for the name would be formData.name || '' :

form-tutorial/src/components/App/App.js

...

 return(

 <div className="wrapper">

 <h1>How About Them Apples</h1>

 {submitting &&

 <div>

 You are submitting the following:

 {Object.entries(formData).map(([name, value]) => (

 <li key={name}>{name}: {value.to

))}

 </div>

 }

 <form onSubmit={handleSubmit}>

 <fieldset>

 <label>

 <p>Name</p>

 <input name="name" onChange={handleChange} value={f

 </label>

 </fieldset>

 <fieldset>

 <label>

 <p>Apples</p>

 <select name="apple" onChange={handleChange} value=

 <option value="">--Please choose an option--</o

 <option value="fuji">Fuji</option>

 <option value="jonathan">Jonathan</option>

 <option value="honey-crisp">Honey Crisp</option

 </select>

 </label>

 <label>

 <p>Count</p>

 <input type="number" name="count" onChange={handleC
 value={formData.count || ''}/>

 </label>

 <label>

 <p>Gift Wrap</p>

 <input type="checkbox" name="gift-wrap" onChange={h
 checked={formData['gift-wrap'] || false}/>

 </label>

 </fieldset>

 <button type="submit">Submit</button>

 </form>

 </div>

)

}

export default App;

As before, the checkbox is a little different. Instead of setting a value, you’ll
need to set the checked attribute. If the attribute is truthy, the browser will

show the box as checked. Set the initial checked attribute to false with form

Data['gift-wrap'] || false .

If you want to pre-fill the form, add some default data to the formData

state. Set a default value for the count by giving formState a default value

of { count: 100 } . You could also set the default values in the initial

object, but you’d need to filter out the falsy values before displaying the
form information:

form-tutorial/src/components/App/App.js

Save the file. When you do, the browser will reload and you’ll see the input
with the default data:

...

function App() {

 const [formData, setFormData] = useReducer(formReducer, {

 count: 100,

});

 const [submitting, setSubmitting] = useState(false);

...

Form with default count

Note: The value attribute is different from the placeholder attribute,

which is native on browsers. The placeholder attribute shows

information but will disappear as soon as the user makes a change; it is
not stored on the component. You can actively edit the value , but a pl

aceholder is just a guide for users.

Now that you have active components, you can clear the data on submit. To
do so, add a new condition in your formReducer . If event.reset is truthy,

return an object with empty values for each form element. Be sure to add a
value for each input. If you return an empty object or an incomplete object,
the components will not update since the value is undefined .

After you add the new event condition in the formReducer , update your

submit function to reset the state when the function resolves:

form-tutorial/src/components/App/App.js

import React, { useReducer, useState } from 'react';

import './App.css';

const formReducer = (state, event) => {

 if(event.reset) {

 return {

 apple: '',

 count: 0,

 name: '',

 'gift-wrap': false,

 }

}

 return {

 ...state,

 [event.name]: event.value

 }

}

function App() {

 const [formData, setFormData] = useReducer(formReducer, {

 count: 100

 });

 const [submitting, setSubmitting] = useState(false);

 const handleSubmit = event => {

Save the file. When you do, the browser will reload and the form will clear
on submit.

 event.preventDefault();

 setSubmitting(true);

 setTimeout(() => {

 setSubmitting(false);

 setFormData({

 reset: true

 })

 }, 3000);

 }

...

Save the form and then clear the data

In this step, you converted your uncontrolled components to controlled
components by setting the value or the checked attributes dynamically.

You also learned how to refill data by setting a default state and how to
clear the data by updating the form reducer to return default values.

In this next step, you’ll set form component properties dynamically and
disable a form while it is submitting.

Step 4 — Dynamically Updating Form Properties

In this step, you’ll dynamically update form element properties. You’ll set
properties based on previous choices and disable your form during submit
to prevent accidental multiple submissions.

Currently, each component is static. They do not change as the form
changes. In most applications, forms are dynamic. Fields will change based

on the previous data. They’ll validate and show errors. They may disappear
or expand as you fill in other components.

Like most React components, you can dynamically set properties and
attributes on components and they will re-render as the data changes.

Try setting an input to be disabled until a condition is met by another

input. Update the gift wrapping checkbox to be disabled unless the user
selects the fuji option.

Inside App.js , add the disabled attribute to the checkbox. Make the

property truthy if the formData.apple is fuji :

form-tutorial/src/components/App/App.js

...

 <fieldset>

 <label>

 <p>Apples</p>

 <select name="apple" onChange={handleChange} value=

 <option value="">--Please choose an option--</o

 <option value="fuji">Fuji</option>

 <option value="jonathan">Jonathan</option>

 <option value="honey-crisp">Honey Crisp</option

 </select>

 </label>

 <label>

 <p>Count</p>

 <input type="number" name="count" onChange={handleC
 value={formData.count || ''}/>

 </label>

 <label>

 <p>Gift Wrap</p>

 <input

 checked={formData['gift-wrap'] || false}

 disabled={formData.apple !== 'fuji'}

 name="gift-wrap"

 onChange={handleChange}

 type="checkbox"

 />

Save the file. When you do, the browser will reload and the checkbox will
be disabled by default:

Gift wrap is disabled

If you select the apple type of Fuji, the element will be enabled:

 </label>

 </fieldset>

 <button type="submit">Submit</button>

 </form>

 </div>

)

}

export default App;

Gift wrap is enabled

In addition to changing properties on individual components, you can
modify entire groups of components by updating the fieldset component.

As an example, you can disable the form while the form is actively
submitting. This will prevent double submissions and prevent the user from
changing fields before the handleSubmit function fully resolves.

Add disabled={submitting} to each <fieldset> element and the <button

> element:

form-tutorial/src/components/App/App.js

...

 <form onSubmit={handleSubmit}>

 <fieldset disabled={submitting}>

 <label>

 <p>Name</p>

 <input name="name" onChange={handleChange} value={f

 </label>

 </fieldset>

 <fieldset disabled={submitting}>

 <label>

 <p>Apples</p>

 <select name="apple" onChange={handleChange} value=

 <option value="">--Please choose an option--</o

 <option value="fuji">Fuji</option>

 <option value="jonathan">Jonathan</option>

 <option value="honey-crisp">Honey Crisp</option

 </select>

 </label>

 <label>

 <p>Count</p>

 <input type="number" name="count" onChange={handleC
 value={formData.count || ''}/>

 </label>

 <label>

 <p>Gift Wrap</p>

Save the file, and the browser will refresh. When you submit the form, the
fields will be disabled until the submitting function resolves:

 <input

 checked={formData['gift-wrap'] || false}

 disabled={formData.apple !== 'fuji'}

 name="gift-wrap"

 onChange={handleChange}

 type="checkbox"

 />

 </label>

 </fieldset>

 <button type="submit" disabled={submitting}>Submit</but

 </form>

 </div>

)

}

export default App;

Disable form elements when submitting

You can update any attribute on an input component. This is helpful if you
need to change the maxvalue for a number input or if you need to add a

dynamic pattern attribute for validation.

In this step, you dynamically set attributes on form components. You added
a property to dynamically enable or disable a component based on the input
from another component and you disabled entire sections using the <fields

et> component.

Conclusion

Forms are key to rich web applications. In React, you have different options
for connecting and controlling forms and elements. Like other components,
you can dynamically update properties including the value input elements.

Uncontrolled components are best for simplicity, but might not fit situations

when a component needs to be cleared or pre-populated with data.
Controlled components give you more opportunities to update the data, but
can add another level of abstraction that may cause unintentional bugs or
re-renders.

Regardless of your approach, React gives you the ability to dynamically
update and adapt your forms to the needs of your application and your
users.

If you would like to read more React tutorials, check out our React Topic
page, or return to the How To Code in React.js series page.

https://www.digitalocean.com/community/tags/react
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-react-js

How To Handle Async Data Loading,
Lazy Loading, and Code Splitting with
React

Written by Joe Morgan

The author selected Creative Commons to receive a donation as part of the
Write for DOnations program.

As a JavaScript web developer, asynchronous code gives you the ability to
run some parts of your code while other parts are still waiting for data or
resolving. This means that important parts of your app will not have to wait
for less important parts before they render. With asynchronous code you can
also update your application by requesting and displaying new information,
giving users a smooth experience even when long functions and requests
are processing in the background.

In React development, asynchronous programming presents unique
problems. When you use React functional components for example,
asynchronous functions can create infinite loops. When a component loads,
it can start an asynchronous function, and when the asynchronous function
resolves it can trigger a re-render that will cause the component to recall the
asynchronous function. This tutorial will explain how to avoid this with a
special Hook called useEffect, which will run functions only when specific

data changes. This will let you run your asynchronous code deliberately
instead of on each render cycle.

https://www.digitalocean.com/community/tutorials/how-to-handle-async-data-loading-lazy-loading-and-code-splitting-with-react
https://creativecommons.org/
https://do.co/w4do-cta
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-javascript
https://www.digitalocean.com/community/tutorials/understanding-the-event-loop-callbacks-promises-and-async-await-in-javascript
https://reactjs.org/
https://www.digitalocean.com/community/tutorials/how-to-create-custom-components-in-react#step-4-%E2%80%94-building-a-functional-component
https://reactjs.org/docs/hooks-effect.html

Asynchronous code is not just limited to requests for new data. React has a
built-in system for lazy loading components, or loading them only when the
user needs them. When combined with the default webpack configuration in
Create React App, you can split up your code, reducing a large application
into smaller pieces that can be loaded as needed. React has a special
component called Suspense that will display placeholders while the

browser is loading your new component. In future versions of React, you’ll
be able to use Suspense to load data in nested components without render

blocking.

In this tutorial, you’ll handle asynchronous data in React by creating an app
that displays information on rivers and simulates requests to Web APIs with
setTimeout . By the end of this tutorial, you’ll be able to load asynchronous

data using the useEffect Hook. You’ll also be able to safely update the

page without creating errors if the component unmounts before data
resolution. Finally, you’ll split a large application into smaller parts using
code splitting.

Prerequisites

You will need a development environment running Node.js; this
tutorial was tested on Node.js version 10.20.1 and npm version 6.14.4.
To install this on macOS or Ubuntu 18.04, follow the steps in How to
Install Node.js and Create a Local Development Environment on
macOS or the Installing Using a PPA section of How To Install
Node.js on Ubuntu 18.04.

https://webpack.js.org/
https://www.digitalocean.com/community/tutorials/how-to-set-up-a-react-project-with-create-react-app
https://nodejs.org/en/about/
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-and-create-a-local-development-environment-on-macos
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-on-ubuntu-18-04

A React development environment set up with Create React App, with
the non-essential boilerplate removed. To set this up, follow Step 1 —
Creating an Empty Project of the How To Manage State on React
Class Components tutorial. This tutorial will use async-tutorial as

the project name.

You will be using React events and Hooks, including the useState and

the useReducer Hooks. You can learn about events in our How To

Handle DOM and Window Events with React tutorial, and Hooks at
How to Manage State with Hooks on React Components.

You will also need a basic knowledge of JavaScript and HTML, which
you can find in our How To Build a Website with HTML series and in
How To Code in JavaScript. Basic knowledge of CSS would also be
useful, which you can find at the Mozilla Developer Network.

Step 1 — Loading Asynchronous Data with useEffect

In this step, you’ll use the useEffect Hook to load asynchronous data into

a sample application. You’ll use the Hook to prevent unnecessary data
fetching, add placeholders while the data is loading, and update the
component when the data resolves. By the end of this step, you’ll be able to
load data with useEffect and set data using the useState Hook when it

resolves.

To explore the topic, you are going to create an application to display
information about the longest rivers in the world. You’ll load data using an
asynchronous function that simulates a request to an external data source.

https://github.com/facebook/create-react-app
https://www.digitalocean.com/community/tutorials/how-to-manage-state-on-react-class-components#step-1-%E2%80%94-creating-an-empty-project
https://www.digitalocean.com/community/tutorials/how-to-handle-dom-and-window-events-with-react
https://www.digitalocean.com/community/tutorials/how-to-manage-state-on-react-class-components
https://www.digitalocean.com/community/tutorial_series/how-to-build-a-website-with-html
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-javascript
https://developer.mozilla.org/en-US/docs/Web/CSS

First, create a component called RiverInformation . Make the directory:

mkdir src/components/RiverInformation

Open RiverInformation.js in a text editor:

nano src/components/RiverInformation/RiverInformation.js

Then add some placeholder content:

async-tutorial/src/components/RiverInformation/
RiverInformation.js

Save and close the file. Now you need to import and render the new
component to your root component. Open App.js :

import React from 'react';

export default function RiverInformation() {

 return(

 <div>

 <h2>River Information</h2>

 </div>

)

}

nano src/components/App/App.js

Import and render the component by adding in the highlighted code:

async-tutorial/src/components/App/App.js

Save and close the file.

Finally, in order to make the app easier to read, add some styling. Open Ap

p.css :

import React from 'react';

import './App.css';

import RiverInformation from '../RiverInformation/RiverInformat

function App() {

 return (

 <div className="wrapper">

 <h1>World's Longest Rivers</h1>

 <RiverInformation />

 </div>

);

}

export default App;

nano src/components/App/App.css

Add some padding to the wrapper class by replacing the CSS with the

following:

async-tutorial/src/components/App/App.css

Save and close the file. When you do, the browser will refresh and render
the basic components.

Basic Component, 1

.wrapper {

 padding: 20px

}

In this tutorial, you’ll make generic services for returning data. A service
refers to any code that can be reused to accomplish a specific task. Your
component doesn’t need to know how the service gets its information. All it
needs to know is that the service will return a Promise. In this case, the data
request will be simulated with setTimeout , which will wait for a specified

amount of time before providing data.

Create a new directory called services under the src/ directory:

mkdir src/services

This directory will hold your asynchronous functions. Open a file called ri

vers.js :

nano src/services/rivers.js

Inside the file, export a function called getRiverInformation that returns a

promise. Inside the promise, add a setTimeout function that will resolve

the promise after 1500 milliseconds. This will give you some time to see

how the component will render while waiting for data to resolve:

https://www.digitalocean.com/community/tutorials/understanding-the-event-loop-callbacks-promises-and-async-await-in-javascript#promises

async-tutorial/src/services/rivers.js

In this snippet, you are hard-coding the river information, but this function
will be similar to any asynchronous functions you may use, such as an API
call. The important part is that the code returns a promise.

Save and close the file.

Now that you have a service that returns the data, you need to add it to your
component. This can sometimes lead to a problem. Suppose you called the
asynchronous function inside of your component and then set the data to a
variable using the useState Hook. The code will be like this:

export function getRiverInformation() {

 return new Promise((resolve) => {

 setTimeout(() => {

 resolve({

 continent: 'Africa',

 length: '6,650 km',

 outflow: 'Mediterranean'

 })

 }, 1500)

 })

}

When you set the data, the Hook change will trigger a components re-
render. When the component re-renders, the getRiverInformation function

will run again, and when it resolves it will set the state, which will trigger
another re-render. The loop will continue forever.

To solve this problem, React has a special Hook called useEffect that will

only run when specific data changes.

The useEffect Hook accepts a function as the first argument and an array of

triggers as the second argument. The function will run on the first render

import React, { useState } from 'react';

import { getRiverInformation } from '../../services/rivers';

export default function RiverInformation() {

 const [riverInformation, setRiverInformation] = useState({});

 getRiverInformation()

 .then(d => {

 setRiverInformation(d)

 })

 return(

 ...

)

}

https://reactjs.org/docs/hooks-reference.html#useeffect
https://www.digitalocean.com/community/tutorials/how-to-define-functions-in-javascript
https://www.digitalocean.com/community/tutorials/understanding-arrays-in-javascript

after the layout and paint. After that, it will only run if one of the triggers
changes. If you supply an empty array, it will only run one time. If you do
not include an array of triggers, it will run after every render.

Open RiverInformation.js :

nano src/components/RiverInformation/RiverInformation.js

Use the useState Hook to create a variable called riverInformation and a

function called setRiverInformation . You’ll update the component by

setting the riverInformation when the asynchronous function resolves.

Then wrap the getRiverInformation function with useEffect . Be sure to

pass an empty array as a second argument. When the promise resolves,
update the riverInformation with the setRiverInformation function:

async-tutorial/src/components/RiverInformation/
RiverInformation.js

import React, { useEffect, useState } from 'react';

import { getRiverInformation } from '../../services/rivers';

export default function RiverInformation() {

 const [riverInformation, setRiverInformation] = useState({});

 useEffect(() => {

 getRiverInformation()

 .then(data =>

 setRiverInformation(data)

);

 }, [])

 return(

 <div>

 <h2>River Information</h2>

 Continent: {riverInformation.continent}

 Length: {riverInformation.length}

 Outflow: {riverInformation.outflow}

 </div>

After the asynchronous function resolves, update an unordered list with the
new information.

Save and close the file. When you do the browser will refresh and you’ll
find the data after the function resolves:

River Information Updating After Load, 2

Notice that the component renders before the data is loaded. The advantage
with asynchronous code is that it won’t block the initial render. In this case,
you have a component that shows the list without any data, but you could
also render a spinner or a scalable vector graphic (SVG) placeholder.

There are times when you’ll only need to load data once, such as if you are
getting user information or a list of resources that never change. But many

)

}

times your asynchronous function will require some arguments. In those
cases, you’ll need to trigger your use useEffect Hook whenever the data

changes.

To simulate this, add some more data to your service. Open rivers.js :

nano src/services/rivers.js

Then add an object that contains data for a few more rivers. Select the data
based on a name argument:

https://www.digitalocean.com/community/tutorials/understanding-objects-in-javascript

async-tutorial/src/services/rivers.js

const rivers = {

nile: {

 continent: 'Africa',

 length: '6,650 km',

 outflow: 'Mediterranean'

},

amazon: {

 continent: 'South America',

 length: '6,575 km',

 outflow: 'Atlantic Ocean'

},

yangtze: {

 continent: 'Asia',

 length: '6,300 km',

 outflow: 'East China Sea'

},

mississippi: {

 continent: 'North America',

 length: '6,275 km',

 outflow: 'Gulf of Mexico'

}

}

export function getRiverInformation(name) {

 return new Promise((resolve) => {

Save and close the file. Next, open App.js so you can add more options:

nano src/components/App/App.js

Inside App.js , create a stateful variable and function to hold the selected

river with the useState Hook. Then add a button for each river with an onC

lick handler to update the selected river. Pass the river to RiverInformat

ion using a prop called name :

 setTimeout(() => {

 resolve(

 rivers[name]

)

 }, 1500)

 })

}

https://www.digitalocean.com/community/tutorials/how-to-manage-state-on-react-class-components
https://www.digitalocean.com/community/tutorials/how-to-customize-react-components-with-props

async-tutorial/src/components/App/App.js

Save and close the file. Next, open RiverInformation.js :

nano src/components/RiverInformation/RiverInformation.js

import React, { useState } from 'react';

import './App.css';

import RiverInformation from '../RiverInformation/RiverInformat

function App() {

 const [river, setRiver] = useState('nile');

 return (

 <div className="wrapper">

 <h1>World's Longest Rivers</h1>

 <button onClick={() => setRiver('nile')}>Nile</button>

 <button onClick={() => setRiver('amazon')}>Amazon</button

 <button onClick={() => setRiver('yangtze')}>Yangtze</butt

 <button onClick={() => setRiver('mississippi')}>Mississip

 <RiverInformation name={river} />

 </div>

);

}

export default App;

Pull in the name as a prop and pass it to the getRiverInformation function.

Be sure to add name to the array for useEffect , otherwise it will not rerun:

async-tutorial/src/components/RiverInformation/
RiverInformation.js

import React, { useEffect, useState } from 'react';

import PropTypes from 'prop-types';

import { getRiverInformation } from '../../services/rivers';

export default function RiverInformation({ name }) {

 const [riverInformation, setRiverInformation] = useState({});

 useEffect(() => {

 getRiverInformation(name)

 .then(data =>

 setRiverInformation(data)

);

 }, [name])

 return(

 <div>

 <h2>River Information</h2>

 Continent: {riverInformation.continent}

 Length: {riverInformation.length}

 Outflow: {riverInformation.outflow}

 </div>

In this code, you also added a weak typing system with PropTypes , which

will make sure that the prop is a string.

Save the file. When you do, the browser will refresh and you can select
different rivers. Notice the delay between when you click and when the data
renders:

Update river information, 3

If you had left out the name prop from the useEffect array, you would

receive a build error in the browser console. It would be something like

)

}

RiverInformation.propTypes = {

name: PropTypes.string.isRequired

}

https://www.digitalocean.com/community/tutorials/how-to-use-the-javascript-developer-console

this:

Error
Compiled with warnings.

./src/components/RiverInformation/RiverInformation.js

 Line 13:6: React Hook useEffect has a missing dependency: 'n

ame'. Either include it or remove the dependency array react-h

ooks/exhaustive-deps

Search for the keywords to learn more about each warning.

To ignore, add // eslint-disable-next-line to the line before.

This error tells you that the function in your effect has dependencies that
you are not explicitly setting. In this situation, it’s clear that the effect
wouldn’t work, but there are times when you may be comparing prop data
to stateful data inside the component, which makes it possible to lose track
of items in the array.

The last thing to do is to add some defensive programming to your
component. This is a design principle that emphasizes high availability for
your application. You want to ensure that your component will render even
if the data is not in the correct shape or if you do not get any data at all from
an API request.

As your app is now, the effect will update the riverInformation with any

type of data it receives. This will usually be an object, but in cases where

https://en.wikipedia.org/wiki/Defensive_programming

it’s not, you can use optional chaining to ensure that you will not throw an
error.

Inside RiverInformation.js , replace the instance of an object dot chaining

with optional chaining. To test if it works, remove the default object {}

from the useState function:

https://www.digitalocean.com/community/tutorials/js-v8-optional-chaining-nullish-coalescing

async-tutorial/src/components/RiverInformation/
RiverInformation.js

import React, { useEffect, useState } from 'react';

import PropTypes from 'prop-types';

import { getRiverInformation } from '../../services/rivers';

export default function RiverInformation({ name }) {

 const [riverInformation, setRiverInformation] = useState();

 useEffect(() => {

 getRiverInformation(name)

 .then(data =>

 setRiverInformation(data)

);

 }, [name])

 return(

 <div>

 <h2>River Information</h2>

 Continent: {riverInformation?.continent}

 Length: {riverInformation?.length}

 Outflow: {riverInformation?.outflow}

 </div>

)

Save and close the file. When you do, the file will still load even though the
code is referencing properties on undefined instead of an object:

River Information Updating After Load, 4

Defensive programming is usually considered a best practice, but it’s
especially important on asynchronous functions such as API calls when you
can’t guarantee a response.

In this step, you called asynchronous functions in React. You used the useE

ffect Hook to fetch information without triggering re-renders and triggered

a new update by adding conditions to the useEffect array.

}

RiverInformation.propTypes = {

 name: PropTypes.string.isRequired

}

In the next step, you’ll make some changes to your app so that it updates
components only when they are mounted. This will help your app avoid
memory leaks.

Step 2 — Preventing Errors on Unmounted Components

In this step, you’ll prevent data updates on unmounted components. Since
you can never be sure when data will resolve with asynchronous
programming, there’s always a risk that the data will resolve after the
component has been removed. Updating data on an unmounted component
is inefficient and can introduce memory leaks in which your app is using
more memory than it needs to.

By the end of this step, you’ll know how to prevent memory leaks by
adding guards in your useEffect Hook to update data only when the

component is mounted.

The current component will always be mounted, so there’s no chance that
the code will try and update the component after it is removed from the
DOM, but most components aren’t so reliable. They will be added and
removed from the page as the user interacts with the application. If a
component is removed from a page before the asynchronous function
resolves, you can have a memory leak.

To test out the problem, update App.js to be able to add and remove the

river details.

Open App.js :

https://www.digitalocean.com/community/tutorial_series/understanding-the-dom-document-object-model

nano src/components/App/App.js

Add a button to toggle the river details. Use the useReducer Hook to create

a function to toggle the details and a variable to store the toggled state:

async-tutorial/src/components/App/App.js

import React, { useReducer, useState } from 'react';

import './App.css';

import RiverInformation from '../RiverInformation/RiverInformat

function App() {

 const [river, setRiver] = useState('nile');

 const [show, toggle] = useReducer(state => !state, true);

 return (

 <div className="wrapper">

 <h1>World's Longest Rivers</h1>

 <div><button onClick={toggle}>Toggle Details</button></di

 <button onClick={() => setRiver('nile')}>Nile</button>

 <button onClick={() => setRiver('amazon')}>Amazon</button

 <button onClick={() => setRiver('yangtze')}>Yangtze</butt

 <button onClick={() => setRiver('mississippi')}>Mississip

 {show && <RiverInformation name={river} />}

 </div>

);

}

export default App;

Save the file. When you do the browse will reload and you’ll be able to
toggle the details.

Click on a river, then immediately click on the Toggle Details button to
hide details. React will generate an error warning that there is a potential
memory leak.

Warning when component is updated after being r
emoved, 5

To fix the problem you need to either cancel or ignore the asynchronous
function inside useEffect . If you are using a library such as RxJS, you can

cancel an asynchronous action when the component unmounts by returning
a function in your useEffect Hook. In other cases, you’ll need a variable to

store the mounted state.

Open RiverInformation.js :

nano src/components/RiverInformation/RiverInformation.js

https://rxjs-dev.firebaseapp.com/guide/overview

Inside the useEffect function, create a variable called mounted and set it to

true . Inside the .then callback, use a conditional to set the data if mounted

is true:

async-tutorial/src/components/RiverInformation/
RiverInformation.js

import React, { useEffect, useState } from 'react';

import PropTypes from 'prop-types';

import { getRiverInformation } from '../../services/rivers';

export default function RiverInformation({ name }) {

 const [riverInformation, setRiverInformation] = useState();

 useEffect(() => {

 let mounted = true;

 getRiverInformation(name)

 .then(data => {

 if(mounted) {

 setRiverInformation(data)

 }

 });

 }, [name])

 return(

 <div>

 <h2>River Information</h2>

 Continent: {riverInformation?.continent}

Now that you have the variable, you need to be able to flip it when the
component unmounts. With the useEffect Hook, you can return a function

that will run when the component unmounts. Return a function that sets mou

nted to false :

 Length: {riverInformation?.length}

 Outflow: {riverInformation?.outflow}

 </div>

)

}

RiverInformation.propTypes = {

 name: PropTypes.string.isRequired

}

async-tutorial/src/components/RiverInformation/
RiverInformation.js

import React, { useEffect, useState } from 'react';

import PropTypes from 'prop-types';

import { getRiverInformation } from '../../services/rivers';

export default function RiverInformation({ name }) {

 const [riverInformation, setRiverInformation] = useState();

 useEffect(() => {

 let mounted = true;

 getRiverInformation(name)

 .then(data => {

 if(mounted) {

 setRiverInformation(data)

 }

 });

 return () => {

 mounted = false;

 }

 }, [name])

 return(

 <div>

 <h2>River Information</h2>

Save the file. When you do, you’ll be able to toggle the details without an
error.

No warning when toggling, 6

 Continent: {riverInformation?.continent}

 Length: {riverInformation?.length}

 Outflow: {riverInformation?.outflow}

 </div>

)

}

RiverInformation.propTypes = {

 name: PropTypes.string.isRequired

}

When you unmount, the component useEffect updates the variable. The

asynchronous function will still resolve, but it won’t make any changes to
unmounted components. This will prevent memory leaks.

In this step, you made your app update state only when a component is
mounted. You updated the useEffect Hook to track if the component is

mounted and returned a function to update the value when the component
unmounts.

In the next step, you’ll asynchronously load components to split code into
smaller bundles that a user will load as needed.

Step 3 — Lazy Loading a Component with Suspense and laz
y

In this step, you’ll split your code with React Suspense and lazy . As

applications grow, the size of the final build grows with it. Rather than
forcing users to download the whole application, you can split the code into
smaller chunks. React Suspense and lazy work with webpack and other

build systems to split your code into smaller pieces that a user will be able
to load on demand. In the future, you will be able to use Suspense to load a

variety of data, including API requests.

By the end of this step, you’ll be able to load components asynchronously,
breaking large applications into smaller, more focused chunks.

So far you’ve only worked with asynchronously loading data, but you can
also asynchronously load components. This process, often called code

https://webpack.js.org/guides/code-splitting/

splitting, helps reduce the size of your code bundles so your users don’t
have to download the full application if they are only using a portion of it.

Most of the time, you import code statically, but you can import code
dynamically by calling import as a function instead of a statement. The

code would be something like this:

React gives you an additional set of tools called lazy and Suspense . React

Suspense will eventually expand to handle data loading, but for now you

can use it to load components.

Open App.js :

nano src/components/App/App.js

Then import lazy and Suspense from react :

import('my-library')

.then(library => library.action())

https://webpack.js.org/guides/code-splitting/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import#Dynamic_Imports
https://reactjs.org/docs/code-splitting.html#reactlazy
https://reactjs.org/docs/concurrent-mode-suspense.html

async-tutorial/src/components/App/App.js

import React, { lazy, Suspense, useReducer, useState } from 're

import './App.css';

import RiverInformation from '../RiverInformation/RiverInformat

function App() {

 const [river, setRiver] = useState('nile');

 const [show, toggle] = useReducer(state => !state, true);

 return (

 <div className="wrapper">

 <h1>World's Longest Rivers</h1>

 <div><button onClick={toggle}>Toggle Details</button></di

 <button onClick={() => setRiver('nile')}>Nile</button>

 <button onClick={() => setRiver('amazon')}>Amazon</button

 <button onClick={() => setRiver('yangtze')}>Yangtze</butt

 <button onClick={() => setRiver('mississippi')}>Mississip

 {show && <RiverInformation name={river} />}

 </div>

);

}

export default App;

lazy and Suspsense have two distinct jobs. You use the lazy function to

dynamically import the component and set it to a variable. Suspense is a

built-in component you use to display a fallback message while the code is
loading.

Replace import RiverInformation from '../RiverInformation/RiverInfo

rmation'; with a call to lazy . Assign the result to a variable called RiverI

nformation . Then wrap {show && <RiverInformation name={river} />}

with the Suspense component and a <div> with a message of Loading Com

ponent to the fallback prop:

async-tutorial/src/components/App/App.js

import React, { lazy, Suspense, useReducer, useState } from 're

import './App.css';

const RiverInformation = lazy(() => import('../RiverInformation

function App() {

 const [river, setRiver] = useState('nile');

 const [show, toggle] = useReducer(state => !state, true);

 return (

 <div className="wrapper">

 <h1>World's Longest Rivers</h1>

 <div><button onClick={toggle}>Toggle Details</button></di

 <button onClick={() => setRiver('nile')}>Nile</button>

 <button onClick={() => setRiver('amazon')}>Amazon</button

 <button onClick={() => setRiver('yangtze')}>Yangtze</butt

 <button onClick={() => setRiver('mississippi')}>Mississip

 <Suspense fallback={<div>Loading Component</div>}>

 {show && <RiverInformation name={river} />}

 </Suspense>

 </div>

);

}

export default App;

Save the file. When you do, reload the page and you’ll find that the
component is dynamically loaded. If you want to see the loading message,
you can throttle the response in the Chrome web browser.

Component Loading

If you navigate to the Network tab in Chrome or Firefox, you’ll find that
the code is broken into different chunks.

https://developers.google.com/web/tools/chrome-devtools/network#throttle
https://www.google.com/chrome/
https://www.mozilla.org/en-US/firefox/new/

Chunks

Each chunk gets a number by default, but with Create React App combined
with webpack, you can set the chunk name by adding a comment by the
dynamic import.

In App.js , add a comment of /* webpackChunkName: "RiverInformation"

*/ inside the import function:

async-tutorial/src/components/App/App.js

import React, { lazy, Suspense, useReducer, useState } from 're

import './App.css';

const RiverInformation = lazy(() => import(/* webpackChunkName:

function App() {

 const [river, setRiver] = useState('nile');

 const [show, toggle] = useReducer(state => !state, true);

 return (

 <div className="wrapper">

 <h1>World's Longest Rivers</h1>

 <div><button onClick={toggle}>Toggle Details</button></di

 <button onClick={() => setRiver('nile')}>Nile</button>

 <button onClick={() => setRiver('amazon')}>Amazon</button

 <button onClick={() => setRiver('yangtze')}>Yangtze</butt

 <button onClick={() => setRiver('mississippi')}>Mississip

 <Suspense fallback={<div>Loading Component</div>}>

 {show && <RiverInformation name={river} />}

 </Suspense>

 </div>

);

}

export default App;

Save and close the file. When you do, the browser will refresh and the Rive

rInformation chunk will have a unique name.

River Information Chunk

In this step, you asynchronously loaded components. You used lazy and Su

spense to dynamically import components and to show a loading message

while the component loads. You also gave custom names to webpack
chunks to improve readability and debugging.

Conclusion

Asynchronous functions create efficient user-friendly applications.
However, their advantages come with some subtle costs that can evolve into
bugs in your program. You now have tools that will let you split large
applications into smaller pieces and load asynchronous data while still
giving the user a visible application. You can use the knowledge to

incorporate API requests and asynchronous data manipulations into your
applications creating fast and reliable user experiences.

If you would like to read more React tutorials, check out our React Topic
page, or return to the How To Code in React.js series page.

https://www.digitalocean.com/community/tags/react
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-react-js

How To Call Web APIs with the useEffect
Hook in React

Written by Joe Morgan

The author selected Creative Commons to receive a donation as part of the
Write for DOnations program.

In React development, web application programming interfaces (APIs) are
an integral part of single-page application (SPA) designs. APIs are the
primary way for applications to programmatically communicate with
servers to provide users with real-time data and to save user changes. In
React applications, you will use APIs to load user preferences, display user
information, fetch configuration or security information, and save
application state changes.

In this tutorial, you’ll use the useEffect and useState Hooks to fetch and

display information in a sample application, using JSON server as a local
API for testing purposes. You’ll load information when a component first
mounts and save customer inputs with an API. You’ll also refresh data when
a user makes a change and learn how to ignore API requests when a
component unmounts. By the end of this tutorial, you’ll be able to connect
your React applications to a variety of APIs and you’ll be able to send and
receive real-time data.

Prerequisites

https://www.digitalocean.com/community/tutorials/how-to-call-web-apis-with-the-useeffect-hook-in-react
https://creativecommons.org/
https://do.co/w4do-cta
https://reactjs.org/
https://en.wikipedia.org/wiki/Single-page_application
https://github.com/typicode/json-server

You will need a development environment running Node.js; this
tutorial was tested on Node.js version 10.22.0 and npm version 6.14.6.
To install this on macOS or Ubuntu 18.04, follow the steps in How to
Install Node.js and Create a Local Development Environment on
macOS or the Installing Using a PPA section of How To Install
Node.js on Ubuntu 18.04.

A React development environment set up with Create React App, with
the non-essential boilerplate removed. To set this up, follow Step 1 —
Creating an Empty Project of the How To Manage State on React
Class Components tutorial. This tutorial will use api-tutorial as the

project name.

You will be using React components and Hooks in this tutorial,
including the useState and useEffect Hooks. You can learn about

components and Hooks in our tutorials How To Manage State with
Hooks on React Components and How To Handle Async Data
Loading, Lazy Loading, and Code Splitting with React.

You will also need a basic knowledge of JavaScript and HTML, which
you can find in our How To Build a Website with HTML series and in
How To Code in JavaScript. Basic knowledge of CSS would also be
useful, which you can find at the Mozilla Developer Network.

Step 1 — Creating a Project and a Local API

In this step, you’ll create a local REST API using JSON server, which you
will use as a test data source. Later, you’ll build an application to display a

https://nodejs.org/en/about/
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-and-create-a-local-development-environment-on-macos
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-on-ubuntu-18-04
https://github.com/facebook/create-react-app
https://www.digitalocean.com/community/tutorials/how-to-manage-state-on-react-class-components#step-1-%E2%80%94-creating-an-empty-project
https://www.digitalocean.com/community/tutorials/how-to-manage-state-with-hooks-on-react-components
https://www.digitalocean.com/community/tutorials/how-to-handle-async-data-loading-lazy-loading-and-code-splitting-with-react
https://www.digitalocean.com/community/tutorial_series/how-to-build-a-website-with-html
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-javascript
https://developer.mozilla.org/en-US/docs/Web/CSS
https://restfulapi.net/
https://github.com/typicode/json-server

grocery list and to add items to the list. JSON server will be your local API
and will give you a live URL to make GET and POST requests. With a local

API, you have the opportunity to prototype and test components while you
or another team develops live APIs.

By the end of this step, you’ll be able to create local mock APIs that you
can connect to with your React applications.

On many agile teams, front-end and API teams work on a problem in
parallel. In order to develop a front-end application while a remote API is
still in development, you can create a local version that you can use while
waiting for a complete remote API.

There are many ways to make a mock local API. You can create a simple
server using Node or another language, but the quickest way is to use the
JSON server Node package. This project creates a local REST API from a
JSON file.

To begin, install json-server :

npm install --save-dev json-server

When the installation is finished, you’ll receive a success message:

https://en.wikipedia.org/wiki/Agile_software_development
https://www.digitalocean.com/community/tutorials/how-to-create-a-web-server-in-node-js-with-the-http-module
https://www.digitalocean.com/community/tutorials/how-to-work-with-json-in-javascript

Output
+ json-server@0.16.1

added 108 packages from 40 contributors and audited 1723 packa

ges in 14.505s

73 packages are looking for funding

 run `npm fund` for details

found 0 vulnerabilities

json-server creates an API based on a JavaScript object. The keys are the

URL paths and the values are returned as a response. You store the
JavaScript object locally and commit it to your source control.

Open a file called db.json in the root of your application. This will be the

JSON that stores the information you request from the API:

nano db.json

Add an object with the key of list and an array of values with an id and a

key of item . This will list the item for the grocery list. The key list will

eventually give you a URL with an endpoint of /list :

https://www.digitalocean.com/community/tutorials/understanding-objects-in-javascript
https://www.digitalocean.com/community/tutorials/understanding-arrays-in-javascript

api-tutorial/db.json

In this snippet, you have hard-coded bread and grapes as a starting point

for your grocery list.

Save and close the file. To run the API server, you will use json-server

from the command line with an argument point to the API configuration
file. Add it as a script in your package.json.

Open package.json :

nano package.json

Then add a script to run the API. In addition, add a delay property. This

will throttle the response, creating a delay between your API request and the
API response. This will give you some insights into how the application
will behave when waiting for a server response. Add a delay of 1500

milliseconds. Finally, run the API on port 3333 using the -p option so it

won’t conflict with the create-react-app run script:

{

 "list": [

 { "id": 1, "item": "bread" },

 { "id": 2, "item": "grapes" }

]

}

https://www.digitalocean.com/community/tutorials/how-to-use-node-js-modules-with-npm-and-package-json#step-1-%E2%80%94-creating-a-packagejson-file

api-tutorial/package.json

{

 "name": "do-14-api",

 "version": "0.1.0",

 "private": true,

 "dependencies": {

 "@testing-library/jest-dom": "^4.2.4",

 "@testing-library/react": "^9.3.2",

 "@testing-library/user-event": "^7.1.2",

 "react": "^16.13.1",

 "react-dom": "^16.13.1",

 "react-scripts": "3.4.3"

 },

 "scripts": {

 "api": "json-server db.json -p 3333 --delay 1500",

 "start": "react-scripts start",

 "build": "react-scripts build",

 "test": "react-scripts test",

 "eject": "react-scripts eject"

 },

 "eslintConfig": {

 "extends": "react-app"

 },

 "browserslist": {

 "production": [

 ">0.2%",

Save and close the file. In a new terminal or tab, start the API server with
the following command:

npm run api

Keep this running during the rest of the tutorial.

When you run the command, you will receive an output that lists the API
resources:

 "not dead",

 "not op_mini all"

],

 "development": [

 "last 1 chrome version",

 "last 1 firefox version",

 "last 1 safari version"

]

 },

 "devDependencies": {

 "json-server": "^0.16.1"

 }

}

Output
> json-server db.json -p 3333

 \{^_^}/ hi!

 Loading db.json

 Done

 Resources

 http://localhost:3333/list

 Home

 http://localhost:3333

 Type s + enter at any time to create a snapshot of the datab

ase

Open http://localhost:3333/list and you’ll find the live API:

http://localhost:3333/list

API results, 1

When you open an endpoint in your browser, you are using the GET

method. But json-server is not limited to the GET method. You can

perform many other REST methods as well. For example, you can POST

new items. In a new terminal window or tab, use curl to POST a new item

with a type of application/json :

curl -d '{"item":"rice"}' -H 'Content-Type: application/json'

 -X POST http://localhost:3333/list

Note that you must stringify the content before you send it. After running
the curl command, you’ll receive a success message:

Output
{

 "item": "rice",

 "id": 3

}

If you refresh the browser, the new item will appear:

Updated content, 2

The POST request will also update the db.json file. Be mindful of the

changes, since there are no barriers to accidentally saving unstructured or
unhelpful content as you work on your application. Be sure to check any
changes before committing into version control.

In this step, you created a local API. You learned how to create a static file
with default values and how to fetch or update those values using RESTful
actions such as GET and POST . In the next step, you’ll create services to

fetch data from the API and to display in your application.

Step 2 — Fetching Data from an API with useEffect

In this step, you’ll fetch a list of groceries using the useEffect Hook.

You’ll create a service to consume APIs in separate directories and call that
service in your React components. After you call the service, you’ll save the
data with the useState Hook and display the results in your component.

By the end of this step, you’ll be able to call web APIs using the Fetch
method and the useEffect Hook. You’ll also be able to save and display

the results.

Now that you have a working API, you need a service to fetch the data and
components to display the information. Start by creating a service. You can
fetch data directly inside any React component, but your projects will be
easier to browse and update if you keep your data retrieval functions
separate from your display components. This will allow you to reuse
methods across components, mock in tests, and update URLs when
endpoints change.

Create a directory called services inside the src directory:

mkdir src/services

https://www.digitalocean.com/community/tutorials/js-fetch-api

Then open a file called list.js in your text editor:

nano src/services/list.js

You’ll use this file for any actions on the /list endpoint. Add a function to

retrieve the data using the fetch function:

api-tutorial/src/services/list

The only goal of this function is to access the data and to convert the
response into JSON using the data.json() method. GET is the default

action, so you don’t need any other parameters.

In addition to fetch , there are other popular libraries such as Axios that can

give you an intuitive interface and will allow you to add default headers or
perform other actions on the service. But fetch will work for most

requests.

Save and close the file. Next, open App.css and add some minimal styling:

nano src/components/App/App.css

export function getList() {

 return fetch('http://localhost:3333/list')

 .then(data => data.json())

}

https://www.digitalocean.com/community/tutorials/js-fetch-api
https://www.digitalocean.com/community/tutorials/react-axios-react

Add a class of wrapper with a small amount of padding by replacing the

CSS with the following:

api-tutorial/src/components/App/App.css

Save and close the file. Now you need to add in code to retrieve the data
and display it in your application.

Open App.js :

nano src/components/App/App.js

In functional components, you use the useEffect Hook to fetch data when

the component loads or some information changes. For more information
on the useEffect Hook, check out How To Handle Async Data Loading,

Lazy Loading, and Code Splitting with React. You’ll also need to save the
results with the useState Hook.

Import useEffect and useState , then create a variable called list and a

setter called setList to hold the data you fetch from the service using the u

seState Hook:

.wrapper {

 padding: 15px;

}

https://www.digitalocean.com/community/tutorials/how-to-handle-async-data-loading-lazy-loading-and-code-splitting-with-react

api-tutorial/src/components/App/App.js

Next, import the service, then call the service inside your useEffect Hook.

Update the list with setList if the component is mounted. To understand

why you should check if the component is mounted before setting the data,
see Step 2 — Preventing Errors on Unmounted Components in How To
Handle Async Data Loading, Lazy Loading, and Code Splitting with React.

Currently you are only running the effect once when the page loads, so the
dependency array will be empty. In the next step, you’ll trigger the effect
based on different page actions to ensure that you always have the most up-
to-date information.

import React, { useEffect, useState } from 'react';

import './App.css';

function App() {

 const [list, setList] = useState([]);

 return(

 <>

 </>

)

}

export default App;

https://www.digitalocean.com/community/tutorials/how-to-handle-async-data-loading-lazy-loading-and-code-splitting-with-react

Add the following highlighted code:

api-tutorial/src/components/App/App.js

import React, { useEffect, useState } from 'react';

import './App.css';

import { getList } from '../../services/list';

function App() {

 const [list, setList] = useState([]);

 useEffect(() => {

 let mounted = true;

 getList()

 .then(items => {

 if(mounted) {

 setList(items)

 }

 })

 return () => mounted = false;

}, [])

 return(

 <>

 </>

)

}

Finally, loop over the items with .map and display them in a list:

export default App;

https://www.digitalocean.com/community/tutorials/how-to-use-array-methods-in-javascript-iteration-methods#map()

api-tutorial/src/components/App/App

import React, { useEffect, useState } from 'react';

import './App.css';

import { getList } from '../../services/list';

function App() {

 const [list, setList] = useState([]);

 useEffect(() => {

 let mounted = true;

 getList()

 .then(items => {

 if(mounted) {

 setList(items)

 }

 })

 return () => mounted = false;

 }, [])

 return(

 <div className="wrapper">

 <h1>My Grocery List</h1>

 {list.map(item => <li key={item.item}>{item.item})}

 </div>

Save and close the file. When you do, the browser will refresh and you’ll
find a list of items:

List Items, 3

In this step, you set up a service to retrieve data from an API. You learned
how to call the service using the useEffect Hook and how to set the data

on the page. You also displayed the data inside your JSX.

In the next step, you’ll submit data to the API using POST and use the

response to alert your users that an actions was successful.

Step 3 — Sending Data to an API

)

}

export default App;

https://www.digitalocean.com/community/tutorials/how-to-create-react-elements-with-jsx

In this step, you’ll send data back to an API using the Fetch API and the PO

ST method. You’ll create a component that will use a web form to send the

data with the onSubmit event handler and will display a success message

when the action is complete.

By the end of this step, you’ll be able to send information to an API and
you’ll be able to alert the user when the request resolves.

Sending Data to a Service

You have an application that will display a list of grocery items, but it’s not
a very useful grocery app unless you can save content as well. You need to
create a service that will POST a new item to the API.

Open up src/services/list.js :

nano src/services/list.js

Inside the file, add a function that will take an item as an argument and will

send the data using the POST method to the API. As before, you can use the

Fetch API. This time, you’ll need more information. Add an object of
options as the second argument. Include the method— POST—along with

headers to set the Content-Type to application/json . Finally, send the

new object in the body . Be sure to convert the object to a string using JSON.

stringify .

When you receive a response, convert the value to JSON:

https://www.digitalocean.com/community/tutorials/how-to-build-forms-in-react

tutorial/src/services/list.js

Save and close the file.

export function getList() {

 return fetch('http://localhost:3333/list')

 .then(data => data.json())

}

export function setItem(item) {

return fetch('http://localhost:3333/list', {

 method: 'POST',

 headers: {

 'Content-Type': 'application/json'

 },

 body: JSON.stringify({ item })

})

 .then(data => data.json())

}

Note: In production applications, you’ll need to add error handling and
checking. For example, if you misspelled the endpoint, you’d still
receive a 404 response and the data.json() method would return an

empty object. To solve the issue, instead of converting the response to
JSON, you could check the data.ok property. If it is falsy, you could

throw an error and then use the .catch method in your component to

display a failure message to the users.

Now that you have created a service, you need to consume the service
inside your component.

Open App.js :

nano src/components/App/App.js

Add a form element surrounding an input and a submit button :

api-tutorial/src/components/App/App.js

import React, { useEffect, useState } from 'react';

import './App.css';

import { getList } from '../../services/list';

function App() {

 const [list, setList] = useState([]);

 useEffect(() => {

 let mounted = true;

 getList()

 .then(items => {

 if(mounted) {

 setList(items)

 }

 })

 return () => mounted = false;

 }, [])

 return(

 <div className="wrapper">

 <h1>My Grocery List</h1>

 {list.map(item => <li key={item.item}>{item.item})

Be sure to surround the input with a label so that the form is accessible

by a screen reader. It’s also a good practice to add a type="submit" to the b

utton so that it’s clear the role is to submit the form.

Save the file. When you do, the browser will refresh and you’ll find your
form.

 <form>

 <label>

 <p>New Item</p>

 <input type="text" />

 </label>

 <button type="submit">Submit</button>

 </form>

 </div>

)

}

export default App;

Grocery List Form

Next, convert the input to a controlled component. You’ll need a

controlled component so that you can clear the field after the user
successfully submits a new list item.

First, create a new state handler to hold and set the input information using
the useState Hook:

https://www.digitalocean.com/community/tutorials/how-to-build-forms-in-react#step-3-%E2%80%94-updating-form-data-using-controlled-components

api-tutorial/src/components/App/App.js

import React, { useEffect, useState } from 'react';

import './App.css';

import { getList } from '../../services/list';

function App() {

 const [itemInput, setItemInput] = useState('');

 const [list, setList] = useState([]);

 useEffect(() => {

 let mounted = true;

 getList()

 .then(items => {

 if(mounted) {

 setList(items)

 }

 })

 return () => mounted = false;

 }, [])

 return(

 <div className="wrapper">

 <h1>My Grocery List</h1>

 {list.map(item => <li key={item.item}>{item.item})

After creating the state handlers, set the value of the input to itemInput

and update the value by passing the event.target.value to the setItemInp

ut function using the onChange event handler.

Now your users can fill out a form with new list items. Next you will
connect the form to your service.

Create a function called handleSubmit . handleSubmit will take an event as

an argument and will call event.preventDefault() to stop the form from

refreshing the browser.

 <form>

 <label>

 <p>New Item</p>

 <input type="text" onChange={event => setItemInput(ev
 value={itemInput} />

 </label>

 <button type="submit">Submit</button>

 </form>

 </div>

)

}

export default App;

Import setItem from the service, then call setItem with the itemInput

value inside the handleSubmit function. Connect handleSubmit to the form

by passing it to the onSubmit event handler:

api-tutorial/src/components/App/App.js

import React, { useEffect, useState } from 'react';

import './App.css';

import { getList, setItem } from '../../services/list';

function App() {

 const [itemInput, setItemInput] = useState('');

 const [list, setList] = useState([]);

 useEffect(() => {

 let mounted = true;

 getList()

 .then(items => {

 if(mounted) {

 setList(items)

 }

 })

 return () => mounted = false;

 }, [])

 const handleSubmit = (e) => {

 e.preventDefault();

 setItem(itemInput)

 };

 return(

Save the file. When you do, you’ll be able to submit values. Notice that
you’ll receive a successful response in the network tab. But the list doesn’t
update and the input doesn’t clear.

 <div className="wrapper">

 <h1>My Grocery List</h1>

 {list.map(item => <li key={item.item}>{item.item})

 <form onSubmit={handleSubmit}>

 <label>

 <p>New Item</p>

 <input type="text" onChange={event => setItemInput(ev
 value={itemInput} />

 </label>

 <button type="submit">Submit</button>

 </form>

 </div>

)

}

export default App;

Submit successful, 5

Showing a Success Message

It’s always a good practice to give the user some indication that their action
was successful. Otherwise a user may try and resubmit a value multiple
times or may think their action failed and will leave the application.

To do this, create a stateful variable and setter function with useState to

indicate whether to show a user an alert message. If alert is true, display

an <h2> tag with the message Submit Successful.

When the setItem promise resolves, clear the input and set the alert

message:

https://www.digitalocean.com/community/tutorials/understanding-the-event-loop-callbacks-promises-and-async-await-in-javascript#promises

api-tutorial/src/components/App/App.js

import React, { useEffect, useState } from 'react';

import './App.css';

import { getList, setItem } from '../../services/list';

function App() {

 const [alert, setAlert] = useState(false);

 const [itemInput, setItemInput] = useState('');

 const [list, setList] = useState([]);

 useEffect(() => {

 let mounted = true;

 getList()

 .then(items => {

 if(mounted) {

 setList(items)

 }

 })

 return () => mounted = false;

 }, [])

 const handleSubmit = (e) => {

 e.preventDefault();

 setItem(itemInput)

 .then(() => {

 setItemInput('');

 setAlert(true);

 })

 };

 return(

 <div className="wrapper">

 <h1>My Grocery List</h1>

 {list.map(item => <li key={item.item}>{item.item})

 {alert && <h2> Submit Successful</h2>}

 <form onSubmit={handleSubmit}>

 <label>

 <p>New Item</p>

 <input type="text" onChange={event => setItemInput(ev
 value={itemInput} />

 </label>

 <button type="submit">Submit</button>

 </form>

 </div>

)

}

export default App;

Save the file. When you do, the page will refresh and you’ll see a success
message after the API request resolves.

Submit and message, 6

There are many other optimizations you can add. For example, you may
want to disable form inputs while there is an active request. You can learn
more about disabling form elements in How To Build Forms in React.

Now you have alerted a user that the result was successful, but the alert
message doesn’t go away and the list doesn’t update. To fix this, start by
hiding the alert. In this case, you’d want to hide the information after a brief
period, such as one second. You can use the setTimeout function to call se

tAlert(false) , but you’ll need to wrap it in useEffect to ensure that it

does not run on every component render.

https://www.digitalocean.com/community/tutorials/how-to-build-forms-in-react

Inside of App.js create a new effect and pass the alert to the array of

triggers. This will cause the effect to run any time alert changes. Notice

that this will run if alert changes from false to true , but it will also run

when alert changes from true to false . Since you only want to hide the

alert if it is displayed, add a condition inside the effect to only run setTimeo

ut if alert is true :

api-tutorial/src/components/App/App.js

import React, { useEffect, useState } from 'react';

import './App.css';

import { getList, setItem } from '../../services/list';

function App() {

 const [alert, setAlert] = useState(false);

 const [itemInput, setItemInput] = useState('');

 const [list, setList] = useState([]);

 ...

 useEffect(() => {

 if(alert) {

 setTimeout(() => {

 setAlert(false);

 }, 1000)

 }

 }, [alert])

 const handleSubmit = (e) => {

 e.preventDefault();

 setItem(itemInput)

 .then(() => {

 setItemInput('');

 setAlert(true);

 })

Run the setTimeout function after 1000 milliseconds to ensure the user has

time to read the change.

Save the file. Now you have an effect that will run whenever alert

changes. If there is an active alert, it will start a timeout function that will
close the alert after one second.

 };

 return(

 <div className="wrapper">

 ...

 </div>

)

}

export default App;

Hide alert, 7

Refreshing Fetched Data

Now you need a way to refresh the stale list of data. To do this, you can add
a new trigger to the useEffect Hook to rerun the getList request. To

ensure you have the most relevant data, you need a trigger that will update
anytime there is a change to the remote data. Fortunately, you can reuse the
alert state to trigger another data refresh since you know it will run any

time a user updates the data. As before, you have to plan for the fact that the
effect will run every time alert changes including when the alert message

disappears.

This time, the effect also needs to fetch data when the page loads. Create a
conditional that will exit the function before the data fetch if list.length

is truthy—indicating you have already fetched the data—and alert is fals

e—indicating you have already refreshed the data. Be sure to add alert

and list to the array of triggers:

import React, { useEffect, useState } from 'react';

import './App.css';

import { getList, setItem } from '../../services/list';

function App() {

 const [alert, setAlert] = useState(false);

 const [itemInput, setItemInput] = useState('');

 const [list, setList] = useState([]);

 useEffect(() => {

 let mounted = true;

 if(list.length && !alert) {

 return;

 }

 getList()

 .then(items => {

 if(mounted) {

 setList(items)

 }

 })

 return () => mounted = false;

 }, [alert, list])

 ...

 return(

Save the file. When you do, the data will refresh after you submit a new
item:

List Refresh, 8

In this case, alert is not directly related to the list state. However, it does

occur at the same time as an event that will invalidate the old data, so you

 <div className="wrapper">

 ...

 </div>

)

}

export default App;

can use it to refresh the data.

Preventing Updates on Unmounted Components

The last problem you need to account for is making sure you do not set state
on an unmounted component. You have a solution to the problem with let

mounted = true in your effect to fetch data, but the solution will not work

for handleSubmit , since it is not an effect. You can’t return a function to set

the value to false when it is unmounted. Further, it would be inefficient to
add the same check to every function.

To solve this problem, you can make a shared variable that is used by
multiple functions by lifting mounted out of the useEffect Hook and

holding it on the level of the component. You’ll still use the function to set
the value to false at the end of the useEffect .

Inside App.js , declare mounted at the start of the function. Then check if

the component is mounted before setting data in the other asynchronous
functions. Make sure to remove the mounted declaration inside the useEffe

ct function:

api-tutorial/src/components/App/App.js

import React, { useEffect, useState } from 'react';

import './App.css';

import { getList, setItem } from '../../services/list';

function App() {

 const [alert, setAlert] = useState(false);

 const [itemInput, setItemInput] = useState('');

 const [list, setList] = useState([]);

 let mounted = true;

 useEffect(() => {

 if(list.length && !alert) {

 return;

 }

 getList()

 .then(items => {

 if(mounted) {

 setList(items)

 }

 })

 return () => mounted = false;

 }, [alert, list])

 useEffect(() => {

 if(alert) {

 setTimeout(() => {

 if(mounted) {

 setAlert(false);

 }

 }, 1000)

 }

 }, [alert])

 const handleSubmit = (e) => {

 e.preventDefault();

 setItem(itemInput)

 .then(() => {

 if(mounted) {

 setItemInput('');

 setAlert(true);

 }

 })

 };

 return(

 <div className="wrapper">

 ...

 </div>

)

}

export default App;

When you make the change, you’ll receive an error in the terminal where
you are running your React app:

Error
Assignments to the 'mounted' variable from inside React Hook u

seEffect will be lost after each render. To preserve the value

over time, store it in a useRef Hook and keep the mutable valu

e in the '.current' property. Otherwise, you can move this var

iable directly inside useEffect react-hooks/exhaustive-deps

React is alerting you that variables are not stable. Whenever there is a re-
render, it will recalculate the variable. Normally, this will ensure up-to-date
information. In this case, you are relying on that variable to persist.

The solution is another Hook called useRef. The useRef Hook will preserve

a variable for the lifetime of the component. The only trick is to get the
value you need to use the .current property.

Inside App.js , convert mounted to a reference using the useRef Hook.

Then convert each usage of mounted to mounted.current :

https://reactjs.org/docs/hooks-reference.html#useref

api-tutorial/src/components/App/App.js

import React, { useEffect, useRef, useState } from 'react';

import './App.css';

import { getList, setItem } from '../../services/list';

function App() {

 const [alert, setAlert] = useState(false);

 const [itemInput, setItemInput] = useState('');

 const [list, setList] = useState([]);

 const mounted = useRef(true);

 useEffect(() => {

 mounted.current = true;

 if(list.length && !alert) {

 return;

 }

 getList()

 .then(items => {

 if(mounted.current) {

 setList(items)

 }

 })

 return () => mounted.current = false;

 }, [alert, list])

 useEffect(() => {

 if(alert) {

 setTimeout(() => {

 if(mounted.current) {

 setAlert(false);

 }

 }, 1000)

 }

 }, [alert])

 const handleSubmit = (e) => {

 e.preventDefault();

 setItem(itemInput)

 .then(() => {

 if(mounted.current) {

 setItemInput('');

 setAlert(true);

 }

 })

 };

 return(

 <div className="wrapper">

 ...

 </div>

)

}

In addition, be cautious about setting the variable in the cleanup function
for useEffect . The cleanup function will always run before the effect

reruns. That means that the cleanup function () => mounted.current = fal

se will run every time the alert or list change. To avoid any false

results, be sure to update the mounted.current to true at the start of the

effect. Then you can be sure it will only be set to false when the

component is unmounted.

Save and close the file. When the browser refreshes, you’ll be able to save
new list items:

Saving again, 9

export default App;

Note: It is a common problem to accidentally rerun an API multiple
times. Every time a component is removed and then remounted, you
will rerun all the original data fetching. To avoid this, consider a
caching method for APIs that are particularly data heavy or slow. You
can use anything from memoizing the service calls, to caching with
service workers, to a custom Hook. There are a few popular custom
Hooks for caching service calls, including useSWR and react query.

No matter which approach you use, be sure to consider how you will
invalidate the cache because there are times where you’ll want to fetch
the newest data.

In this step, you sent data to an API. You learned how to update the user
when the data is submitted and how to trigger a refresh on your list data.
You also avoided setting data on unmounted components by using the useR

ef Hook to store the status of the component so that it can be used by

multiple services.

Conclusion

APIs give you the ability to connect to many useful services. They allow
you to store and retrieve data even after a user closes their browser or stops
using an application. With well organized code, you can isolate your
services from your components so that your components can focus on
rendering data without knowing where the data is originating. Web APIs
extend your application far beyond the capabilities of a browser session or

https://github.com/alexreardon/memoize-one
https://developers.google.com/web/ilt/pwa/caching-files-with-service-worker
https://github.com/vercel/swr
https://github.com/tannerlinsley/react-query

storage. They open your application to the whole world of web
technologies.

If you would like to read more React tutorials, check out our React Topic
page, or return to the How To Code in React.js series page.

https://www.digitalocean.com/community/tags/react
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-react-js

How To Manage State in React with
Redux

Written by Joe Morgan

The author selected Creative Commons to receive a donation as part of the
Write for DOnations program.

Redux is a popular data store for JavaScript and React applications. It
follows a central principle that data binding should flow in one direction
and should be stored as a single source of truth. Redux gained popularity
because of the simplicity of the design concept and the relatively small
implementation.

Redux operates according to a few concepts. First, the store is a single
object with fields for each selection of data. You update the data by
dispatching an action that says how the data should change. You then
interpret actions and update the data using reducers. Reducers are functions
that apply actions to data and return a new state, instead of mutating the
previous state.

In small applications, you may not need a global data store. You can use a
mix of local state and context to manage state. But as your application
scales, you may encounter situations where it would be valuable to store
information centrally so that it will persist across routes and components. In
that situation, Redux will give you a standard way to store and retrieve data
in an organized manner.

https://www.digitalocean.com/community/tutorials/how-to-manage-state-in-react-with-redux
https://creativecommons.org/
https://do.co/w4do-cta
https://redux.js.org/
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-javascript
https://reactjs.org/
https://www.digitalocean.com/community/tutorials/how-to-manage-state-on-react-class-components
https://www.digitalocean.com/community/tutorials/how-to-manage-state-with-hooks-on-react-components
https://www.digitalocean.com/community/tutorials/how-to-share-state-across-react-components-with-context
https://www.digitalocean.com/community/tutorials/how-to-create-custom-components-in-react

In this tutorial, you’ll use Redux in a React application by building a bird
watching test application. Users will be able to add birds they have seen and
increment a bird each time they see it again. You’ll build a single data store,
and you’ll create actions and reducers to update the store. You’ll then pull
data into your components and dispatch new changes to update the data.

Prerequisites

You will need a development environment running Node.js; this
tutorial was tested on Node.js version 10.22.0 and npm version 6.14.6.
To install this on macOS or Ubuntu 18.04, follow the steps in How to
Install Node.js and Create a Local Development Environment on
macOS or the Installing Using a PPA section of How To Install
Node.js on Ubuntu 18.04.

A React development environment set up with Create React App, with
the non-essential boilerplate removed. To set this up, follow Step 1 —
Creating an Empty Project of the How To Manage State on React
Class Components tutorial. This tutorial will use redux-tutorial as

the project name.

You will be using React components, Hooks, and forms in this tutorial,
including the useState Hook and custom Hooks. You can learn about

components and Hooks in our tutorials How To Manage State with
Hooks on React Components and How To Build Forms in React.

You will also need a basic knowledge of JavaScript, HTML, and CSS,
which you can find in our How To Build a Website With HTML series,

https://nodejs.org/en/about/
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-and-create-a-local-development-environment-on-macos
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-on-ubuntu-18-04
https://github.com/facebook/create-react-app
https://www.digitalocean.com/community/tutorials/how-to-manage-state-on-react-class-components#step-1-%E2%80%94-creating-an-empty-project
https://www.digitalocean.com/community/tutorials/how-to-manage-state-with-hooks-on-react-components
https://www.digitalocean.com/community/tutorials/how-to-build-forms-in-react
https://www.digitalocean.com/community/tutorial_series/how-to-build-a-website-with-html

How To Build a Website With CSS series, and in How To Code in
JavaScript.

Step 1 — Setting Up a Store

In this step, you’ll install Redux and connect it to your root component.
You’ll then create a base store and show the information in your
component. By the end of this step, you’ll have a working instance of
Redux with information displaying in your components.

To start, install redux and react-redux . The package redux is framework

agnostic and will connect your actions and reducers. The package react-re

dux contains the bindings to run a Redux store in a React project. You’ll use

code from react-redux to send actions from your components and to pull

data from the store into your components.

Use npm to install the two packages with the following command:

npm install --save redux react-redux

When the component is finished installing, you’ll receive output like this.
Your output may be slightly different:

https://www.digitalocean.com/community/tutorial_series/how-to-build-a-website-with-css
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-javascript
https://www.digitalocean.com/community/tutorials/how-to-create-custom-components-in-react
https://redux.js.org/
https://react-redux.js.org/
https://www.digitalocean.com/community/tutorials/how-to-use-node-js-modules-with-npm-and-package-json#step-2-%E2%80%94-installing-modules

Output
...

+ redux@4.0.5

+ react-redux@7.2.1

added 2 packages from 1 contributor, updated 1 package and aud

ited 1639 packages in 20.573s

Now that you have the packages installed, you need to connect Redux to
your project. To use Redux, you’ll need to wrap your root components with
a Provider to ensure that the store is available to all child components in

the tree. This is similar to how you would add a Provider using React’s

native context.

Open src/index.js :

nano src/index.js

Import the Provider component from the react-redux package. Add the P

rovider to your root component around any other components by making

the following highlighted changes to your code:

https://www.digitalocean.com/community/tutorials/how-to-share-state-across-react-components-with-context

redux-tutorial/src/index.js

Now that you have wrapped your components, it’s time to add a store . The

store is your central collection of data. In the next step, you’ll learn to

import React from 'react';

import ReactDOM from 'react-dom';

import './index.css';

import App from './components/App/App';

import * as serviceWorker from './serviceWorker';

import { Provider } from 'react-redux';

ReactDOM.render(

 <React.StrictMode>

 <Provider>

 <App />

 </Provider>

 </React.StrictMode>,

 document.getElementById('root')

);

// If you want your app to work offline and load faster, you ca

// unregister() to register() below. Note this comes with some

// Learn more about service workers: https://bit.ly/CRA-PWA

serviceWorker.unregister();

create reducers that will set the default values and update your store, but

for now you will hard-code the data.

Import the createStore function from redux , then pass a function that

returns an object. In this case, return an object with a field called birds that

points to an array of individual birds. Each bird will have a name and a vie

ws count. Save the output of the function to a value called store , then pass

the store to a prop called store in the Provider :

https://www.digitalocean.com/community/tutorials/understanding-objects-in-javascript
https://www.digitalocean.com/community/tutorials/understanding-arrays-in-javascript
https://www.digitalocean.com/community/tutorials/how-to-customize-react-components-with-props

redux-tutorial/src/index.js

import React from 'react';

import ReactDOM from 'react-dom';

import './index.css';

import App from './components/App/App';

import * as serviceWorker from './serviceWorker';

import { Provider } from 'react-redux';

import { createStore } from 'redux';

const store = createStore(() => ({

 birds: [

 {

 name: 'robin',

 views: 1

 }

]

}));

ReactDOM.render(

 <React.StrictMode>

 <Provider store={store}>

 <App />

 </Provider>

 </React.StrictMode>,

 document.getElementById('root')

);

Save and close the file. Now that you have some data, you need to be able
to display it. Open src/components/App/App.js :

nano src/components/App/App.js

Like with context , every child component will be able to access the store

without any additional props. To access items in your Redux store, use a
Hook called useSelector from the react-redux package. The useSelecto

r Hook takes a selector function as an argument. The selector function will

receive the state of your store as an argument that you will use to return the
field you want:

// If you want your app to work offline and load faster, you ca

// unregister() to register() below. Note this comes with some

// Learn more about service workers: https://bit.ly/CRA-PWA

serviceWorker.unregister();

https://www.digitalocean.com/community/tutorials/how-to-manage-state-with-hooks-on-react-components

redux-tutorial/src/components/App/App.js

Since useSelector is a custom Hook, the component will re-render

whenever the Hook is called. That means that the data— birds—will

always be up to date.

Now that you have the data, you can display it in an unordered list. Create a
surrounding <div> with a className of wrapper . Inside, add a

element and loop over the birds array with map(), returning a new

item for each. Be sure to use the bird.name as a key :

import React from 'react';

import { useSelector } from 'react-redux';

import './App.css';

function App() {

 const birds = useSelector(state => state.birds);

 return <></>

}

export default App;

https://www.digitalocean.com/community/tutorials/how-to-use-array-methods-in-javascript-iteration-methods#map()

redux-tutorial/src/components/App/App.js

import React from 'react';

import { useSelector } from 'react-redux'

import './App.css';

function App() {

 const birds = useSelector(state => state.birds);

 return (

 <div className="wrapper">

 <h1>Bird List</h1>

 {birds.map(bird => (

 <li key={bird.name}>

 <h3>{bird.name}</h3>

 <div>

 Views: {bird.views}

 </div>

))}

 </div>

);

}

export default App;

Save the file. Once the file is saved, the browser will reload and you’ll find
your bird list::

List of birds

Now that you have a basic list, add in the rest of the components you’ll
need for your bird watching app. First, add a button to increment the views
after the list of views:

redux-tutorial/src/components/App/App.js

import React from 'react';

import { useSelector } from 'react-redux'

import './App.css';

function App() {

 const birds = useSelector(state => state.birds);

 return (

 <div className="wrapper">

 <h1>Bird List</h1>

 {birds.map(bird => (

 <li key={bird.name}>

 <h3>{bird.name}</h3>

 <div>

 Views: {bird.views}

 <button>➕</span

 </div>

))}

 </div>

);

}

Next, create a <form> with a single <input> before the bird list so a user

can add in a new bird. Be sure to surround the <input> with a <label> and

to add a type of submit to the add button to make sure everything is

accessible:

export default App;

redux-tutorial/src/components/App/App.js

import React from 'react';

import { useSelector } from 'react-redux'

import './App.css';

function App() {

 const birds = useSelector(state => state.birds);

 return (

 <div className="wrapper">

 <h1>Bird List</h1>

 <form>

 <label>

 <p>

 Add Bird

 </p>

 <input type="text" />

 </label>

 <div>

 <button type="submit">Add</button>

 </div>

 </form>

 {birds.map(bird => (

 <li key={bird.name}>

 <h3>{bird.name}</h3>

Save and close the file. Next, open up App.css to add some styling:

nano src/components/App/App.css

Add some padding to the wrapper class. Then capitalize the h3 element,

which holds the bird name. Finally, style the buttons. Remove the default
button styles on the add <button> and then add a margin to the form <butt

on> .

Replace the file’s contents with the following:

 <div>

 Views: {bird.views}

 <button>➕</span

 </div>

))}

 </div>

);

}

export default App;

redux-tutorial/src/components/App/App.css

Additionally, give each button a cursor of pointer , which will change the

cursor when hovering over the button to indicate to the user that the button
is clickable.

.wrapper {

 padding: 20px;

}

.wrapper h3 {

 text-transform: capitalize;

}

.wrapper form button {

 margin: 10px 0;

 cursor: pointer;

}

.wrapper ul button {

 background: none;

 border: none;

 cursor: pointer;

}

Save and close the file. When you do the browser will refresh with your
components:

Bird watching app with form

The buttons and form are not connected to any actions yet, and so can not
interact with the Redux store. You’ll add the actions in Step 2 and connect
them in Step 3.

In this step, you installed Redux and created a new store for your
application. You connected the store to your application using Provider

and accessed the elements inside your components using the useSelector

Hook.

In the next step, you’ll create actions and reducers to update your store with
new information.

Step 2 — Creating Actions and Reducers

Next, you’ll create actions to add a bird and to increment a view. You’ll
then make a reducer that will update the information depending on the
action type. Finally, you’ll use the reducers to create a default store using c

ombineReducers .

Actions are the message you send to the data store with the intended
change. Reducers take those messages and update the shared store by
applying the changes depending on the action type. Your components will
send the actions they want your store to use, and your reducers will use
actions to update the data in the store. You never call reducers directly, and
there are cases where one action may impact several reducers.

There are many different options for organizing your actions and reducers.
In this tutorial, you’ll organize by domain. That means your actions and
reducers will be defined by the type of feature they will impact.

Create a directory called store :

mkdir src/store

https://redux.js.org/faq/code-structure#what-should-my-file-structure-look-like-how-should-i-group-my-action-creators-and-reducers-in-my-project-where-should-my-selectors-go

This directory will contain all of your actions and reducers. Some patterns
store them alongside components, but the advantage here is that you have a
separate point of reference for the shape of the whole store. When a new
developer enters the project, they will be able to read the structure of the
store at a glance.

Make a directory called birds inside the store directory. This will contain

the actions and reducers specifically for updating your bird data:

mkdir src/store/birds

Next, open up a file called birds.js so that you can start to add actions and

reducers. If you have a large number of actions and reducers you may want
to split them into separate files, such as birds.actions.js and birds.redu

cers.js , but when there are only a few it can be easier to read when they

are in the same location:

nano src/store/birds/birds.js

First, you are going to create actions. Actions are the messages that you
send from a component to your store using a method called dispatch ,

which you’ll use in the next step.

An action must return an object with a type field. Otherwise, the return

object can include any additional information you want to send.

Create a function called addBirds that takes a bird as an argument and

returns an object containing a type of 'ADD_BIRD' and the bird as a field:

redux-tutorial/src/store/birds/birds.js

Notice that you are exporting the function so that you can later import and
dispatch it from your component.

The type field is important for communicating with reducers, so by

convention most Redux stores will save the type to a variable to protect
against misspelling.

Create a const called ADD_BIRD that saves the string 'ADD_BIRD' . Then

update the action:

export function addBird(bird) {

 return {

 type: 'ADD_BIRD',

 bird,

 }

}

redux-tutorial/src/store/birds/birds.js

Now that you have an action, create a reducer that will respond to the
action.

Reducers are functions that will determine how a state should change based
on actions. The actions don’t make changes themselves; the reducers will
take the state and make changes based on actions.

A reducer receives two arguments: the current state and the action. The
current state refers to the state for a particular section of the store.
Generally, the name of the reducer will match with a field in the store. For
example, suppose you had a store shaped like this:

const ADD_BIRD = 'ADD_BIRD';

export function addBird(bird) {

 return {

 type: ADD_BIRD,

 bird,

 }

}

You would create two reducers: birds and gear . The state for the birds

reducer will be the array of birds. The state for the gear reducer would be

the object containing the gear information.

Inside birds.js create a reducer called birds that takes state and action

and returns the state without any changes:

{

 birds: [

 // collection of bird objects

],

 gear: {

 // gear information

 }

}

redux-tutorial/src/store/birds/birds.js

Notice that you are not exporting the reducer. You will not use the reducer
directly and instead will combine them into a usable collection that you will
export and use to create your base store in index.js . Notice also that you

need to return the state if there are no changes. Redux will run all the

reducers anytime you dispatch an action, so if you don’t return state you
risk losing your changes.

Finally, since Redux returns the state if there are no changes, add a default
state using default parameters.

const ADD_BIRD = 'ADD_BIRD';

export function addBird(bird) {

 return {

 type: ADD_BIRD,

 bird,

 }

}

function birds(state, action) {

 return state;

}

https://www.digitalocean.com/community/tutorials/understanding-default-parameters-in-javascript

Create a defaultBirds array that will have the placeholder bird

information. Then update the state to include defaultBirds as the default

parameter:

redux-tutorial/src/store/birds/birds

const ADD_BIRD = 'ADD_BIRD';

export function addBird(bird) {

 return {

 type: ADD_BIRD,

 bird,

 }

}

const defaultBirds = [

 {

 name: 'robin',

 views: 1,

 }

];

function birds(state=defaultBirds, action) {

 return state;

}

Now that you have a reducer returning your state, you can use the action to
apply the changes. The most common pattern is to use a switch on the acti

on.type to apply changes.

Create a switch statement that will look at the action.type . If the case is

ADD_BIRD , spread out the current state into a new array and add the bird

with a single view:

https://www.digitalocean.com/community/tutorials/how-to-use-the-switch-statement-in-javascript
https://www.digitalocean.com/community/tutorials/understanding-destructuring-rest-parameters-and-spread-syntax-in-javascript

redux-tutorial/src/store/birds/birds.js

const ADD_BIRD = 'ADD_BIRD';

export function addBird(bird) {

 return {

 type: ADD_BIRD,

 bird,

 }

}

const defaultBirds = [

 {

 name: 'robin',

 views: 1,

 }

];

function birds(state=defaultBirds, action) {

 switch (action.type) {

 case ADD_BIRD:

 return [

 ...state,

 {

 name: action.bird,

 views: 1

 }

Notice that you are returning the state as the default value. More

importantly, you are not mutating state directly. Instead, you are creating a

new array by spreading the old array and adding a new value.

Now that you have one action, you can create an action for incrementing a
view.

Create an action called incrementBird . Like the addBird action, this will

take a bird as an argument and return an object with a type and a bird .

The only difference is the type will be 'INCREMENT_BIRD' :

];

 default:

 return state;

 }

}

redux-tutorial/src/store/birds/birds.js

const ADD_BIRD = 'ADD_BIRD';

const INCREMENT_BIRD = 'INCREMENT_BIRD';

export function addBird(bird) {

 return {

 type: ADD_BIRD,

 bird,

 }

}

export function incrementBird(bird) {

 return {

 type: INCREMENT_BIRD,

 bird

 }

}

const defaultBirds = [

 {

 name: 'robin',

 views: 1,

 }

];

function birds(state=defaultBirds, action) {

This action is separate, but you will use the same reducer. Remember, the
actions convey the change you want to make on the data and the reducer
applies those changes to return a new state.

Incrementing a bird involves a bit more than adding a new bird. Inside of b

irds add a new case for INCREMENT_BIRD . Then pull the bird you need to

increment out of the array using find() to compare each name with the act

ion.bird :

 switch (action.type) {

 case ADD_BIRD:

 return [

 ...state,

 {

 name: action.bird,

 views: 1

 }

];

 default:

 return state;

 }

}

https://www.digitalocean.com/community/tutorials/how-to-use-array-methods-in-javascript-iteration-methods#find()

redux-tutorial/src/store/bird/birds.js

You have the bird you need to change, but you need to return a new state
containing all the unchanged birds as well as the bird you’re updating.
Select all remaining birds with state.filter by selecting all birds with a n

const ADD_BIRD = 'ADD_BIRD';

...

function birds(state=defaultBirds, action) {

 switch (action.type) {

 case ADD_BIRD:

 return [

 ...state,

 {

 name: action.bird,

 views: 1

 }

];

 case INCREMENT_BIRD:

 const bird = state.find(b => action.bird === b.name);

 return state;

 default:

 return state;

 }

}

ame that does not equal action.name . Then return a new array by spreading

the birds array and adding the bird at the end:

redux-tutorial/src/store/bird/birds.js

const ADD_BIRD = 'ADD_BIRD';

...

function birds(state=defaultBirds, action) {

 switch (action.type) {

 case ADD_BIRD:

 return [

 ...state,

 {

 name: action.bird,

 views: 1

 }

];

 case INCREMENT_BIRD:

 const bird = state.find(b => action.bird === b.name);

 const birds = state.filter(b => action.bird !== b.name);

 return [

 ...birds,

 bird,

];

 default:

 return state;

 }

}

Finally, update the bird by creating a new object with an incremented vie

w :

redux-tutorial/src/store/bird/birds.js

const ADD_BIRD = 'ADD_BIRD';

...

function birds(state=defaultBirds, action) {

 switch (action.type) {

 case ADD_BIRD:

 return [

 ...state,

 {

 name: action.bird,

 views: 1

 }

];

 case INCREMENT_BIRD:

 const bird = state.find(b => action.bird === b.name);

 const birds = state.filter(b => action.bird !== b.name);

 return [

 ...birds,

 {

 ...bird,

 views: bird.views + 1

 }

];

 default:

 return state;

Notice that you are not using the reducers to sort the data. Sorting could be
considered a view concern since the view displays the information to a user.
You could have one view that sorts by name and one view that sorts by
view count, so it’s better to let individual components handle the sorting.
Instead, keep reducers focused on updating the data, and the component
focused on converting the data to a usable view for a user.

This reducer is also imperfect since you could add birds with the same
name. In a production app you would need to either validate before adding
or give birds a unique id so that you could select the bird by id instead of

name .

Now you have two complete actions and a reducer. The final step is to
export the reducer so that it can initialize the store. In the first step, you
created the store by passing a function that returns an object. You will do
the same thing in this case. The function will take the store and the actio

n and then pass the specific slice of the store to the reducers along with

the action. It would look something like this:

 }

}

export function birdApp(store={}, action) {

 return {

 birds: birds(store.birds, action)

To simplify things, Redux has a helper function called combineReducers

that combines the reducers for you.

Inside of birds.js , import combineReducers from redux . Then call the

function with birds and export the result:

 }

}

redux-tutorial/src/store/bird/birds.js

import { combineReducers } from 'redux';

const ADD_BIRD = 'ADD_BIRD';

const INCREMENT_BIRD = 'INCREMENT_BIRD';

export function addBird(bird) {

 return {

 type: ADD_BIRD,

 bird,

 }

}

export function incrementBird(bird) {

 return {

 type: INCREMENT_BIRD,

 bird

 }

}

const defaultBirds = [

 {

 name: 'robin',

 views: 1,

 }

];

function birds(state=defaultBirds, action) {

 switch (action.type) {

 case ADD_BIRD:

 return [

 ...state,

 {

 name: action.bird,

 views: 1

 }

];

 case INCREMENT_BIRD:

 const bird = state.find(b => action.bird === b.name);

 const birds = state.filter(b => action.bird !== b.name);

 return [

 ...birds,

 {

 ...bird,

 views: bird.views + 1

 }

];

 default:

 return state;

 }

}

const birdApp = combineReducers({

 birds

Save and close the file.

Your actions and reducers are all set up. The final step is to initialize your
store using the combined reducers instead of a placeholder function.

Open src/index.js :

nano src/index.js

Import the birdApp from birds.js . Then initialize the store using birdAp

p :

});

export default birdApp;

redux-tutorial/src/index.js

import React from 'react';

import ReactDOM from 'react-dom';

import './index.css';

import App from './components/App/App';

import * as serviceWorker from './serviceWorker';

import { Provider } from 'react-redux'

import { createStore } from 'redux'

import birdApp from './store/birds/birds';

const store = createStore(birdApp);

ReactDOM.render(

 <React.StrictMode>

 <Provider store={store}>

 <App />

 </Provider>

 </React.StrictMode>,

 document.getElementById('root')

);

// If you want your app to work offline and load faster, you ca

// unregister() to register() below. Note this comes with some

// Learn more about service workers: https://bit.ly/CRA-PWA

serviceWorker.unregister();

Save and close the file. When you do the browser will refresh with your
application:

Bird watching app with form

In this step you created actions and reducers. You learned how to create
actions that return a type and how to build reducers that use the action to

build and return a new state based on the action. Finally, you combined the
reducers into a function that you used to initialize the store.

Your Redux store is now all set up and ready for changes. In the next step
you’ll dispatch actions from a component to update the data.

Step 3 — Dispatching Changes in a Component

In this step, you’ll import and call your actions from your component.
You’ll use a method called dispatch to send the action and you’ll dispatch

the actions inside of event handlers for the form and the button .

By the end of this step, you’ll have a working application that combines a
Redux store and your custom components. You’ll be able to update the
Redux store in real time and will be able to display the information in your
component as it changes.

Now that you have working actions, you need to connect them to your
events so that you can update the store. The method you will use is called d

ispatch and it sends a particular action to the Redux store. When Redux

receives an action you have dispatched, it will pass the action to the
reducers and they will update the data.

Open App.js :

nano src/components/App/App.js

Inside of App.js import the Hook useDispath from react-redux . Then

call the function to create a new dispatch function:

https://www.digitalocean.com/community/tutorials/how-to-handle-dom-and-window-events-with-react

redux-tutorial/src/components/App/App.js

Next you’ll need to import your actions. Remember, actions are functions
that return an object. The object is what you will ultimately pass into the di

spatch function.

Import incrementBird from the store. Then create an onClick event on the

button. When the user clicks on the button, call incrementBird with bird.

name and pass the result to dispatch . To make things more readable, call

the incrementBird function inside of dispatch :

import React from 'react';

import { useDispatch, useSelector } from 'react-redux'

import './App.css';

function App() {

 ...

}

export default App;

redux-tutorial/src/components/App/App.js

import React from 'react';

import { useDispatch, useSelector } from 'react-redux'

import { incrementBird } from '../../store/birds/birds';

import './App.css';

function App() {

 const birds = useSelector(state => state.birds);

 const dispatch = useDispatch();

 return (

 <div className="wrapper">

 <h1>Bird List</h1>

 <form>

 <label>

 <p>

 Add Bird

 </p>

 <input type="text" />

 </label>

 <div>

 <button type="submit">Add</button>

 </div>

 </form>

 {birds.map(bird => (

Save the file. When you do, you’ll be able to increment the robin count:

 <li key={bird.name}>

 <h3>{bird.name}</h3>

 <div>

 Views: {bird.views}

 <button onClick={() => dispatch(incrementBird(bir
 ➕</but

 </div>

))}

 </div>

);

}

export default App;

Increment a bird

Next, you need to dispatch the addBird action. This will take two steps:

saving the input to an internal state and triggering the dispatch with onSubm

it .

Use the useState Hook to save the input value. Be sure to convert the input

to a controlled component by setting the value on the input. Check out the

tutorial How To Build Forms in React for a more in-depth look at controlled
components.

Make the following changes to your code:

https://www.digitalocean.com/community/tutorials/how-to-build-forms-in-react

redux-tutorial/src/components/App/App.js

import React, { useState } from 'react';

import { useDispatch, useSelector } from 'react-redux'

import { incrementBird } from '../../store/birds/birds';

import './App.css';

function App() {

 const [birdName, setBird] = useState('');

 const birds = useSelector(state => state.birds);

 const dispatch = useDispatch();

 return (

 <div className="wrapper">

 <h1>Bird List</h1>

 <form>

 <label>

 <p>

 Add Bird

 </p>

 <input

 type="text"

 onChange={e => setBird(e.target.value)}

 value={birdName}

 />

 </label>

 <div>

Next, import addBird from birds.js , then create a function called handleS

ubmit . Inside the handleSubmit function, prevent the page form submission

with event.preventDefault , then dispatch the addBird action with the bir

dName as an argument. After dispatching the action, call setBird('') to

clear the input. Finally, pass handleSubmit to the onSubmit event handler

on the form :

 <button type="submit">Add</button>

 </div>

 </form>

 ...

 </div>

);

}

export default App;

redux-tutorial/src/components/App/App.js

import React, { useState } from 'react';

import { useDispatch, useSelector } from 'react-redux'

import { addBird, incrementBird } from '../../store/birds/birds

import './App.css';

function App() {

 const [birdName, setBird] = useState('');

 const birds = useSelector(state => state.birds);

 const dispatch = useDispatch();

 const handleSubmit = event => {

 event.preventDefault();

 dispatch(addBird(birdName))

 setBird('');

 };

 return (

 <div className="wrapper">

 <h1>Bird List</h1>

 <form onSubmit={handleSubmit}>

 <label>

 <p>

 Add Bird

 </p>

 <input

 type="text"

 onChange={e => setBird(e.target.value)}

 value={birdName}

 />

 </label>

 <div>

 <button type="submit">Add</button>

 </div>

 </form>

 {birds.map(bird => (

 <li key={bird.name}>

 <h3>{bird.name}</h3>

 <div>

 Views: {bird.views}

 <button onClick={() => dispatch(incrementBird(bir
 ➕</but

 </div>

))}

 </div>

);

}

export default App;

Save the file. When you do, the browser will reload and you’ll be able to
add a bird:

Save new bird

You are now calling your actions and updating your birds list in the store.
Notice that when your application refreshed you lost the previous
information. The store is all contained in memory and so a page refresh will
wipe the data.

This list order will also change if you increment a bird higher in the list.

Robin goes to the bottom on reorder

As you saw in Step 2, your reducer is not concerned with sorting the data.
To prevent an unexpected change in the components, you can sort the data
in your component. Add a sort() function to the birds array. Remember

that sorting will mutate the array and you never want to mutate the store. Be
sure to create a new array by spreading the data before sorting:

redux-tutorial/src/components/App/App.js

import React, { useState } from 'react';

import { useDispatch, useSelector } from 'react-redux'

import { addBird, incrementBird } from '../../store/birds/birds

import './App.css';

function App() {

 const [birdName, setBird] = useState('');

 const birds = [...useSelector(state => state.birds)].sort((a,

 return a.name.toLowerCase() > b.name.toLowerCase() ? 1 : -1

 });

 const dispatch = useDispatch();

 const handleSubmit = event => {

 event.preventDefault();

 dispatch(addBird(birdName))

 setBird('');

 };

 return (

 <div className="wrapper">

 <h1>Bird List</h1>

 <form onSubmit={handleSubmit}>

 <label>

 <p>

 Add Bird

 </p>

 <input

 type="text"

 onChange={e => setBird(e.target.value)}

 value={birdName}

 />

 </label>

 <div>

 <button type="submit">Add</button>

 </div>

 </form>

 {birds.map(bird => (

 <li key={bird.name}>

 <h3>{bird.name}</h3>

 <div>

 Views: {bird.views}

 <button onClick={() => dispatch(incrementBird(bir
 ➕</but

 </div>

))}

 </div>

);

}

Save the file. When you do, the components will stay in alphabetical order
as you increment birds.

Cardinal stays on top

It’s important to not try and do too much in your Redux store. Keep the
reducers focused on maintaining up-to-date information then pull and
manipulate the data for your users inside the component.

export default App;

Note: In this tutorial, notice that there is a fair amount of code for each
action and reducer. Fortunately, there is an officially supported project
called Redux Toolkit that can help you reduce the amount of
boilerplate code. The Redux Toolkit provides an opinionated set of
utilities to quickly create actions and reducers, and will also let you
create and configure your store with less code.

In this step, you dispatched your actions from a component. You learned
how to call actions and how to send the result to a dispatch function, and
you connected them to event handlers on your components to create a fully
interactive store. Finally, you learned how to maintain a consistent user
experience by sorting the data without directly mutating the store.

Conclusion

Redux is a popular single store. It can be advantageous when working with
components that need a common source of information. However, it is not
always the right choice in all projects. Smaller projects or projects with
isolated components will be able to use built-in state management and
context. But as your applications grow in complexity, you may find that
central storage is critical to maintaining data integrity. In such cases, Redux
is an excellent tool to create a single unified data store that you can use
across your components with minimal effort.

If you would like to read more React tutorials, check out our React Topic
page, or return to the How To Code in React.js series page.

https://redux-toolkit.js.org/
https://www.digitalocean.com/community/tags/react
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-react-js

How To Handle Routing in React Apps
with React Router

Written by Joe Morgan

The author selected Creative Commons to receive a donation as part of the
Write for DOnations program.

In React, routers help create and navigate between the different URLs that
make up your web application. They allow your user to move between the
components of your app while preserving user state, and can provide unique
URLs for these components to make them more shareable. With routers,
you can improve your app’s user experience by simplifying site navigation.

React Router is one of the most popular routing frameworks for React. The
library is designed with intuitive components to let you build a declarative
routing system for your application. This means that you can declare
exactly which of your components has a certain route. With declarative
routing, you can create intuitive routes that are human-readable, making it
easier to manage your application architecture.

In this tutorial, you’ll install and configure React Router, build a set of
routes, and connect to them using the <Link> component. You’ll also build

dynamic routes that collect data from a URL that you can access in your
component. Finally, you’ll use Hooks to access data and other routing
information and create nested routes that live inside components that are
rendered by parent routes.

https://www.digitalocean.com/community/tutorials/how-to-handle-routing-in-react-apps-with-react-router
https://creativecommons.org/
https://do.co/w4do-cta
https://reactjs.org/
https://www.digitalocean.com/community/tutorials/how-to-create-custom-components-in-react
https://www.digitalocean.com/community/tutorials/how-to-manage-state-on-react-class-components
https://reactrouter.com/
https://www.digitalocean.com/community/tutorials/how-to-manage-state-with-hooks-on-react-components

By the end of this tutorial, you’ll be able to add routes to any React project
and read information from your routes so that you can create flexible
components that respond to URL data.

Prerequisites

You will need a development environment running Node.js; this
tutorial was tested on Node.js version 10.22.0 and npm version 6.14.6.
To install this on macOS or Ubuntu 18.04, follow the steps in How to
Install Node.js and Create a Local Development Environment on
macOS or the Installing Using a PPA section of How To Install
Node.js on Ubuntu 18.04.

A React development environment set up with Create React App, with
the non-essential boilerplate removed. To set this up, follow Step 1 —
Creating an Empty Project of the How To Manage State on React
Class Components tutorial. This tutorial will use router-tutorial as

the project name.

You will be using React components and custom Hooks throughout the
tutorial. You can learn about components in How To Create Custom
Components in React and Hooks in How To Manage State with Hooks
on React Components.

You will also need a basic knowledge of JavaScript, HTML, and CSS,
which you can find in our How To Build a Website With HTML series,
How To Build a Website With CSS series, and in How To Code in
JavaScript.

https://nodejs.org/en/about/
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-and-create-a-local-development-environment-on-macos
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-on-ubuntu-18-04
https://github.com/facebook/create-react-app
https://www.digitalocean.com/community/tutorials/how-to-manage-state-on-react-class-components#step-1-%E2%80%94-creating-an-empty-project
https://www.digitalocean.com/community/tutorials/how-to-create-custom-components-in-react
https://www.digitalocean.com/community/tutorials/how-to-manage-state-with-hooks-on-react-components
https://www.digitalocean.com/community/tutorial_series/how-to-build-a-website-with-html
https://www.digitalocean.com/community/tutorial_series/how-to-build-a-website-with-css
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-javascript

Step 1 — Installing React Router

In this step, you’ll install React Router into your base project. In this
project, you are going to make a small website about marine mammals.
Each mammal will need a separate component that you’ll render with the
router. After installing the library, you’ll create a series of components for
each mammal. By the end of this step, you’ll have a foundation for
rendering different mammals based on route.

To start, install the React Router package. There are two different versions:
a web version and a native version for use with React Native. You will
install the web version.

In your terminal, use npm to install the package:

npm install react-router-dom

The package will install and you’ll receive a message such as this one when
the installation is complete. Your message may vary slightly:

https://reactnative.dev/
https://www.digitalocean.com/community/tutorials/how-to-use-node-js-modules-with-npm-and-package-json#step-2-%E2%80%94-installing-modules

Output
...

+ react-router-dom@5.2.0

added 11 packages from 6 contributors and audited 1981 package

s in 24.897s

114 packages are looking for funding

 run `npm fund` for details

found 0 vulnerabilities

You now have the package installed. For the remainder of this step, you’ll
create a series of components that will each have a unique route.

To start, make a directory for three different mammals: manatees, narwhals,
and whales. Run the following commands:

mkdir src/components/Manatee

mkdir src/components/Narwhal

mkdir src/components/Whale

Next, create a component for each animal. Add an <h2> tag for each

mammal. In a full application, the child components can be as complex as
you want. They can even import and render their own child components.
For this tutorial, you’ll render only the <h2> tag.

Begin with the manatee component. Open Manatee.js in your text editor:

nano src/components/Manatee/Manatee.js

Then add the basic component:

router-tutorial/src/components/Manatee/Manatee.
js

Save and close the file.

Next, create a component for the narwhal:

nano src/components/Narwhal/Narwhal.js

Add the same basic component, changing the <h2> to Narwhal :

import React from 'react';

export default function Manatee() {

 return <h2>Manatee</h2>;

}

router-tutorial/src/components/Narwhal/Narwhal.
js

Save and close the file.

Finally, create a file for Whale :

nano src/components/Whale/Whale.js

Add the same basic component, changing the <h2> to Whale :

router-tutorial/src/components/Whale/Whale.js

import React from 'react';

export default function Narwhal() {

 return <h2>Narwhal</h2>;

}

import React from 'react';

export default function Whale() {

 return <h2>Whale</h2>;

}

Save and close the file. In the next step, you’ll start connecting routes; for
now, render the basic component in your application.

Open App.js :

nano src/components/App/App.js

Add an <h1> tag with the name of the website (Marine Mammals) inside of a

<div> with a className of wrapper . This will serve as a template. The

wrapper and <h1> tag will render on every page. In full applications, you

might add a navigation bar or a header component that you’d want on every
page.

Add the following highlighted lines to the file:

router-tutorial/src/components/App/App.js

Next, import Manatee and render inside the <div> . This will serve as a

placeholder until you add more routes:

import React from 'react';

import './App.css';

function App() {

 return (

 <div className="wrapper">

 <h1>Marine Mammals</h1>

 </div>

);

}

export default App;

router-tutorial/src/components/App/App.js

Save and close the file.

Now that you have all of the components, add some padding to give the
application a little space.

Open App.css :

nano src/components/App/App.css

import React from 'react';

import './App.css';

import Manatee from '../Manatee/Manatee';

function App() {

 return (

 <div className="wrapper">

 <h1>Marine Mammals</h1>

 <Manatee />

 </div>

);

}

export default App;

Then replace the contents with the following code that adds a padding of 2

0px to the .wrapper class:

router-tutorial/src/components/App/App.css

Save and close the file. When you do, the browser will refresh to show your
basic component:

Marine Mammals

.wrapper {

 padding: 20px;

}

Now you have a basic root component that you will use to display other
components. If you didn’t have a router, you could conditionally display
components using the useState Hook. But this wouldn’t offer a great

experience for your users. Anytime a user refreshes the page, the user’s
selection would disappear. Further, they wouldn’t be able to bookmark or
share specific states of the application. A router will solve all these
problems. The router will preserve the user state and will give the user a
clear URL that they can save or send to others.

In this step, you installed React Router and created basic components. The
components are going to be individual pages that you’ll display by route. In
the next step, you’ll add routes and use the <Link> component to create

performant hyperlinks.

Step 2 — Adding Routes

In this step, you’ll create a base router with individual routes for each page.
You’ll order your routes to ensure that components are rendered correctly
and you’ll use the <Link> component to add hyperlinks to your project that

won’t trigger a page refresh.

By the end of this step, you’ll have an application with a navigation that
will display your components by route.

React Router is a declarative routing framework. That means that you will
configure the routes using standard React components. There are a few
advantages to this approach. First, it follows the standard declaractive
nature of React code. You don’t need to add a lot of code in componentDidM

https://www.digitalocean.com/community/tutorials/how-to-manage-state-with-hooks-on-react-components#step-2-%E2%80%94-setting-state-with-usestate

ount methods or inside a useEffect Hook; your routes are components.

Second, you can intuitively place routes inside of a component with other
components serving as a template. As you read the code, you’ll find exactly
where the dynamic components will fit in relation to the global views such
as navigation or footers.

To start adding routes, open App.js :

nano src/components/App/App.js

The <h1> tag is going to serve as a global page title. Since you want it to

appear on every page, configure the router after the tag.

Import BrowserRouter , Route , and Switch from react-router-dom . Brows

erRouter will be the base configuration. Switch will wrap the dynamic

routes and the Route component will configure specific routes and wrap the

component that should render:

router-tutorial/src/components/App/App.js

Add the BrowserRouter component to create a base router. Anything

outside of this component will render on every page, so place it after your
<h1> tag. In addition, if you have site-wide context that you want to use, or

some other store such as Redux, place those components outside the router.
This will make them available to all components on any route:

import React from 'react';

import { BrowserRouter, Route, Switch } from 'react-router-dom'

import './App.css';

import Manatee from '../Manatee/Manatee';

function App() {

 return (

 <div className="wrapper">

 <h1>Marine Mammals</h1>

 <Manatee />

 </div>

);

}

export default App;

https://www.digitalocean.com/community/tutorials/how-to-share-state-across-react-components-with-context
https://www.digitalocean.com/community/tutorials/how-to-manage-state-in-react-with-redux

router-tutorial/src/components/App/App.js

Next, add the Switch component inside BrowserRouter . This component

will activate the correct route, much like the JavaScript switch statement.

Inside of Switch , add a Route component for each route. In this case,

you’ll want the following routes: /manataee , /narwhal , and /whale . The R

import React from 'react';

import { BrowserRouter, Route, Switch } from 'react-router-dom'

import './App.css';

import Manatee from '../Manatee/Manatee';

function App() {

 return (

 <div className="wrapper">

 <h1>Marine Mammals</h1>

 <BrowserRouter>

 <Manatee />

 </BrowserRouter>

 </div>

);

}

export default App;

https://www.digitalocean.com/community/tutorials/how-to-use-the-switch-statement-in-javascript

oute component will take a path as a parameter and surround a child

component. The child component will display when the route is active.

Create a route for the path / and render the Manatee component:

router-tutorial/src/components/App/App.js

import React from 'react';

import { BrowserRouter, Route, Switch } from 'react-router-dom'

import './App.css';

import Manatee from '../Manatee/Manatee';

function App() {

 return (

 <div className="wrapper">

 <h1>Marine Mammals</h1>

 <BrowserRouter>

 <Switch>

 <Route path="/">

 <Manatee />

 </Route>

 </Switch>

 </BrowserRouter>

 </div>

);

}

export default App;

Save the file. When you do the browser will reload and you’ll find the
information for the manatee component:

Manatee showing at route /

If you try a different route such as http://localhost:3000/whale, you’ll

still find the manatee component.

http://localhost:3000/whale

Manatee on /whale route

The Switch component will render the first route that matches that pattern.

Any route will match / , so it will render on every page. That also means

that order is important. Since the router will exit as soon as it finds a match,
always put a more specific route before a less specific route. In other words,
/whale would go before / and /whale/beluga would go before /whale .

If you want the route to match only the route as written and not any child
routes, you can add the exact prop. For example, <Route exact path="/ma

natee"> would match /manatee , but not /manatee/african .

Update the route for the Manatee component to /manatee , then import the

remaining components and create a route for each:

router-tutorial/src/components/App/App.js

import React from 'react';

import { BrowserRouter, Route, Switch } from 'react-router-dom'

import './App.css';

import Manatee from '../Manatee/Manatee';

import Narwhal from '../Narwhal/Narwhal';

import Whale from '../Whale/Whale';

function App() {

 return (

 <div className="wrapper">

 <h1>Marine Mammals</h1>

 <BrowserRouter>

 <Switch>

 <Route path="/manatee">

 <Manatee />

 </Route>

 <Route path="/narwhal">

 <Narwhal />

 </Route>

 <Route path="/whale">

 <Whale />

 </Route>

 </Switch>

 </BrowserRouter>

Save the file. When you do, the browser will refresh. If you visit http://lo

calhost:3000/, only the <h1> tag will render, because no routes match any

of the Route components:

No component on /

If you visit http://localhost:3000/whale, you’ll find the Whale

component:

 </div>

);

}

export default App;

http://localhost:3000/
http://localhost:3000/whale

Whale on /whale route

Now that you have some components, create navigation for a user to move
between pages.

Use the <nav> element to denote that you are creating a navigation portion

of the page. Then add an unordered list () with a list item () and a

hyperlink (<a>) for each mammal:

router-tutorial/src/components/App/App.js

import React from 'react';

import { BrowserRouter, Route, Switch } from 'react-router-dom'

import './App.css';

import Manatee from '../Manatee/Manatee';

import Narwhal from '../Narwhal/Narwhal';

import Whale from '../Whale/Whale';

function App() {

 return (

 <div className="wrapper">

 <h1>Marine Mammals</h1>

 <nav>

 Manatee

 Narwhal

 Whale

 </nav>

 <BrowserRouter>

 ...

 </BrowserRouter>

 </div>

);

}

Save the file. When you do, the browser will refresh, but there will be a
problem. Since you are using the native browser links— <a> tags—you will

get the default browser behavior any time you click on a link. That means
any time you click on a link, you’ll trigger a full page refresh.

Notice that the network will reload all of the JavaScript files when you click
a link. That’s a big performance cost for your users.

Browser refresh on link click

export default App;

At this point, you could add a click event handler on each link and prevent

the default action. That would be a lot of work. Instead, React Router has a
special component called Link that will handle the work for you. It will

create a link tag, but prevent the default brower behavior while pushing the
new location.

In App.js , import Link from react-router-dom . Then replace each <a>

with a Link . You’ll also need to change the href attribute to the to prop.

Finally, move the <nav> component inside of the BrowserRouter . This

ensures that the Link component is controlled by react-router :

https://www.digitalocean.com/community/tutorials/how-to-handle-dom-and-window-events-with-react

router-tutorial/src/components/App/App.js

import React from 'react';

import { BrowserRouter, Link, Route, Switch } from 'react-route

import './App.css';

import Manatee from '../Manatee/Manatee';

import Narwhal from '../Narwhal/Narwhal';

import Whale from '../Whale/Whale';

function App() {

 return (

 <div className="wrapper">

 <h1>Marine Mammals</h1>

 <BrowserRouter>

 <nav>

 <Link to="/manatee">Manatee</Link>

 <Link to="/narwhal">Narwhal</Link>

 <Link to="/whale">Whale</Link>

 </nav>

 <Switch>

 <Route path="/manatee">

 <Manatee />

 </Route>

Save the file. When you do, the browser will refresh. When you click links,
the page will not refresh and the browser will not reload the JavaScript
code:

 <Route path="/narwhal">

 <Narwhal />

 </Route>

 <Route path="/whale">

 <Whale />

 </Route>

 </Switch>

 </BrowserRouter>

 </div>

);

}

export default App;

No refresh on link click

In this step you added React Router to your current project. You created a
route for each component and you added a navigation using the Link

component to switch between routes without a page refresh.

In the next step, you’ll add more complex routes that render different
components using URL parameters.

Step 3 — Accessing Route Data with Hooks

In this step, you’ll use URL queries and parameters to create dynamic
routes. You’ll learn how to pull information from search parameters with
the useLocation Hook and how to read information from dynamic URLs

using the useParams Hook.

By the end of this step, you’ll know how to access route information inside
of your components and how you can use that information to dynamically
load components.

Suppose you wanted to add another level to your marine mammal
application. There are many types of whales, and you could display
information about each one. You have two choices of how to accomplish
this: You could use the current route and add a specific whale type with
search parameters, such as ?type=beluga . You could also create a new

route that includes the specific name after the base URL, such as /whale/be

luga . This tutorial will start with search parameters, since they are flexible

and can handle multiple, different queries.

First, make new components for different whale species.

Open a new file Beluga.js in your text editor:

nano src/components/Whale/Beluga.js

Add an <h3> tag with the name Beluga :

router-tutorial/src/components/Whale/Beluga.js

Do the same thing for a blue whale. Open a new file Blue.js in your text

editor:

nano src/components/Whale/Blue.js

Add an <h3> tag with the name Blue :

import React from 'react';

export default function Beluga() {

 return(

 <h3>Beluga</h3>

);

}

router-tutorial/src/components/Whale/Blue.js

Save and close the file.

Passing Additional Information with Search Parameters

Next, you are going to pass the whale information as a search parameter.
This will let you pass information without needing to create a new URL.

Open App.js so you can add new links:

nano src/components/App/App.js

Add two new links, one to /whale?type=beluga and one for /whale?type=b

lue :

import React from 'react';

export default function Blue() {

 return(

 <h3>Blue</h3>

);

}

https://developer.mozilla.org/en-US/docs/Web/API/URL/searchParams

router-tutorial/src/components/App/App.js

import React from 'react';

import { BrowserRouter, Link, Route, Switch } from 'react-route

import './App.css';

import Manatee from '../Manatee/Manatee';

import Narwhal from '../Narwhal/Narwhal';

import Whale from '../Whale/Whale';

function App() {

 return (

 <div className="wrapper">

 <h1>Marine Mammals</h1>

 <BrowserRouter>

 <nav>

 <Link to="/manatee">Manatee</Link>

 <Link to="/narwhal">Narwhal</Link>

 <Link to="/whale">Whale</Link>

 <Link to="/whale?type=beluga">Beluga Whale</Lin

 <Link to="/whale?type=blue">Blue Whale</Link></

 </nav>

 <Switch>

 ...

 </Switch>

Save and close the file.

If you click on the links, you’ll still see the regular whale page. This shows
that the standard route is still working correctly:

Beluga router with whale page

 </BrowserRouter>

 </div>

);

}

export default App;

Since you are correctly rendering the Whale component, you’ll need to

update the component to pull the search query out of the URL and use it to
render the correct child component.

Open Whale.js :

nano src/components/Whale/Whale.js

First, import the Beluga and Blue components. Next, import a Hook called

useLocation from react-router-dom :

router-tutorial/src/components/Whale/Whale.js

The useLocation Hook pulls the location information from your page. This

is not unique to React Router. The location object is a standard object on

all browsers. If you open your browser console and type window.location ,

you’ll get an object with information about your URL.

import React from 'react';

import { useLocation } from 'react-router-dom';

import Beluga from './Beluga';

import Blue from './Blue';

export default function Whale() {

 return <h2>Whale</h2>;

}

https://developer.mozilla.org/en-US/docs/Web/API/Window/location

Window location in console

Notice that the location information includes search , but also includes

other information, such as the pathname and the full href . The useLocatio

n Hook will provide this information for you. Inside of Whale.js , call the u

seLocation Hook. Destructure the result to pull out the search field. This

will be a parameter string, such as ?type=beluga :

https://www.digitalocean.com/community/tutorials/understanding-destructuring-rest-parameters-and-spread-syntax-in-javascript

router-tutorial/src/components/Whale/Whale.js

There are a number of libraries, such as query-string, that can parse the

search for you and convert it into an object that is easier to read and update.
In this example, you can use a regular expression to pull out the information
about the whale type .

Use the .match method on the search string to pull out the type : search.ma

tch(/type=(.*)/) . The parentheses inside the regular expression will

capture the match into a results array. The first item in the array is the full
match: type=beluga . The second item is the information from the

parentheses: beluga .

Use the data from the .match method to render the correct child

component:

import React from 'react';

import { useLocation } from 'react-router-dom';

import Beluga from './Beluga';

import Blue from './Blue';

export default function Whale() {

 const { search } = useLocation();

 return <h2>Whale</h2>;

}

https://github.com/sindresorhus/query-string
https://www.digitalocean.com/community/tutorials/understanding-objects-in-javascript
https://www.digitalocean.com/community/tutorials/understanding-arrays-in-javascript

router-tutorial/src/components/Whale/Whale.js

The symbol ?. is called optional chaining. If the value exists, it returns the

value. Otherwise, it will return undefined . This will protect your

component in instances where the search parameter is empty.

import React from 'react';

import { useLocation } from 'react-router-dom';

import Beluga from './Beluga';

import Blue from './Blue';

export default function Whale() {

 const { search } = useLocation();

 const match = search.match(/type=(.*)/);

 const type = match?.[1];

 return (

 <>

 <h2>Whale</h2>

 {type === 'beluga' && <Beluga />}

 {type === 'blue' && <Blue />}

 </>

);

}

https://www.digitalocean.com/community/tutorials/js-es2020#optional-chaining-operator

Save the file. When you do, the browser will refresh and will render
different whales:

Different whales with search params

Accessing URL Parameters

Search parameters work, but they aren’t the best solution in this case.
Generally, you’d use search parameters to refine a page: toggling
information or loading specific data. In this case, you are not refining a
page; you are creating a new static page. Fortunately, React Router provides
a way to create dynamic URLs that preserve variable data called URL
Parameters.

Open App.js :

nano src/components/App/App.js

Instead of passing the whale information as a search, you will add it directly
to the URL itself. That means that you will move the seach into the URL
instead of adding it after a ? . For example, the query /whale?type=blue

will now be /whale/blue :

router-tutorial/src/components/App/App.js

import React from 'react';

import { BrowserRouter, Link, Route, Switch } from 'react-route

import './App.css';

import Manatee from '../Manatee/Manatee';

import Narwhal from '../Narwhal/Narwhal';

import Whale from '../Whale/Whale';

function App() {

 return (

 <div className="wrapper">

 <h1>Marine Mammals</h1>

 <BrowserRouter>

 <nav>

 <Link to="/manatee">Manatee</Link>

 <Link to="/narwhal">Narwhal</Link>

 <Link to="/whale">Whale</Link>

 <Link to="/whale/beluga">Beluga Whale</Link></l

 <Link to="/whale/blue">Blue Whale</Link>

 </nav>

 <Switch>

 <Route path="/manatee">

 <Manatee />

Now you need to create a new route that can capture both /whale/beluga

and /whale/blue . You could add them by hand, but this wouldn’t work in

situations where you don’t know all the possibilities ahead of time, such as
when you have a list of users or other dynamic data.

Instead of making a route for each one, add a URL param to the current
path. The URL param is a keyword prefaced with a colon. React Router will
use the parameter as a wildcard and will match any route that contains that
pattern.

 </Route>

 <Route path="/narwhal">

 <Narwhal />

 </Route>

 <Route path="/whale">

 <Whale />

 </Route>

 </Switch>

 </BrowserRouter>

 </div>

);

}

export default App;

In this case, create a keyword of :type . The full path will be /whale/:typ

e . This will match any route that starts with /whale and it will save the

variable information inside a parameter variable called type . This route

will not match /whale , since that does not contain an additional parameter.

You can either add /whale as a route after the new route or you can add it

before the route of /whale/:type with the exact keyword.

Add a new route of /whale/:type and add an exact property to the current

route:

router-tutorial/src/components/App/App.js

import React from 'react';

import { BrowserRouter, Link, Route, Switch } from 'react-route

import './App.css';

import Manatee from '../Manatee/Manatee';

import Narwhal from '../Narwhal/Narwhal';

import Whale from '../Whale/Whale';

function App() {

 return (

 <div className="wrapper">

 <h1>Marine Mammals</h1>

 <BrowserRouter>

 <nav>

 <Link to="/manatee">Manatee</Link>

 <Link to="/narwhal">Narwhal</Link>

 <Link to="/whale">Whale</Link>

 <Link to="/whale/beluga">Beluga Whale</Link></l

 <Link to="/whale/blue">Blue Whale</Link>

 </nav>

 <Switch>

 <Route path="/manatee">

 <Manatee />

Save and close the file. Now that you are passing new information, you
need to access it and use the information to render dynamic components.

Open Whale.js :

nano src/components/Whale/Whale.js

 </Route>

 <Route path="/narwhal">

 <Narwhal />

 </Route>

 <Route exact path="/whale">

 <Whale />

 </Route>

 <Route path="/whale/:type">

 <Whale />

 </Route>

 </Switch>

 </BrowserRouter>

 </div>

);

}

export default App;

Import the useParams Hook. This will connect to your router and pull out

any URL parameters into an object. Destructure the object to pull out the t

ype field. Remove the code for parsing the search and use the parameter to

conditionally render child components:

router-tutorial/src/components/Whale/Whale.js

import React from 'react';

import { useParams } from 'react-router-dom';

import Beluga from './Beluga';

import Blue from './Blue';

export default function Whale() {

 const { type } = useParams();

 return (

 <>

 <h2>Whale</h2>

 {type === 'beluga' && <Beluga />}

 {type === 'blue' && <Blue />}

 </>

);

}

Save and close the file. When you do, the browser will refresh and you’ll be
able to use the new URLs, such as http://localhost:3000/whale/beluga:

Beluga whale parameter

URL parameters are a clear way to pass conditional data. They are not as
flexible as search parameters, which can be combined or reordered, but they
are more clear and easier for search engines to index.

In this step you passed variable data using search parameters and URL
parameters. You also used the useLocation and useParams Hooks to pull

information out and to render conditional components.

But there is one problem: The list of routes is getting long and you are
starting to get near duplicates with the /whale and /whale/:type routes.

React Router lets you split out child routes directly in the component, which

http://localhost:3000/whale/beluga

means you don’t need to have the whole list in a single component. In the
next step, you’ll render routes directly inside of child components.

Step 4 — Nesting Routes

Routes can grow and become more complex. React Router uses nested
routes to render more specific routing information inside of child
components. In this step, you’ll use nested routes and add routes in different
components. By the end of this step, you’ll have different options for
rendering your information.

In the last step, you added routes inside of App.js . This has some

advantages: It keeps all routes in one place, essentially creating a site map
for your application. But it can easily grow and be difficult to read and
maintain. Nested routes group your routing information directly in the
components that will render other components, giving you the ability to
create mini-templates throughout your application.

Open App.js :

nano src/components/App/App.js

Remove the /whale/:type route and remove the exact prop so you only

have a whale route:

router-tutorial/src/components/App/App.js

import React from 'react';

import { BrowserRouter, Link, Route, Switch } from 'react-route

import './App.css';

import Manatee from '../Manatee/Manatee';

import Narwhal from '../Narwhal/Narwhal';

import Whale from '../Whale/Whale';

function App() {

 return (

 <div className="wrapper">

 <h1>Marine Mammals</h1>

 <BrowserRouter>

 <nav>

 <Link to="/manatee">Manatee</Link>

 <Link to="/narwhal">Narwhal</Link>

 <Link to="/whale">Whale</Link>

 <Link to="/whale/beluga">Beluga Whale</Link></l

 <Link to="/whale/blue">Blue Whale</Link>

 </nav>

 <Switch>

 <Route path="/manatee">

 <Manatee />

Save and close the file.

Next, open Whale.js . This is where you will add the nested route.

nano src/components/Whale/Whale.js

You will need to do two things. First, get the current path with the useRoute

Match Hook. Next, render the new <Switch> and <Route> components to

display the correct components.

 </Route>

 <Route path="/narwhal">

 <Narwhal />

 </Route>

 <Route path="/whale">

 <Whale />

 </Route>

 </Switch>

 </BrowserRouter>

 </div>

);

}

export default App;

Import useRouteMatch . This will return an object that contains the path

and the url . Destructure the object to get the path . You’ll use this as the

basis for your new routes:

router-tutorial/src/components/Whale/Whale.js

Next, import Switch and Route so you can add in new routes. Your new

routes will be the same as you made in App.js , but you do not need to wrap

import React from 'react';

import { useRouteMatch } from 'react-router-dom';

import Beluga from './Beluga';

import Blue from './Blue';

export default function Whale() {

 const { path } = useRouteMatch();

 return (

 <>

 <h2>Whale</h2>

 {type === 'beluga' && <Beluga />}

 {type === 'blue' && <Blue />}

 </>

);

}

them with BrowserRouter . Add the new routes, but prefix the route with the

path . The new component will render exactly where you place them, so

add the new routes after the <h2> :

router-tutorial/src/components/Whale/Whale.js

import React from 'react';

import { Switch, Route, useRouteMatch } from 'react-router-dom'

import Beluga from './Beluga';

import Blue from './Blue';

export default function Whale() {

 const { path } = useRouteMatch();

 return (

 <>

 <h2>Whale</h2>

 <Switch>

 <Route path={`${path}/beluga`}>

 <Beluga />

 </Route>

 <Route path={`${path}/blue`}>

 <Blue />

 </Route>

 </Switch>

 </>

);

}

Save the file. When you do, the browser will refresh and you’ll be able to
visit the child routes.

Visiting child routes

This is a little extra code, but it keeps the child routes situated with their
parent. Not all projects use nested routes: some prefer having an explicit
list. It is a matter of team preference and consistency. Choose the option
that is best for your project, and you can always refactor later.

In this step, you added nested routes to your project. You pulled out the
current path with the useRouteMatch Hook and added new routes in a

component to render the new components inside of a base component.

Conclusion

React Router is an important part of any React project. When you build
single page applications, you’ll use routes to separate your application into
usable pieces that users can access easily and consistently.

As you start to separate your components into routes, you’ll be able to take
advantage of code splitting, preserving state via query parameters, and other
tools to improve the user experience.

If you would like to read more React tutorials, check out our React Topic
page, or return to the How To Code in React.js series page.

https://reactjs.org/docs/code-splitting.html#route-based-code-splitting
https://www.digitalocean.com/community/tags/react
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-react-js

How To Add Login Authentication to
React Applications

Written by Joe Morgan

The author selected Creative Commons to receive a donation as part of the
Write for DOnations program.

Many web applications are a mix of public and private pages. Public pages
are available to anyone, while a private page requires a user login. You can
use authentication to manage which users have access to which pages. Your
React application will need to handle situations where a user tries to access
a private page before they are logged in, and you will need to save the login
information once they have successfully authenticated.

In this tutorial, you’ll create a React application using a token-based
authentication system. You’ll create a mock API that will return a user
token, build a login page that will fetch the token, and check for
authentication without rerouting a user. If a user is not authenticated, you’ll
provide an opportunity for them to log in and then allow them to continue
without navigating to a dedicated login page. As you build the application,
you’ll explore different methods for storing tokens and will learn the
security and experience trade-offs for each approach. This tutorial will
focus on storing tokens in localStorage and sessionStorage.

By the end of this tutorial, you’ll be able to add authentication to a React
application and integrate the login and token storage strategies into a
complete user workflow.

https://www.digitalocean.com/community/tutorials/how-to-add-login-authentication-to-react-applications
https://creativecommons.org/
https://do.co/w4do-cta
https://reactjs.org/
https://www.digitalocean.com/community/tutorials/js-introduction-localstorage-sessionstorage

Prerequisites

You will need a development environment running Node.js; this
tutorial was tested on Node.js version 10.22.0 and npm version 6.14.6.
To install this on macOS or Ubuntu 18.04, follow the steps in How to
Install Node.js and Create a Local Development Environment on
macOS or the Installing Using a PPA section of How To Install
Node.js on Ubuntu 18.04.

A React development environment set up with Create React App, with
the non-essential boilerplate removed. To set this up, follow Step 1 —
Creating an Empty Project of the How To Manage State on React
Class Components tutorial. This tutorial will use auth-tutorial as the

project name.

You will be fetching data from APIs using React. You can learn about
working with APIs in How To Call Web APIs with the useEffect Hook
in React.

You will also need a basic knowledge of JavaScript, HTML, and CSS,
which you can find in our How To Build a Website With HTML series,
How To Style HTML with CSS, and in How To Code in JavaScript.

Step 1 — Building a Login Page

In this step, you’ll create a login page for your application. You’ll start by
installing React Router and creating components to represent a full
application. Then you’ll render the login page on any route so that your
users can login to the application without being redirected to a new page.

https://nodejs.org/en/about/
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-and-create-a-local-development-environment-on-macos
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-on-ubuntu-18-04
https://github.com/facebook/create-react-app
https://www.digitalocean.com/community/tutorials/how-to-manage-state-on-react-class-components#step-1-%E2%80%94-creating-an-empty-project
https://www.digitalocean.com/community/tutorials/how-to-call-web-apis-with-the-useeffect-hook-in-react
https://www.digitalocean.com/community/tutorial_series/how-to-build-a-website-with-html
https://www.digitalocean.com/community/tutorial_series/how-to-style-html-with-css
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-javascript
https://reactrouter.com/

By the end of this step, you’ll have a basic application that will render a
login page when a user is not logged into the application.

To begin, install react router with npm . There are two different versions: a

web version and a native version for use with React Native. Install the web
version:

npm install react-router-dom

The package will install and you’ll receive a message when the installation
is complete. Your message may vary slightly:

Output
...

+ react-router-dom@5.2.0

added 11 packages from 6 contributors, removed 10 packages and

audited 1945 packages in 12.794s

...

Next, create two components called Dashboard and Preferences to act as

private pages. These will represent components that a user should not see
until they have successfully logged into the application.

First, create the directories:

mkdir src/components/Dashboard

mkdir src/components/Preferences

https://reactnative.dev/
https://www.digitalocean.com/community/tutorials/how-to-create-custom-components-in-react

Then open Dashboard.js in a text editor. This tutorial will use nano:

nano src/components/Dashboard/Dashboard.js

Inside of Dashboard.js , add an <h2> tag with the content of Dashboard :

auth-tutorial/src/components/Dashboard/Dashboar
d.js

Save and close the file.

Repeat the same steps for Preferences . Open the component:

nano src/components/Preferences/Preferences.js

Add the content:

import React from 'react';

export default function Dashboard() {

 return(

 <h2>Dashboard</h2>

);

}

https://www.nano-editor.org/

auth-tutorial/src/components/Preferences/Prefer
ences.js

Save and close the file.

Now that you have some components, you need to import the components
and create routes inside of App.js . Check out the tutorial How To Handle

Routing in React Apps with React Router for a full introduction to routing
in React applications.

To begin, open App.js :

nano src/components/App/App.js

Then import Dashboard and Preferences by adding the following

highlighted code:

import React from 'react';

export default function Preferences() {

 return(

 <h2>Preferences</h2>

);

}

https://www.digitalocean.com/community/tutorials/how-to-handle-routing-in-react-apps-with-react-router

auth-tutorial/src/components/App/App.js

Next, import BrowserRouter , Switch , and Route from react-router-dom :

import React from 'react';

import './App.css';

import Dashboard from '../Dashboard/Dashboard';

import Preferences from '../Preferences/Preferences';

function App() {

 return (

 <></>

);

}

export default App;

auth-tutorial/src/components/App/App.js

Add a surrounding <div> with a className of wrapper and an <h1> tag to

serve as a template for the application. Be sure that you are importing App.

css so that you can apply the styles.

Next, create routes for the Dashboard and Preferences components. Add B

rowserRouter , then add a Switch component as a child. Inside of the Switc

h , add a Route with a path for each component:

import React from 'react';

import './App.css';

import { BrowserRouter, Route, Switch } from 'react-router-dom'

import Dashboard from '../Dashboard/Dashboard';

import Preferences from '../Preferences/Preferences';

function App() {

 return (

 <></>

);

}

export default App;

tutorial/src/components/App/App.js

import React from 'react';

import './App.css';

import { BrowserRouter, Route, Switch } from 'react-router-dom'

import Dashboard from '../Dashboard/Dashboard';

import Preferences from '../Preferences/Preferences';

function App() {

 return (

 <div className="wrapper">

 <h1>Application</h1>

 <BrowserRouter>

 <Switch>

 <Route path="/dashboard">

 <Dashboard />

 </Route>

 <Route path="/preferences">

 <Preferences />

 </Route>

 </Switch>

 </BrowserRouter>

 </div>

);

}

export default App;

Save and close the file.

The final step is to add some padding to the main <div> so your component

is not directly at the edge of the browser. To do this, you will change the
CSS.

Open App.css :

nano src/components/App/App.css

Replace the contents with a class of .wrapper with padding of 20px :

auth-tutorial/src/components/App/App.css

Save and close the file. When you do, the browser will reload and you’ll
find your basic components:

.wrapper {

 padding: 20px;

}

https://www.digitalocean.com/community/tutorial_series/how-to-style-html-with-css

Basic component

Check each of the routes. If you visit http://localhost:3000/dashboard,

you’ll find the dashboard page:

http://localhost:3000/dashboard

Dashboard Component

Your routes are working as expected, but there is a slight problem. The
route /dashboard should be a protected page and should not be viewable by

an unauthenticated user. There are different ways to handle a private page.
For example, you can create a new route for a login page and use React
Router to redirect if the user is not logged in. This is a fine approach, but
the user would lose their route and have to navigate back to the page they
originally wanted to view.

A less intrusive option is to generate the login page regardless of the route.
With this approach, you’ll render a login page if there is not a stored user
token and when the user logs in, they’ll be on the same route that they

https://reactrouter.com/web/example/auth-workflow

initially visited. That means if a user visits /dashboard , they will still be on

the /dashboard route after login.

To begin, make a new directory for the Login component:

mkdir src/components/Login

Next, open Login.js in a text editor:

nano src/components/Login/Login.js

Create a basic form with a submit <button> and an <input> for the

username and the password. Be sure to set the input type for the password
to password :

auth-tutorial/src/components/Login/Login.js

For more on forms in React, check out the tutorial How To Build Forms in
React.

import React from 'react';

export default function Login() {

 return(

 <form>

 <label>

 <p>Username</p>

 <input type="text" />

 </label>

 <label>

 <p>Password</p>

 <input type="password" />

 </label>

 <div>

 <button type="submit">Submit</button>

 </div>

 </form>

)

}

https://www.digitalocean.com/community/tutorials/how-to-build-forms-in-react

Next, add an <h1> tag asking the user to log in. Wrap the <form> and the <

h1> in a <div> with a className of login-wrapper . Finally, import Logi

n.css :

auth-tutorial/src/components/Login/Login.js

import React from 'react';

import './Login.css';

export default function Login() {

 return(

 <div className="login-wrapper">

 <h1>Please Log In</h1>

 <form>

 <label>

 <p>Username</p>

 <input type="text" />

 </label>

 <label>

 <p>Password</p>

 <input type="password" />

 </label>

 <div>

 <button type="submit">Submit</button>

 </div>

 </form>

 </div>

)

}

Save and close the file.

Now that you have a basic Login component, you’ll need to add some

styling. Open Login.css :

nano src/components/Login/Login.css

Center the component on the page by adding a display of flex , then

setting the flex-direction to column to align the elements vertically and

adding align-items to center to make the component centered in the

browser:

auth-tutorial/src/components/Login/Login.css

For more information on using Flexbox, see our CSS Flexbox Cheatsheet

Save and close the file.

Finally, you’ll need to render it inside of App.js if there is no user token.

Open App.js :

.login-wrapper {

 display: flex;

 flex-direction: column;

 align-items: center;

}

https://www.digitalocean.com/community/cheatsheets/css-flexbox.

nano src/components/App/App.js

In Step 3, you’ll explore options for storing the token. For now, you can
store the token in memory using the useState Hook.

Import useState from react , then call useState and set return values to t

oken and setToken :

https://www.digitalocean.com/community/tutorials/how-to-manage-state-with-hooks-on-react-components#step-2-%E2%80%94-setting-state-with-usestate

auth-tutorial/src/components/App/App.js

import React, { useState } from 'react';

import { BrowserRouter, Route, Switch } from 'react-router-dom'

import './App.css';

import Dashboard from '../Dashboard/Dashboard';

import Preferences from '../Preferences/Preferences';

function App() {

 const [token, setToken] = useState();

 return (

 <div className="wrapper">

 <h1>Application</h1>

 <BrowserRouter>

 <Switch>

 <Route path="/dashboard">

 <Dashboard />

 </Route>

 <Route path="/preferences">

 <Preferences />

 </Route>

 </Switch>

 </BrowserRouter>

 </div>

);

}

Import the Login component. Add a conditional statement to display Login

if the token is falsy.

Pass the setToken function to the Login component:

export default App;

https://www.digitalocean.com/community/tutorials/how-to-write-conditional-statements-in-javascript

auth-tutorial/src/components/App/App.js

import React, { useState } from 'react';

import { BrowserRouter, Route, Switch } from 'react-router-dom'

import './App.css';

import Dashboard from '../Dashboard/Dashboard';

import Login from '../Login/Login';

import Preferences from '../Preferences/Preferences';

function App() {

 const [token, setToken] = useState();

 if(!token) {

 return <Login setToken={setToken} />

 }

 return (

 <div className="wrapper">

 <h1>Application</h1>

 <BrowserRouter>

 <Switch>

 <Route path="/dashboard">

 <Dashboard />

 </Route>

 <Route path="/preferences">

 <Preferences />

For now, there is no token; in the next step, you’ll call an API and set the
token with the return value.

Save and close the file. When you do, the browser will reload and you’ll see
the login page. Notice that if you visit http://localhost:3000/dashboard,

you’ll still find the login page since the token has not yet been set:

 </Route>

 </Switch>

 </BrowserRouter>

 </div>

);

}

export default App;

http://localhost:3000/dashboard

Login page

In this step, you created an application with private components and a login
component that will display until you set a token. You also configured
routes to display the pages and added a check to display the Login

component on every route if the user is not yet logged into the application.

In the next step, you’ll create a local API that will return a user token.
You’ll call the API from the Login component and save the token to

memory on success.

Step 2 — Creating a Token API

In this step, you’ll create a local API to fetch a user token. You’ll build a
mock API using Node.js that will return a user token. You’ll then call that

https://www.digitalocean.com/community/tutorial_series/how-to-code-in-node-js

API from your login page and render the component after you successfully
retrieve the token. By the end of this step, you’ll have an application with a
working login page and protected pages that will only be accessible after
login.

You are going to need a server to act as a backend that will return the token.
You can create a server quickly using Node.js and the Express web
framework. For a detailed introduction to creating an Express server, see the
tutorial Basic Express Server in Node.js.

To start, install express . Since the server is not a requirement of the final

build, be sure to install as a devDependency.

You’ll also need to install cors. This library will enable cross origin

resource sharing for all routes.

Warning: Do not enable CORS for all routes in a production application.
This can lead to security vulnerabilities.

npm install --save-dev express cors

When the installation is complete, you’ll receive a success message:

https://expressjs.com/
https://www.digitalocean.com/community/tutorials/nodejs-express-basics
https://www.digitalocean.com/community/tutorials/how-to-use-node-js-modules-with-npm-and-package-json#step-2-%E2%80%94-installing-modules
https://github.com/expressjs/cors#readme
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

Output
...

+ cors@2.8.5

+ express@4.17.1

removed 10 packages, updated 2 packages and audited 2059 packa

ges in 12.597s

...

Next, open a new file called server.js in the root of your application. Do

not add this file to the /src directory since you do not want it to be part of

the final build.

nano server.js

Import express , then initialize a new app by calling express() and saving

the result to a variable called app :

auth-tutorial/server.js

After creating the app , add cors as a middleware. First, import cors , then

add it to the application by calling the use method on app :

const express = require('express');

const app = express();

https://expressjs.com/en/guide/using-middleware.html

auth-tutorial/server.js

Next, listen to a specific route with app.use . The first argument is the path

the application will listen to and the second argument is a callback function
that will run when the application serves the path. The callback takes a req

argument, which contains the request data and a res argument that handles

the result.

Add in a handler for the /login path. Call res.send with a JavaScript

object containing a token:

const express = require('express');

const cors = require('cors');

const app = express();

app.use(cors());

https://www.digitalocean.com/community/tutorials/understanding-the-event-loop-callbacks-promises-and-async-await-in-javascript#callback-functions
https://www.digitalocean.com/community/tutorials/understanding-objects-in-javascript

auth-tutorial/server.js

Finally, run the server on port 8080 using app.listen :

const express = require('express');

const cors = require('cors')

const app = express();

app.use(cors());

app.use('/login', (req, res) => {

 res.send({

 token: 'test123'

 });

});

auth-tutorial/server.js

Save and close the file. In a new terminal window or tab, start the server:

node server.js

You will receive a response indicating that the server is starting:

Output
API is running on http://localhost:8080/login

const express = require('express');

const cors = require('cors')

const app = express();

app.use(cors());

app.use('/login', (req, res) => {

 res.send({

 token: 'test123'

 });

});

app.listen(8080, () => console.log('API is running on http://lo

Visit http://localhost:8080/login and you’ll find your JSON object.

Token response

When you fetch the token in your browser, you are making a GET request,

but when you submit the login form you will be making a POST request.

That’s not a problem. When you set up your route with app.use , Express

will handle all requests the same. In a production application, you should be
more specific and only allow certain request methods for each route.

Now that you have a running API server, you need to make a request from
your login page. Open Login.js :

http://localhost:8080/login
https://www.digitalocean.com/community/tutorials/how-to-work-with-json-in-javascript
https://expressjs.com/en/guide/routing.html

nano src/components/Login/Login.js

In the previous step, you passed a new prop called setToken to the Login

component. Add in the PropType from the new prop and destructure the

props object to pull out the setToken prop.

https://www.digitalocean.com/community/tutorials/how-to-customize-react-components-with-props
https://www.digitalocean.com/community/tutorials/understanding-destructuring-rest-parameters-and-spread-syntax-in-javascript#destructuring

auth-tutorial/src/components/Login/Login.js

import React from 'react';

import PropTypes from 'prop-types';

import './Login.css';

export default function Login({ setToken }) {

 return(

 <div className="login-wrapper">

 <h1>Please Log In</h1>

 <form>

 <label>

 <p>Username</p>

 <input type="text" />

 </label>

 <label>

 <p>Password</p>

 <input type="password" />

 </label>

 <div>

 <button type="submit">Submit</button>

 </div>

 </form>

 </div>

)

Next, create a local state to capture the Username and Password . Since you

do not need to manually set data, make the <inputs> uncontrolled

components. You can find detailed information about uncontrolled
components in How To Build Forms in React.

}

Login.propTypes = {

 setToken: PropTypes.func.isRequired

}

https://www.digitalocean.com/community/tutorials/how-to-build-forms-in-react

auth-tutorial/src/components/Login/Login.js

import React, { useState } from 'react';

import PropTypes from 'prop-types';

import './Login.css';

export default function Login({ setToken }) {

 const [username, setUserName] = useState();

 const [password, setPassword] = useState();

 return(

 <div className="login-wrapper">

 <h1>Please Log In</h1>

 <form>

 <label>

 <p>Username</p>

 <input type="text" onChange={e => setUserName(e.targe

 </label>

 <label>

 <p>Password</p>

 <input type="password" onChange={e => setPassword(e.t

 </label>

 <div>

 <button type="submit">Submit</button>

 </div>

 </form>

 </div>

Next, create a function to make a POST request to the server. In a large

application, you would add these to a separate directory. In this example,
you’ll add the service directly to the component. Check out the tutorial How
To Call Web APIs with the useEffect Hook in React for a detailed look at
calling APIs in React components.

Create an async function called loginUser . The function will take credent

ials as an argument, then it will call the fetch method using the POST

option:

)

}

Login.propTypes = {

 setToken: PropTypes.func.isRequired

};

https://www.digitalocean.com/community/tutorials/how-to-call-web-apis-with-the-useeffect-hook-in-react
https://www.digitalocean.com/community/tutorials/understanding-the-event-loop-callbacks-promises-and-async-await-in-javascript#async-functions-with-asyncawait

auth-tutorial/src/components/Login/Login.js

Finally, create a form submit handler called handleSubmit that will call log

inUser with the username and password . Call setToken with a successful

result. Call handleSubmit using the onSubmit event handler on the <form> :

import React, { useState } from 'react';

import PropTypes from 'prop-types';

import './Login.css';

async function loginUser(credentials) {

return fetch('http://localhost:8080/login', {

 method: 'POST',

 headers: {

 'Content-Type': 'application/json'

 },

 body: JSON.stringify(credentials)

})

 .then(data => data.json())

}

export default function Login({ setToken }) {

...

auth-tutorial/src/components/Login/Login.js

import React, { useState } from 'react';

import PropTypes from 'prop-types';

import './Login.css';

async function loginUser(credentials) {

return fetch('http://localhost:8080/login', {

 method: 'POST',

 headers: {

 'Content-Type': 'application/json'

 },

 body: JSON.stringify(credentials)

})

 .then(data => data.json())

}

export default function Login({ setToken }) {

 const [username, setUserName] = useState();

 const [password, setPassword] = useState();

 const handleSubmit = async e => {

 e.preventDefault();

 const token = await loginUser({

 username,

 password

 });

 setToken(token);

 }

 return(

 <div className="login-wrapper">

 <h1>Please Log In</h1>

 <form onSubmit={handleSubmit}>

 <label>

 <p>Username</p>

 <input type="text" onChange={e => setUserName(e.targe

 </label>

 <label>

 <p>Password</p>

 <input type="password" onChange={e => setPassword(e.t

 </label>

 <div>

 <button type="submit">Submit</button>

 </div>

 </form>

 </div>

)

}

Login.propTypes = {

 setToken: PropTypes.func.isRequired

};

Note: In a full application, you’ll need to handle situations where the
component unmounts before a Promise resolves. Check out the tutorial
How To Call Web APIs with the useEffect Hook in React for more
information.

Save and close the file. Make sure that your local API is still running, then
open a browser to http://localhost:3000/dashboard.

You will see the login page instead of the dashboard. Fill out and submit the
form and you will receive a web token then redirect to the page for the
dashboard.

https://www.digitalocean.com/community/tutorials/understanding-the-event-loop-callbacks-promises-and-async-await-in-javascript#promises
https://www.digitalocean.com/community/tutorials/how-to-call-web-apis-with-the-useeffect-hook-in-react
http://localhost:3000/dashboard

Login page

You now have a working local API and an application that requests a token
using a username and password. But there is still a problem. The token is
currently stored using a local state, which means that it is stored in
JavaScript memory. If you open a new window, tab, or even just refresh the
page, you will lose the token and the user will need to login again. This will
be addressed in the next step.

In this step you created a local API and a login page for your application.
You learned how to create a Node server to send a token and how to call the
server and store the token from a login component. In the next step, you’ll
learn how to store the user token so that a session will persist across page
refreshes or tabs.

Step 3 — Storing a User Token with sessionStorage and local
Storage

In this step, you’ll store the user token. You’ll implement different token
storage options and learn the security implications of each approach.
Finally, you’ll learn how different approaches will change the user
experience as the user opens new tabs or closes a session.

By the end of this step, you’ll be able to choose a storage approach based
on the goals for your application.

There are several options for storing tokens. Every option has costs and
benefits. In brief the options are: storing in JavaScript memory, storing in se

ssionStorage, storing in localStorage, and storing in a cookie. The primary

trade-off is security. Any information that is stored outside of the memory
of the current application is vulnerable to Cross-Site Scripting (XSS)
attacks. The danger is that if a malicious user is able to load code into your
application, it can access localStorage , sessionStorage , and any cookie

that is also accessible to your application. The benefit of the non-memory
storage methods is that you can reduce the number of times a user will need
to log in to create a better user experience.

This tutorial will cover sessionStorage and localStorage , since these are

more modern than using cookies.

Session Storage

https://developer.mozilla.org/en-US/docs/Web/API/Window/sessionStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies
https://owasp.org/www-community/attacks/xss/

To test the benefits of storing outside of memory, convert the in-memory
storage to sessionStorage . Open App.js :

nano src/components/App/App.js

Remove the call to useState and create two new functions called setToken

and getToken . Then call getToken and assign the results to a variable

called token :

auth-tutorial/src/components/App/App.js

import React from 'react';

import { BrowserRouter, Route, Switch } from 'react-router-dom'

import './App.css';

import Dashboard from '../Dashboard/Dashboard';

import Login from '../Login/Login';

import Preferences from '../Preferences/Preferences';

function setToken(userToken) {

}

function getToken() {

}

function App() {

 const token = getToken();

 if(!token) {

 return <Login setToken={setToken} />

 }

 return (

 <div className="wrapper">

 ...

 </div>

Since you are using the same function and variable names, you will not
need to change any code in the Login component or the rest of the App

component.

Inside of setToken , save the userToken argument to sessionStorage using

the setItem method. This method takes a key as a first argument and a

string as the second argument. That means you’ll need to convert the userT

oken from an object to a string using the JSON.stringify function. Call se

tItem with a key of token and the converted object.

);

}

export default App;

auth-tutorial/src/components/App/App.js

import React from 'react';

import { BrowserRouter, Route, Switch } from 'react-router-dom'

import './App.css';

import Dashboard from '../Dashboard/Dashboard';

import Login from '../Login/Login';

import Preferences from '../Preferences/Preferences';

function setToken(userToken) {

 sessionStorage.setItem('token', JSON.stringify(userToken));

}

function getToken() {

}

function App() {

 const token = getToken();

 if(!token) {

 return <Login setToken={setToken} />

 }

 return (

 <div className="wrapper">

 ...

Save the file. When you do the browser will reload. If you type in a
username and password and submit, the browser will still render the login
page, but if you look inside your browser console tools, you’ll find the
token is stored in sessionStorage . This image is from Firefox, but you’ll

find the same results in Chrome or other modern browsers.

Token in sessionStorage

 </div>

);

}

export default App;

https://www.mozilla.org/firefox/
https://www.google.com/chrome/

Now you need to retrieve the token to render the correct page. Inside the ge

tToken function, call sessionStorage.getItem . This method takes a key as

an argument and returns the string value. Convert the string to an object
using JSON.parse , then return the value of token :

auth-tutorial/src/components/App/App.js

import React from 'react';

import { BrowserRouter, Route, Switch } from 'react-router-dom'

import './App.css';

import Dashboard from '../Dashboard/Dashboard';

import Login from '../Login/Login';

import Preferences from '../Preferences/Preferences';

function setToken(userToken) {

 sessionStorage.setItem('token', JSON.stringify(userToken));

}

function getToken() {

 const tokenString = sessionStorage.getItem('token');

 const userToken = JSON.parse(tokenString);

 return userToken?.token

}

function App() {

 const token = getToken();

 if(!token) {

 return <Login setToken={setToken} />

 }

 return (

You need to use the optional chaining operator— ?.—when accessing the t

oken property because when you first access the application, the value of se

ssionStorage.getItem('token') will be undefined . If you try to access a

property, you will generate an error.

Save and close the file. In this case, you already have a token stored, so
when the browser refreshes, you will navigate to the private pages:

 <div className="wrapper">

 ...

 </div>

);

}

export default App;

Dashboard

Clear out the token by either deleting the token in the Storage tab in your
developer tools or by typing sessionStorage.clear() in your developer

console.

There’s a little problem now. When you log in, the browser saves the token,
but you still see the login page.

Token stored still not logged in

The problem is your code never alerts React that the token retrieval was
successful. You’ll still need to set some state that will trigger a re-render
when the data changes. Like most problems in React, there are multiple
ways to solve it. One of the most elegant and reusable is to create a custom
Hook.

Creating a Custom Token Hook

A custom Hook is a function that wraps custom logic. A custom Hook
usually wraps one or more built-in React Hooks along with custom
implementations. The primary advantage of a custom Hook is that you can
remove the implementation logic from the component and you can reuse it
across multiple components.

By convention, custom Hooks start with the keyword use* .

Open a new file in the App directory called useToken.js :

nano src/components/App/useToken.js

This will be a small Hook and would be fine if you defined it directly in Ap

p.js . But moving the custom Hook to a different file will show how Hooks

work outside of a component. If you start to reuse this Hook across multiple
components, you might also want to move it to a separate directory.

Inside useToken.js , import useState from react . Notice that you do not

need to import React since you will have no JSX in the file. Create and

export a function called useToken . Inside this function, use the useState

Hook to create a token state and a setToken function:

auth-tutorial/src/components/App/useToken.js

import { useState } from 'react';

export default function useToken() {

 const [token, setToken] = useState();

}

https://www.digitalocean.com/community/tutorials/how-to-create-react-elements-with-jsx

Next, copy the getToken function to useHook and convert it to an arrow

function, since you placed it inside useToken . You could leave the function

as a standard, named function, but it can be easier to read when top-level
functions are standard and internal functions are arrow functions. However,
each team will be different. Choose one style and stick with it.

Place getToken before the state declaration, then initialize useState with g

etToken . This will fetch the token and set it as the initial state:

auth-tutorial/src/components/App/useToken.js

Next, copy the setToken function from App.js . Convert to an arrow

function and name the new function saveToken . In addition to saving the

token to sessionStorage , save the token to state by calling setToken :

import { useState } from 'react';

export default function useToken() {

 const getToken = () => {

 const tokenString = sessionStorage.getItem('token');

 const userToken = JSON.parse(tokenString);

 return userToken?.token

 };

 const [token, setToken] = useState(getToken());

}

https://www.digitalocean.com/community/tutorials/understanding-arrow-functions-in-javascript

auth-tutorial/src/components/App/useToken.js

Finally, return an object that contains the token and saveToken set to the s

etToken property name. This will give the component the same interface.

You can also return the values as an array, but an object will give users a
chance to destructure only the values they want if you reuse this in another
component.

import { useState } from 'react';

export default function useToken() {

 const getToken = () => {

 const tokenString = sessionStorage.getItem('token');

 const userToken = JSON.parse(tokenString);

 return userToken?.token

 };

 const [token, setToken] = useState(getToken());

 const saveToken = userToken => {

 sessionStorage.setItem('token', JSON.stringify(userToken));

 setToken(userToken.token);

 };

}

auth-tutorial/src/components/App/useToken.js

Save and close the file.

import { useState } from 'react';

export default function useToken() {

 const getToken = () => {

 const tokenString = sessionStorage.getItem('token');

 const userToken = JSON.parse(tokenString);

 return userToken?.token

 };

 const [token, setToken] = useState(getToken());

 const saveToken = userToken => {

 sessionStorage.setItem('token', JSON.stringify(userToken));

 setToken(userToken.token);

 };

 return {

 setToken: saveToken,

 token

 }

}

Next, open App.js :

nano src/components/App/App.js

Remove the getToken and setToken functions. Then import useToken and

call the function destructuring the setToken and token values. You can

also remove the import of useState since you are no longer using the

Hook:

auth-tutorial/src/components/App/App.js

import React from 'react';

import { BrowserRouter, Route, Switch } from 'react-router-dom'

import './App.css';

import Dashboard from '../Dashboard/Dashboard';

import Login from '../Login/Login';

import Preferences from '../Preferences/Preferences';

import useToken from './useToken';

function App() {

 const { token, setToken } = useToken();

 if(!token) {

 return <Login setToken={setToken} />

 }

 return (

 <div className="wrapper">

 <h1>Application</h1>

 <BrowserRouter>

 <Switch>

 <Route path="/dashboard">

 <Dashboard />

 </Route>

 <Route path="/preferences">

Save and close the file. When you do, the browser will refresh, and when
you log in, you will immediately go to the page. This is happening because
you are calling useState in your custom Hook, which will trigger a

component re-render:

 <Preferences />

 </Route>

 </Switch>

 </BrowserRouter>

 </div>

);

}

export default App;

Login immediately

You now have a custom Hook to store your token in sessionStorage . Now

you can refresh your page and the user will remain logged in. But if you try
to open the application in another tab, the user will be logged out. sessionS

torage belongs only to the specific window session. Any data will not be

available in a new tab and will be lost when the active tab is closed. If you
want to save the token across tabs, you’ll need to convert to localStorage .

Using localStorage to Save Data Across Windows

Unlike sessionStorage , localStorage will save data even after the session

ends. This can be more convenient, since it lets users open multiple
windows and tabs without a new login, but it does have some security

problems. If the user shares their computer, they will remain logged in to
the application even though they close the browser. It will be the user’s
responsibility to explicitly log out. The next user would have immediate
access to the application without a login. It’s a risk, but the convenience
may be worth it for some applications.

To convert to localStorage , open useToken.js :

nano src/components/App/useToken.js

Then change every reference of sessionStorage to localStorage . The

methods you call will be the same:

auth-tutorial/src/components/App/useToken.js

Save the file. When you do, the browser will refresh. You will need to log in
again since there is no token yet in localStorage , but after you do, you will

import { useState } from 'react';

export default function useToken() {

 const getToken = () => {

 const tokenString = localStorage.getItem('token');

 const userToken = JSON.parse(tokenString);

 return userToken?.token

 };

 const [token, setToken] = useState(getToken());

 const saveToken = userToken => {

 localStorage.setItem('token', JSON.stringify(userToken));

 setToken(userToken.token);

 };

 return {

 setToken: saveToken,

 token

 }

}

remain logged in when you open a new tab.

Still logged into tab

In this step, you saved tokens with sessionStorage and localStorage . You

also created a custom Hook to trigger a component re-render and to move
component logic to a separate function. You also learned about how sessio

nStorage and localStorage affect the user’s ability to start new sessions

without login.

Conclusion

Authentication is a crucial requirement of many applications. The mixture
of security concerns and user experience can be intimidating, but if you

focus on validating data and rendering components at the correct time, it
can become a lightweight process.

Each storage solution offers distinct advantages and disadvantages. Your
choice may change as your application evolves. By moving your
component logic into an abstract custom Hook, you give yourself the ability
to refactor without disrupting existing components.

If you would like to read more React tutorials, check out our React Topic
page, or return to the How To Code in React.js series page.

https://www.digitalocean.com/community/tags/react
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-react-js

How To Avoid Performance Pitfalls in
React with memo, useMemo, and
useCallback

Written by Joe Morgan

The author selected Creative Commons to receive a donation as part of the
Write for DOnations program.

In React applications, performance problems can come from network
latency, overworked APIs, inefficient third-party libraries, and even well-
structured code that works fine until it encounters an unusually large load.
Identifying the root cause of performance problems can be difficult, but
many of these problems originate from component re-rendering. Either the
component re-renders more than expected or the component has a data-
heavy operation that can cause each render to be slow. Because of this,
learning how to prevent unneeded re-renders can help to optimize the
performance of your React application and create a better experience for
your user.

In this tutorial, you’ll focus on optimizing performance in React
components. To explore the problem, you’ll build a component to analyze a
block of text. You’ll look at how different actions can trigger re-renders and
how you can use Hooks and memoization to minimize expensive data
calculations. By the end of this tutorial, you’ll be familiar with many
performance enhancing Hooks, such as the useMemo and useCallback

Hook, and the circumstances that will require them.

https://www.digitalocean.com/community/tutorials/how-to-avoid-performance-pitfalls-in-react-with-memo-usememo-and-usecallback
https://creativecommons.org/
https://do.co/w4do-cta
https://reactjs.org/
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-faq.html#how-to-memoize-calculations

Prerequisites

You will need a development environment running Node.js; this
tutorial was tested on Node.js version 10.22.0 and npm version 6.14.6.
To install this on macOS or Ubuntu 18.04, follow the steps in How to
Install Node.js and Create a Local Development Environment on
macOS or the Installing Using a PPA section of How To Install
Node.js on Ubuntu 18.04.

A React development environment set up with Create React App, with
the non-essential boilerplate removed. To set this up, follow Step 1 —
Creating an Empty Project of the How To Manage State on React
Class Components tutorial. This tutorial will use performance-tutoria

l as the project name.

If you are new to debugging in React, check out the tutorial How To
Debug React Components Using React Developer Tools, and
familiarize yourself with the developer tools in the browser you are
using, such as Chrome DevTools and Firefox Developer Tools.

You will also need a basic knowledge of JavaScript, HTML, and CSS,
which you can find in our How To Build a Website With HTML series,
How To Build a Website With CSS series, and in How To Code in
JavaScript.

Step 1 — Preventing Re-renders with memo

https://nodejs.org/en/about/
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-and-create-a-local-development-environment-on-macos
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-on-ubuntu-18-04
https://github.com/facebook/create-react-app
https://www.digitalocean.com/community/tutorials/how-to-manage-state-on-react-class-components#step-1-%E2%80%94-creating-an-empty-project
https://www.digitalocean.com/community/tutorials/how-to-debug-react-components-using-react-developer-tools
https://developers.google.com/web/tools/chrome-devtools
https://developer.mozilla.org/docs/Tools
https://www.digitalocean.com/community/tutorial_series/how-to-build-a-website-with-html
https://www.digitalocean.com/community/tutorial_series/how-to-build-a-website-with-css
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-javascript

In this step, you’ll build a text analyzing component. You’ll create an input
to take a block of text and a component that will calculate the frequency of
letters and symbols. You’ll then create a scenario where the text analyzer
performs poorly and you’ll identify the root cause of the performance
problem. Finally, you’ll use the React memo function to prevent re-renders

on the component when a parent changes, but the props to the child
component do not change.

By the end of this step, you’ll have a working component that you’ll use
throughout the rest of the tutorial and an understanding of how parent re-
rendering can create performance problems in child components.

Building a Text Analyzer

To begin, add a <textarea> element to App.js .

Open App.js in a text editor of your choice:

nano src/components/App/App.js

Then add a <textarea> input with a <label> . Place the label inside a <div>

with a className of wrapper by adding the following highlighted code:

https://www.digitalocean.com/community/tutorials/how-to-create-custom-components-in-react
https://www.digitalocean.com/community/tutorials/how-to-customize-react-components-with-props

performance-tutorial/src/components/App/App.js

This will create an input box for the sample application. Save and close the
file.

import React from 'react';

import './App.css';

function App() {

 return(

 <div className="wrapper">

 <label htmlFor="text">

 <p>Add Your Text Here:</p>

 <textarea

 id="text"

 name="text"

 rows="10"

 cols="100"

 >

 </textarea>

 </label>

 </div>

)

}

export default App;

Open App.css to add some styles:

nano src/components/App/App.css

Inside App.css , add padding to the .wrapper class, then add a margin to

the div elements. Replace the CSS with the following:

performance-tutorial/src/components/App/App.css

This will add separation between the input and the data display. Save and
close the file.

Next, create a directory for the CharacterMap component. This component

will analyze the text, calculate the frequency of each letter and symbol, and
display the results.

First, make the directory:

.wrapper {

 padding: 20px;

}

.wrapper div {

 margin: 20px 0;

}

mkdir src/components/CharacterMap

Then open CharacterMap.js in a text editor:

nano src/components/CharacterMap/CharacterMap.js

Inside, create a component called CharacterMap that takes text as a prop

and displays the text inside a <div> :

performance-tutorial/src/components/CharacterMa
p/CharacterMap.js

Notice that you are adding a PropType for the text prop to introduce some

weak typing.

Add a function to loop over the text and extract the character information.
Name the function itemize and pass the text as an argument. The itemiz

e function is going to loop over every character several times and will be

import React from 'react';

import PropTypes from 'prop-types';

export default function CharacterMap({ text }) {

 return(

 <div>

 Character Map:

 {text}

 </div>

)

}

CharacterMap.propTypes = {

 text: PropTypes.string.isRequired

}

https://www.digitalocean.com/community/tutorials/how-to-customize-react-components-with-props#step-3-%E2%80%94-creating-predictable-props-with-proptypes-and-defaultprops

very slow as the text size increases. This will make it a good way to test
performance:

performance-tutorial/src/components/CharacterMa
p/CharacterMap.js

import React from 'react';

import PropTypes from 'prop-types';

function itemize(text){

 const letters = text.split('')

 .filter(l => l !== ' ')

 .reduce((collection, item) => {

 const letter = item.toLowerCase();

 return {

 ...collection,

 [letter]: (collection[letter] || 0) + 1

 }

 }, {})

 return letters;

}

export default function CharacterMap({ text }) {

 return(

 <div>

 Character Map:

 {text}

 </div>

)

}

Inside itemize , you convert the text into an array by using .split on every

character. Then you remove the spaces using the .filter method and use

the .reduce method to iterate over each letter. Inside the .reduce method,

use an object as the initial value, then normalize the character by converting
it to lower case and adding 1 to the previous total or 0 if there was no

previous total. Update the object with the new value while preserving
previous values using the Object spread operator.

Now that you have created an object with a count for each character, you
need to sort it by the highest character. Convert the object to an array of
pairs with Object.entries . The first item in the array is the character and

the second item is the count. Use the .sort method to place the most

common characters on top:

CharacterMap.propTypes = {

 text: PropTypes.string.isRequired

}

https://www.digitalocean.com/community/tutorials/understanding-arrays-in-javascript
https://www.digitalocean.com/community/tutorials/how-to-index-split-and-manipulate-strings-in-javascript#splitting-strings
https://www.digitalocean.com/community/tutorials/how-to-use-array-methods-in-javascript-iteration-methods#filter()
https://www.digitalocean.com/community/tutorials/how-to-use-array-methods-in-javascript-iteration-methods#reduce()
https://www.digitalocean.com/community/tutorials/understanding-objects-in-javascript
https://www.digitalocean.com/community/tutorials/understanding-destructuring-rest-parameters-and-spread-syntax-in-javascript
https://www.digitalocean.com/community/tutorials/how-to-use-array-methods-in-javascript-mutator-methods#sort()

performance-tutorial/src/components/CharacterMa
p/CharacterMap.js

import React from 'react';

import PropTypes from 'prop-types';

function itemize(text){

 const letters = text.split('')

 .filter(l => l !== ' ')

 .reduce((collection, item) => {

 const letter = item.toLowerCase();

 return {

 ...collection,

 [letter]: (collection[letter] || 0) + 1

 }

 }, {})

 return Object.entries(letters)

 .sort((a, b) => b[1] - a[1]);

}

export default function CharacterMap({ text }) {

 return(

 <div>

 Character Map:

 {text}

 </div>

)

Finally, call the itemize function with the text and display the results:

}

CharacterMap.propTypes = {

 text: PropTypes.string.isRequired

}

performance-tutorial/src/components/CharacterMa
p/CharacterMap.js

import React from 'react';

import PropTypes from 'prop-types';

function itemize(text){

 const letters = text.split('')

 .filter(l => l !== ' ')

 .reduce((collection, item) => {

 const letter = item.toLowerCase();

 return {

 ...collection,

 [letter]: (collection[letter] || 0) + 1

 }

 }, {})

 return Object.entries(letters)

 .sort((a, b) => b[1] - a[1]);

}

export default function CharacterMap({ text }) {

 return(

 <div>

 Character Map:

 {itemize(text).map(character => (

 <div key={character[0]}>

Save and close the file.

Now import the component and render inside of App.js . Open App.js :

nano src/components/App/App.js

Before you can use the component, you need a way to store the text. Import
useState then call the function and store the values on a variable called tex

t and an update function called setText .

To update the text , add a function to onChange that will pass the event.ta

rget.value to the setText function:

 {character[0]}: {character[1]}

 </div>

))}

 </div>

)

}

CharacterMap.propTypes = {

 text: PropTypes.string.isRequired

}

https://www.digitalocean.com/community/tutorials/how-to-manage-state-with-hooks-on-react-components#step-2-%E2%80%94-setting-state-with-usestate

performance-tutorial/src/components/App/App.js

import React, { useState } from 'react';

import './App.css';

function App() {

 const [text, setText] = useState('');

 return(

 <div className="wrapper">

 <label htmlFor="text">

 <p>Your Text</p>

 <textarea

 id="text"

 name="text"

 rows="10"

 cols="100"

 onChange={event => setText(event.target.value)}

 >

 </textarea>

 </label>

 </div>

)

}

export default App;

Notice that you are initializing useState with an empty string. This will

ensure that the value you pass to the CharacterMap component is always a

string even if the user has not yet entered text.

Import CharacterMap and render it after the <label> element. Pass the tex

t state to the text prop:

performance-tutorial/src/components/CharacterMa
p/CharacterMap.js

import React, { useState } from 'react';

import './App.css';

import CharacterMap from '../CharacterMap/CharacterMap';

function App() {

 const [text, setText] = useState('');

 return(

 <div className="wrapper">

 <label htmlFor="text">

 <p>Your Text</p>

 <textarea

 id="text"

 name="text"

 rows="10"

 cols="100"

 onChange={event => setText(event.target.value)}

 >

 </textarea>

 </label>

 <CharacterMap text={text} />

 </div>

)

Save the file. When you do, the browser will refresh and when you add text,
you’ll find the character analysis after the input:

Input with results below

As shown in the example, the component performs fairly well with a small
amount of text. With every keystroke, React will update the CharacterMap

with new data. But performance locally can be misleading. Not all devices
will have the same memory as your development environment.

Testing Performance

}

export default App;

There are multiple ways to test performance of your application. You can
add large volumes of text or you can set your browser to use less memory.
To push the component to a performance bottleneck, copy the Wikipedia
entry for GNU and paste it in the text box. Your sample may be slightly
different depending on how the Wikipedia page is edited.

After pasting the entry into your text box, try typing the additional letter e

and notice how long it takes to display. There will be a significant pause
before the character map updates:

Animation showing the delay when typing “e” int
o the application

If the component is not slow enough and you are using Firefox, Edge, or
some other browser, add more text until you notice a slowdown.

https://en.wikipedia.org/wiki/GNU
https://www.mozilla.org/en-US/firefox/
https://www.microsoft.com/en-us/edge

If you are using Chrome, you can throttle the CPU inside the performance
tab. This is a great way to emulate a smartphone or an older piece of
hardware. For more information, check out the Chrome DevTools
documentation.

Performance Throttling in Chrome DevTools

If the component is too slow with the Wikipedia entry, remove some text.
You want to receive a noticable delay, but you do not want to make it
unusably slow or to crash your browser.

Preventing Re-Rendering of Child Components

The itemize function is the root of the delay identified in the last section.

The function does a lot of work on each entry by looping over the contents
several times. There are optimizations you can perform directly in the

https://www.google.com/chrome/
https://developers.google.com/web/tools/chrome-devtools/network#throttle

function itself, but the focus of this tutorial is how to handle component re-
rendering when the text does not change. In other words, you will treat the
itemize function as a function that you do not have access to change. The

goal will be to run it only when necessary. This will show how to handle
performance for APIs or third-party libraries that you can’t control.

To start, you will explore a situation where the parent changes, but the child
component does not change.

Inside of App.js , add a paragraph explaining how the component works

and a button to toggle the information:

performance-tutorial/src/components/App/App.js

import React, { useReducer, useState } from 'react';

import './App.css';

import CharacterMap from '../CharacterMap/CharacterMap';

function App() {

 const [text, setText] = useState('');

 const [showExplanation, toggleExplanation] = useReducer(state

 return(

 <div className="wrapper">

 <label htmlFor="text">

 <p>Your Text</p>

 <textarea

 id="text"

 name="text"

 rows="10"

 cols="100"

 onChange={event => setText(event.target.value)}

 >

 </textarea>

 </label>

 <div>

 <button onClick={toggleExplanation}>Show Explanation</b

 </div>

Call the useReducer Hook with a reducer function to reverse the current

state. Save the output to showExplanation and toggleExplanation . After

the <label> , add a button to toggle the explanation and a paragraph that

will render when showExplanation is truthy.

Save and exit the file. When the browser refreshes, click on the button to
toggle the explanation. Notice how there is a delay.

 {showExplanation &&

 <p>

 This displays a list of the most common characters.

 </p>

 }

 <CharacterMap text={text} />

 </div>

)

}

export default App;

Delay when toggling the Explanation

This presents a problem. Your users shouldn’t encounter a delay when they
are toggling a small amount of JSX. The delay occurs because when the
parent component changes— App.js in this situation—the CharacterMap

component is re-rendering and re-calculating the character data. The text

prop is identical, but the component still re-renders because React will re-
render the entire component tree when a parent changes.

If you profile the application with the browser’s developer tools, you’ll
discover that the component re-renders because the parent changes. For a
review of profiling using the developer tools, check out How To Debug
React Components Using React Developer Tools.

https://www.digitalocean.com/community/tutorials/how-to-create-react-elements-with-jsx
https://www.digitalocean.com/community/tutorials/how-to-debug-react-components-using-react-developer-tools

Parent component re-renders in browser develope
r tools

Since CharacterMap contains an expensive function, it should only re-

render it when the props change.

Open CharacterMap.js :

nano src/components/CharacterMap/CharacterMap.js

Next, import memo , then pass the component to memo and export the result

as the default:

performance-tutorial/src/components/CharacterMa
p/CharacterMap.js

import React { memo } from 'react';

import PropTypes from 'prop-types';

function itemize(text){

 ...

}

function CharacterMap({ text }) {

 return(

 <div>

 Character Map:

 {itemize(text).map(character => (

 <div key={character[0]}>

 {character[0]}: {character[1]}

 </div>

))}

 </div>

)

}

CharacterMap.propTypes = {

 text: PropTypes.string.isRequired

}

Save the file. When you do, the browser will reload and there will no longer
be a delay after you click the button before you get the result:

No delay when toggling the explanation in the t
est app

If you look at the developer tools, you’ll find that the component no longer
re-renders:

export default memo(CharacterMap);

Component did not re-render

The memo function will perform a shallow comparison of props and will re-

render only when the props change. A shallow comparison will use the ===

operator to compare the previous prop to the current prop.

It’s important to remember that the comparison is not free. There is a
performance cost to check the props, but when you have a clear
performance impact such as an expensive calculation, it is worth it to
prevent re-renders. Further, since React performs a shallow comparison, the
component will still re-render when a prop is an object or a function. You
will read more about handling functions as props in Step 3.

In this step, you created an application with a long, slow calculation. You
learned how parent re-rendering will cause a child component to re-render

and how to prevent the re-render using memo . In the next step, you’ll

memoize actions in a component so that you only perform actions when
specific properties change.

Step 2 — Caching Expensive Data Calculations with useMe
mo

In this step, you’ll store the results of slow data calculations with the useMe

mo Hook. You’ll then incorporate the useMemo Hook in an existing

component and set conditions for data re-calculations. By the end of this
step, you’ll be able to cache expensive functions so that they will only run
when specific pieces of data change.

In the previous step, the toggled explanation of the component was part of
the parent. However, you could instead add it to the CharacterMap

component itself. When you do, CharacterMap will have two properties, the

text and showExplanation , and it will display the explanation when showE

xplanation is truthy.

To start, open CharacterMap.js :

nano src/components/CharacterMap/CharacterMap.js

Inside of CharacterMap , add a new property of showExplanation . Display

the explanation text when the value of showExplanation is truthy:

performance-tutorial/src/components/CharacterMa
p/CharacterMap.js

import React, { memo } from 'react';

import PropTypes from 'prop-types';

function itemize(text){

 ...

}

function CharacterMap({ showExplanation, text }) {

 return(

 <div>

 {showExplanation &&

 <p>

 This display a list of the most common characters.

 </p>

 }

 Character Map:

 {itemize(text).map(character => (

 <div key={character[0]}>

 {character[0]}: {character[1]}

 </div>

))}

 </div>

)

}

Save and close the file.

Next, open App.js :

nano src/components/App/App.js

Remove the paragraph of explanation and pass showExplanation as a prop

to CharacterMap :

CharacterMap.propTypes = {

 showExplanation: PropTypes.bool.isRequired,

 text: PropTypes.string.isRequired

}

export default memo(CharacterMap);

performance-tutorial/src/components/App/App.js

import React, { useReducer, useState } from 'react';

import './App.css';

import CharacterMap from '../CharacterMap/CharacterMap';

function App() {

 const [text, setText] = useState('');

 const [showExplanation, toggleExplanation] = useReducer(state

 return(

 <div className="wrapper">

 <label htmlFor="text">

 <p>Your Text</p>

 <textarea

 id="text"

 name="text"

 rows="10"

 cols="100"

 onChange={event => setText(event.target.value)}

 >

 </textarea>

 </label>

 <div>

 <button onClick={toggleExplanation}>Show Explanation</b

 </div>

Save and close the file. When you do, the browser will refresh. If you
toggle the explanation, you will again receive the delay.

Delay when toggling explanation

If you look at the profiler, you’ll discover that the component re-rendered
because the showExplanation prop changed:

 <CharacterMap showExplanation={showExplanation} text={tex

 </div>

)

}

export default App;

Re-render because prop changed

The memo function will compare props and prevent re-renders if no props

change, but in this case the showExplanation prop does change, so the

whole component will re-render and the component will re-run the itemize

function.

In this case, you need to memoize specific parts of the component, not the
whole component. React provides a special Hook called useMemo that you

can use to preserve parts of your component across re-renders. The Hook
takes two arguments. The first argument is a function that will return the
value you want to memoize. The second argument is an array of
dependencies. If a dependency changes, useMemo will re-run the function

and return a value.

To implement useMemo , first open CharacterMap.js :

nano src/components/CharacterMap/CharacterMap.js

Declare a new variable called characters . Then call useMemo and pass an

anonymous function that returns the value of itemize(text) as the first

argument and an array containing text as the second argument. When use

Memo runs, it will return the result of itemize(text) to the characters

variable.

Replace the call to itemize in the JSX with characters :

performance-tutorial/src/components/CharacterMa
p/CharacterMap.js

import React, { memo, useMemo } from 'react';

import PropTypes from 'prop-types';

function itemize(text){

 ...

}

function CharacterMap({ showExplanation, text }) {

 const characters = useMemo(() => itemize(text), [text]);

 return(

 <div>

 {showExplanation &&

 <p>

 This display a list of the most common characters.

 </p>

 }

 Character Map:

 {characters.map(character => (

 <div key={character[0]}>

 {character[0]}: {character[1]}

 </div>

))}

 </div>

)

Save the file. When you do, the browser will reload and there will be no
delay when you toggle the explanation.

Animation showing no delay when toggling explan
ation

}

CharacterMap.propTypes = {

 showExplanation: PropTypes.bool.isRequired,

 text: PropTypes.string.isRequired

}

export default memo(CharacterMap);

If you profile the component, you will still find that it re-renders, but the
time it takes to render will be much shorter. In this example it took .7
milliseconds compared to 916.4 milliseconds without the useMemo Hook.

That’s because React is re-rendering the component, but it is not re-running
the function contained in the useMemo Hook. You’re able to preserve the

result while still allowing other parts of the component to update:

Developer tools profile showing that the compon
ent renders in .7ms

If you change the text in the textbox, there will still be a delay because the
dependency— text—changed, so useMemo will re-run the function. If it did

not re-run, you would have old data. The key point is that it only runs when
the data it needs changes.

In this step, you memoized parts of your component. You isolated an
expensive function from the rest of the component and used the useMemo

Hook to run the function only when certain dependencies change. In the
next step, you’ll memoize functions to prevent shallow comparison re-
renders.

Step 3 — Managing Function Equality Checks with useCall
back

In this step, you’ll handle props that are difficult to compare in JavaScript.
React uses strict equality checking when props change. This check
determines when to re-run Hooks and when to re-render components. Since
JavaScript functions and objects are difficult to compare, there are
situations where a prop would be effectively the same, but still trigger a re-
render.

You can use the useCallback Hook to preserve a function across re-

renders. This will prevent unnecessary re-renders when a parent component
recreates a function. By the end of this step, you’ll be able to prevent re-
renders using the useCallback Hook.

As you build your CharacterMap component, you may have a situation

where you need it to be more flexible. In the itemize function, you always

convert the character to lower case, but some consumers of the component
may not want that functionality. They may want to compare upper and
lowercase characters or want to convert all characters to upper case.

To facilitate this, add a new prop called transformer that will change the

character. The transformer function will be anything that takes a character

as an argument and returns a string of some sort.

Inside of CharacterMap , add transformer as a prop. Give it a PropType of

function with a default of null :

performance-tutorial/src/components/CharacterMa
p/CharacterMap.js

import React, { memo, useMemo } from 'react';

import PropTypes from 'prop-types';

function itemize(text){

 const letters = text.split('')

 .filter(l => l !== ' ')

 .reduce((collection, item) => {

 const letter = item.toLowerCase();

 return {

 ...collection,

 [letter]: (collection[letter] || 0) + 1

 }

 }, {})

 return Object.entries(letters)

 .sort((a, b) => b[1] - a[1]);

}

function CharacterMap({ showExplanation, text, transformer }) {

 const characters = useMemo(() => itemize(text), [text]);

 return(

 <div>

 {showExplanation &&

 <p>

 This display a list of the most common characters.

 </p>

 }

 Character Map:

 {characters.map(character => (

 <div key={character[0]}>

 {character[0]}: {character[1]}

 </div>

))}

 </div>

)

}

CharacterMap.propTypes = {

 showExplanation: PropTypes.bool.isRequired,

 text: PropTypes.string.isRequired,

 transformer: PropTypes.func

}

CharacterMap.defaultProps = {

 transformer: null

}

export default memo(CharacterMap);

Next, update itemize to take transformer as an argument. Replace the .to

LowerCase method with the transformer. If transformer is truthy, call the

function with the item as an argument. Otherwise, return the item :

performance-tutorial/src/components/CharacterMa
p/CharacterMap.js

import React, { memo, useMemo } from 'react';

import PropTypes from 'prop-types';

function itemize(text, transformer){

 const letters = text.split('')

 .filter(l => l !== ' ')

 .reduce((collection, item) => {

 const letter = transformer ? transformer(item) : item;

 return {

 ...collection,

 [letter]: (collection[letter] || 0) + 1

 }

 }, {})

 return Object.entries(letters)

 .sort((a, b) => b[1] - a[1]);

}

function CharacterMap({ showExplanation, text, transformer }) {

 ...

}

CharacterMap.propTypes = {

 showExplanation: PropTypes.bool.isRequired,

 text: PropTypes.string.isRequired,

Finally, update the useMemo Hook. Add transformer as a dependency and

pass it to the itemize function. You want to be sure that your dependencies

are exhaustive. That means you need to add anything that might change as a
dependency. If a user changes the transformer by toggling between

different options, you’d need to re-run the function to get the correct value.

 transformer: PropTypes.func

}

CharacterMap.defaultProps = {

 transformer: null

}

export default memo(CharacterMap);

performance-tutorial/src/components/CharacterMa
p/CharacterMap.js

import React, { memo, useMemo } from 'react';

import PropTypes from 'prop-types';

function itemize(text, transformer){

 ...

}

function CharacterMap({ showExplanation, text, transformer }) {

 const characters = useMemo(() => itemize(text, transformer),

 return(

 <div>

 {showExplanation &&

 <p>

 This display a list of the most common characters.

 </p>

 }

 Character Map:

 {characters.map(character => (

 <div key={character[0]}>

 {character[0]}: {character[1]}

 </div>

))}

 </div>

)

Save and close the file.

In this application, you don’t want to give users the ability to toggle
between different functions. But you do want the characters to be lower
case. Define a transformer in App.js that will convert the character to

lower case. This function will never change, but you do need to pass it to
the CharacterMap .

Open App.js :

nano src/components/App/App.js

}

CharacterMap.propTypes = {

 showExplanation: PropTypes.bool.isRequired,

 text: PropTypes.string.isRequired,

 transformer: PropTypes.func

}

CharacterMap.defaultProps = {

 transformer: null

}

export default memo(CharacterMap);

Then define a function called transformer that converts a character to

lower case. Pass the function as a prop to CharacterMap :

performance-tutorial/src/components/CharacterMa
p/CharacterMap.js

import React, { useReducer, useState } from 'react';

import './App.css';

import CharacterMap from '../CharacterMap/CharacterMap';

function App() {

 const [text, setText] = useState('');

 const [showExplanation, toggleExplanation] = useReducer(state

 const transformer = item => item.toLowerCase();

 return(

 <div className="wrapper">

 <label htmlFor="text">

 <p>Your Text</p>

 <textarea

 id="text"

 name="text"

 rows="10"

 cols="100"

 onChange={event => setText(event.target.value)}

 >

 </textarea>

 </label>

 <div>

Save the file. When you do, you will find that the delay has returned when
you toggle the explanation.

Animation showing a delay when toggling explana
tion

 <button onClick={toggleExplanation}>Show Explanation</b

 </div>

 <CharacterMap showExplanation={showExplanation} text={tex
 transformer={transformer} />

 </div>

)

}

export default App;

If you profile the component, you will find that the component re-renders
because the props change and the Hooks changed:

Profile for transformer

If you look closely, you’ll find that the showExplanation prop changed,

which makes sense because you clicked the button, but the transformer

prop also changed.

When you made a state change in App by clicking on the button, the App

component re-rendered and redeclared the transformer . Even though the

function is the same, it is not referentially identical to the previous function.
That means it’s not strictly identical to the previous function.

If you open the browser console and compared identical functions, you’d
find that the comparison is false, as shown in the following code block:

Using the === comparison operator, this code shows that two functions are

not considered equal, even if they have the same values.

To avoid this problem, React provides a Hook called useCallback . The

Hook is similar to useMemo : it takes a function as the first argument and an

array of dependencies as the second argument. The difference is that useCal

lback returns the function and not the result of the function. Like the useMe

mo Hook, it will not recreate the function unless a dependency changes.

That means that the useMemo Hook in CharacterMap.js will compare the

same value and the Hook will not re-run.

Inside of App.js , import useCallback and pass the anonymous function as

the first argument and an empty array as the second argument. You never

const a = () = {};

const b = () = {};

a === a

// This will evaluate to true

a === b

// This will evaluate to false

want App to recreate this function:

performance-tutorial/src/components/App/App.js

import React, { useCallback, useReducer, useState } from 'react

import './App.css';

import CharacterMap from '../CharacterMap/CharacterMap';

function App() {

 const [text, setText] = useState('');

 const [showExplanation, toggleExplanation] = useReducer(state

 const transformer = useCallback(item => item.toLowerCase(), [

 return(

 <div className="wrapper">

 <label htmlFor="text">

 <p>Your Text</p>

 <textarea

 id="text"

 name="text"

 rows="10"

 cols="100"

 onChange={event => setText(event.target.value)}

 >

 </textarea>

 </label>

 <div>

 <button onClick={toggleExplanation}>Show Explanation</b

Save and close the file. When you do, you’ll be able to toggle the
explanation without re-running the function.

Animation showing no delay when toggling the ex
planation component

 </div>

 <CharacterMap showExplanation={showExplanation} text={tex
 transformer={transformer} />

 </div>

)

}

export default App;

If you profile the component, you’ll find that the Hook no longer runs:

Image of the browser developer tools showing th
at the Hook does not run

In this particular component, you do not actually need the useCallback

Hook. You could declare the function outside of the component and it
would never re-render. You should only declare functions inside of your
component if they require some sort of prop or stateful data. But there are
times when you need to create functions based on internal state or props and
in those situations you can use the useCallback Hook to minimize re-

renders.

In this step, you preserved functions across re-renders using the useCallbac

k Hook. You also learned how those functions will retain equality when

compared as props or dependencies in a Hook.

Conclusion

You now have the tools to improve performance on expensive components.
You can use memo , useMemo , and useCallback to avoid costly component

re-renders. But all these strategies include a performance cost of their own.
memo will take extra work to compare properties, and the Hooks will need

to run extra comparisons on each render. Only use these tools when there is
a clear need in your project, otherwise you risk adding in your own latency.

Finally, not all performance problems require a technical fix. There are
times when the performance cost is unavoidable—such as slow APIs or
large data conversions—and in those situations you can solve the problem
using design by either rendering loading components, showing placeholders
while asynchronous functions are running, or other enhancements to the
user experience.

If you would like to read more React tutorials, check out our React Topic
page, or return to the How To Code in React.js series page.

https://www.digitalocean.com/community/tags/react
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-react-js

How To Deploy a React Application with
Nginx on Ubuntu 20.04

Written by Joe Morgan

The author selected Creative Commons to receive a donation as part of the
Write for DOnations program.

You can quickly deploy React applications to a server using the default
Create React App build tool. The build script compiles the application into

a single directory containing all of the JavaScript code, images, styles, and
HTML files. With the assets in a single location, you can deploy to a web
server with minimal configuration.

In this tutorial, you’ll deploy a React application on your local machine to
an Ubuntu 20.04 server running Nginx. You’ll build an application using
Create React App, use an Nginx config file to determine where to deploy
files, and securely copy the build directory and its contents to the server. By
the end of this tutorial, you’ll be able to build and deploy a React
application.

Prerequisites

On your local machine, you will need a development environment
running Node.js; this tutorial was tested on Node.js version 10.22.0
and npm version 6.14.6. To install this on macOS or Ubuntu 20.04,
follow the steps in How to Install Node.js and Create a Local

https://www.digitalocean.com/community/tutorials/how-to-deploy-a-react-application-with-nginx-on-ubuntu-20-04
https://creativecommons.org/
https://do.co/w4do-cta
https://reactjs.org/
https://www.digitalocean.com/community/tutorials/how-to-set-up-a-react-project-with-create-react-app
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-javascript
https://www.digitalocean.com/community/tutorial_series/how-to-build-a-website-with-html
https://releases.ubuntu.com/20.04/
https://www.nginx.com/
https://nodejs.org/en/about/
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-and-create-a-local-development-environment-on-macos

Development Environment on macOS or the Installing Using a PPA
section of How To Install Node.js on Ubuntu 20.04.

One Ubuntu 20.04 server for deployment, set up by following this
initial server setup for Ubuntu 20.04 tutorial, including a sudo-enabled
non-root user, a firewall, and SSH access from your local machine. To
gain SSH access on a DigitalOcean Droplet, read through How to
Connect to Droplets with SSH.

A registered domain name. This tutorial will use your_domain

throughout. You can purchase a domain name from Namecheap, get
one for free with Freenom, or use the domain registrar of your choice.

Both of the following DNS records set up for your server. If you are
using DigitalOcean, please see our DNS documentation for details on
how to add them.

An A record with your_domain pointing to your server’s public IP

address.
An A record with www.your_domain pointing to your server’s

public IP address.

Nginx installed by following How To Install Nginx on Ubuntu 20.04.
Be sure that you have a server block for your domain. This tutorial will
use /etc/nginx/sites-available/your_domain as an example.

It is recommended that you also secure your server with an HTTPS
certificate. You can do this with the How To Secure Nginx with Let’s
Encrypt on Ubuntu 20.04 tutorial.

https://www.digitalocean.com/community/tutorials/how-to-install-node-js-and-create-a-local-development-environment-on-macos
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-on-ubuntu-20-04
https://www.digitalocean.com/community/tutorials/initial-server-setup-with-ubuntu-20-04
https://www.digitalocean.com/products/droplets/
https://www.digitalocean.com/docs/droplets/how-to/connect-with-ssh/
https://namecheap.com/
https://www.freenom.com/
https://www.digitalocean.com/docs/networking/dns/
https://www.digitalocean.com/community/tutorials/how-to-install-nginx-on-ubuntu-20-04
https://www.digitalocean.com/community/tutorials/how-to-install-nginx-on-ubuntu-20-04#step-5-%E2%80%93-setting-up-server-blocks-(recommended)
https://www.digitalocean.com/community/tutorials/how-to-secure-nginx-with-let-s-encrypt-on-ubuntu-20-04

You will also need a basic knowledge of JavaScript, HTML, and CSS,
which you can find in our How To Build a Website With HTML series,
How To Build a Website With CSS series, and in How To Code in
JavaScript.

Step 1 — Creating a React Project

In this step, you’ll create an application using Create React App and build a
deployable version of the boilerplate app.

To start, create a new application using Create React App in your local
environment. In a terminal, run the command to build an application. In this
tutorial, the project will be called react-deploy:

npx create-react-app react-deploy

The npx command will run a Node package without downloading it to your

machine. The create-react-app script will install all of the dependencies

needed for your React app and will build a base project in the react-deplo

y directory. For more on Create React App, check out out the tutorial How

To Set Up a React Project with Create React App.

The code will run for a few minutes as it downloads and installs the
dependencies. When it is complete, you will receive a success message.
Your version may be slightly different if you use yarn instead of npm :

https://www.digitalocean.com/community/tutorial_series/how-to-build-a-website-with-html
https://www.digitalocean.com/community/tutorial_series/how-to-build-a-website-with-css
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-javascript
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-node-js
https://www.digitalocean.com/community/tutorials/how-to-set-up-a-react-project-with-create-react-app

Output
Success! Created react-deploy at your_file_path/react-deploy

Inside that directory, you can run several commands:

 npm start

 Starts the development server.

 npm build

 Bundles the app into static files for production.

 npm test

 Starts the test runner.

 npm eject

 Removes this tool and copies build dependencies, configura

tion files

 and scripts into the app directory. If you do this, you ca

n’t go back!

We suggest that you begin by typing:

 cd react-deploy

 npm start

Happy hacking!

Following the suggestion in the output, first move into the project folder:

cd react-deploy

Now that you have a base project, run it locally to test how it will appear on
the server. Run the project using the npm start script:

npm start

When the command runs, you’ll receive output with the local server info:

Output
Compiled successfully!

You can now view react-deploy in the browser.

 Local: http://localhost:3000

 On Your Network: http://192.168.1.110:3000

Note that the development build is not optimized.

To create a production build, use npm build.

Open a browser and navigate to http://localhost:3000. You will be able to

access the boilerplate React app:

http://localhost:3000/

React project template running locally

Stop the project by entering either CTRL+C or ⌘+C in a terminal.

Now that you have a project that runs successfully in a browser, you need to
create a production build. Run the create-react-app build script with the

following:

npm run build

This command will compile the JavaScript and assets into the build

directory. When the command finishes, you will receive some output with
data about your build. Notice that the filenames include a hash, so your
output will be slightly different:

Output
Creating an optimized production build...

Compiled successfully.

File sizes after gzip:

 41.21 KB build/static/js/2.82f639e7.chunk.js

 1.4 KB build/static/js/3.9fbaa076.chunk.js

 1.17 KB build/static/js/runtime-main.1caef30b.js

 593 B build/static/js/main.e8c17c7d.chunk.js

 546 B build/static/css/main.ab7136cd.chunk.css

The project was built assuming it is hosted at /.

You can control this with the homepage field in your package.j

son.

The build folder is ready to be deployed.

You may serve it with a static server:

 serve -s build

Find out more about deployment here:

 https://cra.link/deployment

The build directory will now include compiled and minified versions of all

the files you need for your project. At this point, you don’t need to worry
about anything outside of the build directory. All you need to do is deploy

the directory to a server.

In this step, you created a new React application. You verified that the
application runs locally and you built a production version using the Create
React App build script. In the next step, you’ll log onto your server to

learn where to copy the build directory.

Step 2 — Determining Deployment File Location on your
Ubuntu Server

In this step, you’ll start to deploy your React application to a server. But
before you can upload the files, you’ll need to determine the correct file
location on your deployment server. This tutorial uses Nginx as a web
server, but the approach is the same with Apache. The main difference is
that the configuration files will be in a different directory.

To find the directory the web server will use as the root for your project, log
in to your server using ssh :

ssh username@server_ip

Once on the server, look for your web server configuration in /etc/nginx/s

ites-enabled . There is also a directory called sites-allowed ; this

directory includes configurations that are not necessarily activated. Once

https://www.digitalocean.com/community/tutorials/how-to-install-the-apache-web-server-on-ubuntu-20-04

you find the configuration file, display the output in your terminal with the
following command:

cat /etc/nginx/sites-enabled/your_domain

If your site has no HTTPS certificate, you will receive a result similar to
this:

Output
server {

 listen 80;

 listen [::]:80;

 root /var/www/your_domain/html;

 index index.html index.htm index.nginx-debian.html;

 server_name your_domain www.your_domain;

 location / {

 try_files $uri $uri/ =404;

 }

}

If you followed the Let’s Encrypt prerequisite to secure your Ubuntu 20.04
server, you will receive this output:

Output
server {

 root /var/www/your_domain/html;

 index index.html index.htm index.nginx-debian.html;

 server_name your_domain www.your_domain;

 location / {

 try_files $uri $uri/ =404;

 }

 listen [::]:443 ssl ipv6only=on; # managed by Certbot

 listen 443 ssl; # managed by Certbot

 ssl_certificate /etc/letsencrypt/live/your_domain/fullchai

n.pem; # managed by Certbot

 ssl_certificate_key /etc/letsencrypt/live/your_domain/priv

key.pem; # managed by Certbot

 include /etc/letsencrypt/options-ssl-nginx.conf; # managed

by Certbot

 ssl_dhparam /etc/letsencrypt/ssl-dhparams.pem; # managed b

y Certbot

}

server {

 if ($host = www.your_domain) {

 return 301 https://$host$request_uri;

 } # managed by Certbot

 if ($host = your_domain) {

 return 301 https://$host$request_uri;

 } # managed by Certbot

 listen 80;

 listen [::]:80;

 server_name your_domain www.your_domain;

 return 404; # managed by Certbot

}

In either case, the most important field for deploying your React app is roo

t . This points HTTP requests to the /var/www/your_domain/html directory.

That means you will copy your files to that location. In the next line, you
can see that Nginx will look for an index.html file. If you look in your

local build directory, you will see an index.html file that will serve as the

main entry point.

Log off the Ubuntu 20.04 server and go back to your local development
environment.

Now that you know the file location that Nginx will serve, you can upload
your build.

Step 3 — Uploading Build Files with scp

At this point, your build files are ready to go. All you need to do is copy

them to the server. A quick way to do this is to use scp to copy your files to

the correct location. The scp command is a secure way to copy files to a

remote server from a terminal. The command uses your ssh key if it is

configured. Otherwise, you will be prompted for a username and password.

The command format will be scp files_to_copy username@server_ip:pat

h_on_server . The first argument will be the files you want to copy. In this

case, you are copying all of the files in the build directory. The second

argument is a combination of your credentials and the destination path. The
destination path will be the same as the root in your Nginx config: /var/ww

w/your_domain/html .

Copy all the build files using the * wildcard to /var/www/your_domain/ht

ml :

scp -r ./build/* username@server_ip:/var/www/your_domain/html

When you run the command, you will receive output showing that your
files are uploaded. Your results will be slightly different:

Output
asset-manifest.json

100% 1092 22.0KB/s 00:00

favicon.ico

100% 3870 80.5KB/s 00:00

index.html

100% 3032 61.1KB/s 00:00

logo192.png

100% 5347 59.9KB/s 00:00

logo512.png

100% 9664 69.5KB/s 00:00

manifest.json

100% 492 10.4KB/s 00:00

robots.txt

100% 67 1.0KB/s 00:00

main.ab7136cd.chunk.css

100% 943 20.8KB/s 00:00

main.ab7136cd.chunk.css.map

100% 1490 31.2KB/s 00:00

runtime-main.1caef30b.js.map

100% 12KB 90.3KB/s 00:00

3.9fbaa076.chunk.js

100% 3561 67.2KB/s 00:00

2.82f639e7.chunk.js.map

100% 313KB 156.1KB/s 00:02

runtime-main.1caef30b.js

100% 2372 45.8KB/s 00:00

main.e8c17c7d.chunk.js.map

100% 2436 50.9KB/s 00:00

3.9fbaa076.chunk.js.map

100% 7690 146.7KB/s 00:00

2.82f639e7.chunk.js

100% 128KB 226.5KB/s 00:00

2.82f639e7.chunk.js.LICENSE.txt

100% 1043 21.6KB/s 00:00

main.e8c17c7d.chunk.js

100% 1045 21.7KB/s 00:00

logo.103b5fa1.svg

100% 2671 56.8KB/s 00:00

When the command completes, you are finished. Since a React project is
built of static files that only need a browser, you don’t have to configure
any further server-side language. Open a browser and navigate to your
domain name. When you do, you will find your React project:

Browser with React Project on Server

In this step, you deployed a React application to a server. You learned how
to identify the root web directory on your server and you copied the files
with scp . When the files finished uploading, you were able to view your

project in a web browser.

Conclusion

Deploying React applications is a quick process when you use Create React
App. You run the build command to create a directory of all the files you

need for a deployment. After running the build, you copy the files to the
correct location on the server, pushing your application live to the web.

If you would like to read more React tutorials, check out our React Topic
page, or return to the How To Code in React.js series page.

https://www.digitalocean.com/community/tags/react
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-react-js

How To Deploy a React Application to
DigitalOcean App Platform

Written by Joe Morgan

The author selected Creative Commons to receive a donation as part of the
Write for DOnations program.

DigitalOcean’s App Platform is a Platform as a Service (PaaS) product that
lets you configure and deploy applications from a source repository. After
configuring your app, DigitalOcean will build and deploy the application on
every change, giving you the benefit of a full web server and deployment
pipeline with minimal configuration. This can be a quick and efficient way
to deploy your React applications, and if you are using React to build a site
with no backend, you can use App Platform’s free tier.

In this tutorial, you’ll deploy a React application to the DigitalOcean App
Platform using the free Starter tier. You’ll build an application with Create
React App, push the code to a GitHub repository, then configure the
application as a DigitalOcean app. You’ll connect the app to your source
code and deploy the project as a set of static files.

By the end of this tutorial, you’ll be able to configure a React application to
deploy automatically on every push to the main branch of a GitHub
repository.

Prerequisites

https://www.digitalocean.com/community/tutorials/how-to-deploy-a-react-application-to-digitalocean-app-platform
https://creativecommons.org/
https://do.co/w4do-cta
https://www.digitalocean.com/products/app-platform/
https://www.digitalocean.com/community/tutorials/what-is-platform-as-a-service-paas
https://reactjs.org/
https://www.digitalocean.com/docs/app-platform/#plans-and-pricing
https://www.digitalocean.com/docs/app-platform/#plans-and-pricing
https://www.digitalocean.com/community/tutorials/how-to-set-up-a-react-project-with-create-react-app
https://github.com/

On your local machine, you will need a development environment
running Node.js; this tutorial was tested on Node.js version 10.22.0
and npm version 6.14.6. To install this on macOS or Ubuntu 20.04,
follow the steps in How to Install Node.js and Create a Local
Development Environment on macOS or the Installing Using a PPA
section of How To Install Node.js on Ubuntu 20.04.

Git installed on your local machine. You can follow the tutorial
Contributing to Open Source: Getting Started with Git to install and set
up Git on your computer.

A DigitalOcean account.

An account on GitHub, which you can create by going to the Create
your Account page.

You will also need a basic knowledge of JavaScript, HTML, and CSS,
which you can find in our How To Build a Website With HTML series,
How To Build a Website With CSS series, and in How To Code in
JavaScript.

Step 1 — Creating a React Project

In this step, you’ll create a React application using Create React App and
build a deployable version of it.

To start, create a new application using Create React App on your local
machine. In a terminal, run the command to build an application called digi

tal-ocean-app:

https://nodejs.org/en/about/
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-and-create-a-local-development-environment-on-macos
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-on-ubuntu-20-04
https://git-scm.com/
https://www.digitalocean.com/community/tutorials/contributing-to-open-source-getting-started-with-git
https://digitalocean.com/
https://github.com/join
https://www.digitalocean.com/community/tutorial_series/how-to-build-a-website-with-html
https://www.digitalocean.com/community/tutorial_series/how-to-build-a-website-with-css
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-javascript

npx create-react-app digital-ocean-app

The npx command will run a Node package without downloading it to your

machine. The create-react-app script will install all of the dependencies

and will build a base project in the digital-ocean-app directory. For more

on Create React App, check out the tutorial How To Set Up a React Project
with Create React App.

The code will download the dependencies and will create a base project. It
may take a few minutes to finish. When it is complete, you will receive a
success message. Your version may be slightly different if you use yarn

instead of npm :

https://www.digitalocean.com/community/tutorial_series/how-to-code-in-node-js
https://www.digitalocean.com/community/tutorials/how-to-set-up-a-react-project-with-create-react-app
https://yarnpkg.com/

Output
Success! Created digital-ocean-app at your_file_path/digital-o

cean-app

Inside that directory, you can run several commands:

 npm start

 Starts the development server.

 npm build

 Bundles the app into static files for production.

 npm test

 Starts the test runner.

 npm eject

 Removes this tool and copies build dependencies, configura

tion files

 and scripts into the app directory. If you do this, you ca

n’t go back!

We suggest that you begin by typing:

 cd digital-ocean-app

 npm start

Happy hacking!

Now that you have a base project, run it locally so you can test how the
project will appear on the server. First, change into the directory:

cd digital-ocean-app

Run the project using the npm start script:

npm start

When the command runs, you’ll receive output with the URL for the local
development server:

Output
Compiled successfully!

You can now view digital-ocean-app in the browser.

 Local: http://localhost:3000

 On Your Network: http://192.168.1.110:3000

Note that the development build is not optimized.

To create a production build, use npm build.

Open a browser to http://localhost:3000 and you’ll find your project:

http://localhost:3000/

React project template running locally

Stop the project by typing either CTRL+C or ⌘+C in the terminal.

Now that you have a working React application, you can push the code to a
GitHub repository.

Step 2 — Pushing the Code to GitHub

To deploy your app, App Platform retrieves your source code from a hosted
code repository. In this step, you will push your React app code to a GitHub
repository so that App Platform can access it later.

Log in to your GitHub account. After you log in, create a new repository
called digital-ocean-app. You can make the repository either private or
public:

https://docs.github.com/en/free-pro-team@latest/github/getting-started-with-github/create-a-repo

New GitHub repository page

Create React App automatically initializes your project with git, so you can
set up to push the code directly to GitHub. First, add the repository that
you’d like to use with the following command:

git remote add origin git@github.com:your_name/digital-ocean-a

pp.git

Next, declare that you want to push to the main branch with the following:

git branch -M main

Finally, push the code to your repository:

git push -u origin main

Enter your GitHub credentials when prompted to push your code.

When you push the code you will receive a success message. Your message
will be slightly different:

Output
Counting objects: 22, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (22/22), done.

Writing objects: 100% (22/22), 187.50 KiB | 6.94 MiB/s, done.

Total 22 (delta 0), reused 0 (delta 0)

To github.com:your_name/digital-ocean-app.git

 4011c66..647d2e1 main -> main

You’ve now copied your code to the GitHub repository.

In this step, you pushed your project to GitHub so that you can access it
using DigitalOcean Apps. Next, you’ll create a new DigitalOcean App
using your project and set up automatic deployment.

Step 3 — Deploying to DigitalOcean App Platform

In this step, you’ll deploy a React application to the DigitalOcean App
Platform. You’ll connect your GitHub repository to DigitalOcean, configure

the project to build, and build your initial project. After the project is live,
each change will trigger a new build and update.

By the end of this step, you’ll be able to deploy an application with
continous delivery on DigitalOcean.

To begin, log in to your DigitalOcean account and press the Create button,
then select Apps:

Create a new app page in the DigitalOcean inter
face

You’ll next be prompted to link your GitHub repository. If you have not yet
connected it, you will need to log in with your username and password and
give DigitalOcean authorization to access your repositories:

Link GitHub to DigitalOcean page

Once you link your account, select the repository you’d like to connect on
the GitHub authorization screen. In this case, you are using the digital-
ocean-app repository, but you can connect more repositories if you would
like:

Select a repo on GitHub authorization page

After selecting the repository, you will reconnect to the DigitalOcean
interface. Select digital-ocean-app from the list of repositories, then press
Next. This will connect your App directly to the GitHub repo:

Select repo in the DigitalOcean UI

Now that you have selected your repository, you need to configure the
DigitalOcean App. In this example, the server will be based in North
America by choosing New York in the Region field, and the deployment
branch will be main. For your app, choose the region that is closest to your
physical location:

Select branch and location in the DigitalOcean
interface

For this tutorial, you are checking Autodeploy code changes. This will
automatically rebuild your app every time you update the code.

Press Next to move on to the Configure your app screen.

Next, select the type of application you will run. Since React will build
static assets, select Static Site from the dropdown menu in the Type field.

Note: Create React App is not a static site generator like Gatsby, but
you are using static assets, since the server does not need to run any
server-side code such as Ruby or PHP. The app will use Node to run
the install and build steps, but will not execute application code at the
free tier.

You also have the option to use a custom build script. But in this case, you
can stick with the default npm run build command. You may want to

create a custom build script if you have a different build script for a quality
assurance (QA) or a production environment:

https://www.gatsbyjs.com/
https://www.ruby-lang.org/
https://www.php.net/

Select Static Site on the app configuration pag
e

Press Next to move on to the Finalize and launch page.

Here you can select the price plan. The free Starter tier is made for static
sites, so choose that one:

Select price option for DigitalOcean App Platfo
rm

Press the Launch Starter App button and DigitalOcean will start building
your application.

DigitalOcean is building the application page

The app will run the npm ci and npm build scripts in your repo. This will

download all of the dependencies and create the build directory with a

compiled and minified version of all of your JavaScript, HTML files, and
other assets. You could also create a custom script in your package.json

and update the Commands in the Components tab of your application on
App Platform.

It will take a few minutes for the build to run, but when it is finished, you
will receive a success message and a link to your new site. Your link will
have a unique name and will be slightly different:

Deploy complete page

Press Live App to access your project in the browser. It will be the same as
the project you tested locally, but this will be live on the web with a secure
URL:

Live application

Now that your project is configured, any time you make a change to the
linked repository, you’ll run a new build. In this case, if you push a change
to the main branch, DigitalOcean will automatically run a new deployment.
There is no need to log in; it will run as soon as you push the change:

New deploy

In this step, you created a new DigitalOcean app on App Platform. You
connected your GitHub account and configured the app to build the main
branch. After configuring the application, you learned that the app will
deploy a new build after every change.

Conclusion

DigitalOcean’s App Platform gives you a quick tool for deploying
applications. With a small initial set up, your app will deploy automatically
after every change. This can be used in conjunction with React to quickly
get your web application up and running.

A possible next step for a project like this would be to change the domain
name of the app. To do this, take a look at the official documentation for
App Platform.

https://www.digitalocean.com/docs/app-platform/how-to/manage-domains/

	About DigitalOcean
	Introduction
	How To Set Up a React Project with Create React App
	How To Create React Elements with JSX
	How To Create Custom Components in React
	How To Customize React Components with Props
	How To Create Wrapper Components in React with Props
	How To Style React Components
	How To Manage State on React Class Components
	How To Manage State with Hooks on React Components
	How To Share State Across React Components with Context
	How To Debug React Components Using React Developer Tools
	How To Handle DOM and Window Events with React
	How To Build Forms in React
	How To Handle Async Data Loading, Lazy Loading, and Code Splitting with React
	How To Call Web APIs with the useEffect Hook in React
	How To Manage State in React with Redux
	How To Handle Routing in React Apps with React Router
	How To Add Login Authentication to React Applications
	How To Avoid Performance Pitfalls in React with memo, useMemo, and useCallback
	How To Deploy a React Application with Nginx on Ubuntu 20.04
	How To Deploy a React Application to DigitalOcean App Platform

